CERIAS Tech Report 2005-20
ON SAFETY IN DISCRETIONARY ACCESS CONTROL
by Ninghui Li and Mahesh V. Tripunitara
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

On Safety in Discretionary Access Control

Ninghui Li Mahesh V. Tripunitara
Center for Education and Research in Information AssurandeSacurity
and Department of Computer Sciences
Purdue University
656 Oval Drive, West Lafayette, IN 47907-2086
{ninghui, mtripun} @cs.purdue.edu

Abstract

An apparently prevailing myth is that safety is undecidabl®iscretionary Access Control (DAC);
therefore, one needs to invent new DAC schemes in which safetlysis is decidable. In this paper, we
dispel this myth. We argue that DAC should not be equated wi¢hHarrison-Ruzzo-Ullman scheme,
in which safety is undecidable. We present an efficient (nigtime cubic in its input size) algorithm
for deciding safety in the Graham-Denning DAC scheme, whiclsguies the DAC schemes used in the
literature on comparing DAC with other access control madés also refute several claims made in recent
work by Solworth and Sloan [26], in which the authors preserewa access control scheme based on labels
and relabelling and claim that it can “implement the full ganof DAC models”. We present a precise
characterization of their access control scheme and shawtttioes not adequately capture a simple DAC
scheme.

1 Introduction

Safety analysis, first formulated by Harrison, Ruzzo, ankindh [11] for the access matrix model [13, 9],
has been recognized as a fundamental problem in accesslcddffety analysis decides whether rights can
be leaked to unauthorized principals in future states. t$afealysis was shown to be undecidable in the HRU
scheme. Since then, considerable research effort hasgordeisigning access control schemes in which safety
analysis is decidable [1, 2,5, 12, 16, 18, 19, 22, 23, 24,828, 29]. Safety analysis is particularly interesting
in DAC [6, 7, 9, 10], in which a subject gets rights to resosree¢ the discretion of other subjects. Recently,
there appears to be renewed interest in the topic of safeBAG, as evidenced by the work by Solworth
and Sloan [26], which was published at the IEEE Symposiumenu®y and Privacy in 2004. In that work,
the authors assert that “in general”, safety is undecidabl2AC, and use this assertion as the motivation for
introducing a new access control scheme based on labelekhelting that has decidable safety properties.
Our goals in this paper are to present a clear picture ofys&ieDAC and to refute several erroneous
claims in Solworth and Sloan [26]. The work in Solworth and&sl [26] is based on the myth that “safety is
undecidable in DAC; therefore, one needs to design new sehifon DAC so that safety analysis is decidable”.
We conjecture that the basis for this myth is that DAC is sammes erroneously equated to the HRU scheme [11]
(for instance, in work such as [17, 21]). As we discuss inigac3, DAC cannot be equated to HRU for the
following reasons. First, the HRU scheme can be used to emsxitemes that are not DAC schemes; therefore,
the fact that safety is undecidable in the HRU scheme shatltad one to conclude that safety is undecidable
in DAC. Second, features in DAC cannot always be encodeddarHiRU scheme. For example, some DAC
schemes require that each object be owned by exactly onesathgect; thus removal of a subject who has the
ownership of some objects requires the transfer of owneitshsome other subject (often times the owner of
the subject being removed) so that this property is maiathiBoth the removal of the subject and the transfer

of ownership of objects it owns occur in a single state-clbamy single HRU command cannot capture these
features, because it cannot loop over all objects owned bpjed.

We dispel the myth that safety is undecidable in DAC by priisgran efficient algorithm for deciding
safety in the DAC scheme proposed by Graham and Denning [@].afgorithm runs in time cubic in the size
of the input. The Graham-Denning scheme is, to our knowletihgefirst DAC scheme to have been proposed,
and several other DAC schemes proposed subsequently laee itbsumed by or are simple extensions of the
Graham-Denning scheme. Examples of such DAC schemes etthade used in Osborn et al. [20] to show
that RBAC can be used to implement DAC. The same schemes wedein Solworth and Sloan [26] to show
that the Solworth-Sloan scheme can implement DAC. Our glgorsuggests that safety in these DAC schemes
can be efficiently decided and there is no need to invent neasaccontrol schemes.

Some may hold the view that safety can be trivially decideBAC schemes. For instance, if the owner
of an object is untrusted, then he can grant rights over thecblo any other subject. Therefore, if such
an owner exists, then the system will be unsafe for that abjdthile it may be easy to identify one or two
such conditions that make a DAC system unsafe, identifyihgueh conditions may not be trivial. To our
knowledge, algorithms for deciding safety in the Grahanmfileg or other derived DAC schemes have not
appeared in the literature before. The proof that our algoriis correct, which is in Appendix A, was not
trivial for us.

We have also developed an algorithm for deciding safety mDAC scheme developed Griffiths and
Wade [10] in the context of database access control. Thisnsehs the basis for DAC schemes used in most
relational database systems currently in use. Owing toesliaitations, we are unable to include a detailed
description and analysis of the Griffiths-Wade scheme, beggnt them separately in a technical report [8].
We summarize our results for the Griffiths-Wade scheme iiGe6. We point out that safety analysis is this
scheme is more involved than in the Graham-Denning schemecd@hclusion is that safety can be decided in
time quatrtic in the size of the input for the Griffiths-Wad@emne.

We also refute several erroneous claims in Solworth andngRk&{, in which the authors claim:

“We note that ours is the first general access control modéthwhoth has a decidable safety
property and is able to implement the full range of DAC models

We show that the proposed implementation of DAC schemeseirstiiworth-Sloan scheme is incorrect. Two
particular limitations that we discuss are the lack of supfmy removing subjects and objects and the inability
to ensure that an object has only one owner, as required by $gA€mes such as Strict DAC with Change of
Ownership (SDCO), which is a simplified version of the GraHaeamning scheme.

We observe that the presentation in [26] does not clearlgifypehat information is maintained in a state,
how states may change, and the precise construction to nmeplieDAC in their scheme. Many details are
scattered in the paper and need to be inferred from deseripin several places. This makes the understanding
of the scheme and the study of implementation of DAC in thiseste very difficult. In this paper we give a
precise characterization of the Solworth-Sloan schemeaarisnplementation” of the SDCO scheme [20] in it.
We observe the “implementation” incurs considerable ozadh Essentially for each new object to be created,
a data structure of the size at least as large as the totalenurhbubjects needs to be created. Furthermore, the
“implementation” is incorrect as it does not preserve ttapprty that every object has only one owner in every
state. We believe that a precise characterization of the@ti-Sloan scheme is of independent interest. The
publication of two papers [26, 27] based on this scheme iamemajor security conferences reflects that there
is interest in such a access control scheme based on lalgketslabelling.

The rest of this paper is organized as follows. We discustga@lwork in Section 2 and give precise
definitions of safety analysis in DAC in Section 3. In Sectgnwe study safety analysis in the Graham-
Denning scheme. In Section 5, we briefly summarize our resuitsafety analysis for the Griffiths-Wade
scheme. We analyze the Solworth-Sloan scheme in Sectiod éaatlude in Section 7.

2 Related Work

There is considerable work on DAC and safety analysis. T&koawledge, Graham and Denning [9] proposed
the first DAC scheme. Their scheme is based on the work by Lampa the access matrix model [13].
Subsequently, Griffiths and Wade proposed their DAC schemeefational database systems [10]. Downs et
al. [7] discussed salient aspects of DAC, and their work wseaquently subsumed by the NCSC'’s guide to
DAC [6]. In her work on issues in access control, Lunt [17]rakaed various issues in DAC as well. Samarati
and de Capitani di Vimercati [21] included discussions onDA their treatment of access control. Osborn
et al. [20] discussed several DAC schemes that are sub-ocasesiants of the Graham-Denning scheme in
their comparison of DAC to RBAC. DAC was extended to incluelmporal constructs by Bertino et al. [3, 4].
Solworth and Sloan [26] presented a new DAC scheme basedbels land relabelling rules. The same scheme
was also used by Solworth and Sloan in [27].

Safety is a fundamental property that was first proposed @nctintext of access control by Harrison et
al. [11]. As we mention in the previous section, subseqygtiiere has been considerable work on safety in
various contexts related to security [1, 2, 5, 12, 14, 15,185,19, 22, 23, 24, 25, 26, 28, 29]. Recent work
by Li et al. [14, 15] perceived various forms of safety as saemases of more general security properties, and
safety analysis is subsumed by security analysis. In thpempave adopt this perspective in defining safety
analysis in the next section. To our knowledge, the work byv8dh and Sloan [26] is the first to directly
address safety in DAC. Other work on safety has been on spscliemes such as the HRU scheme [11], the
ESPM scheme [1] and a trust management scheme [15]. Fuxherto our knowledge, there is no prior work
on safety analysis in the context of specific DAC schemes asgdhe Graham-Denning scheme [9] and the
Griffiths-Wade scheme [10].

3 Defining Safety Analysis in DAC

In this section, we define access control schemes and systachshe general problem of security analysis in
the context of such schemes and systems. We then define aafdygis as a special case of security analysis.
In our definitions, we adopt the meta-formalism introducgd_iet al. [15, 14].

Definition 1 (Access Control Schemes and Systemg)n access control scheme is a four-tuple ¥, Q,),
wherel is a set of stated} is a set of state-change rulégjs a set of queries and I' x Q — {true, false} is
the entailment function, that specifies whether a propmsali logic formula of queries is true or not in a state.
A state-change ruley € ¥, determines how the access control system changes staten @io states
and~y; and a state-change rulg we writey —, 7 if the change fromy to - is allowed by, and~y liw "
if a sequence of zero or more allowed state changes leads)ftom; .
An access control system based on a scheme is a stateitmarsjstem specified by the four-tuple
(v, ¥, Q,F), wherey € T is the start (or current) state, afide ¥ specifies how states may change.

We recognize that our formalism for schemes and systemsglig #stract. Nonetheless, we need such an
formalism to be able to represent disparate access coetieh®es, such as those based on the access matrix,
role-based access control and trust management. When wiyspearticular access control scheme, we
specify each component precisely, using constructs tleawal-understood.

An example of an access control scheme is the HRU schemeifildhich the state is maintained in an
access matrix. Examples of querias, g2 € @ in the HRU scheme arg;f = r € M|[s,o0|” and “qy = 1’ €
M{s, o]". The queries;; andg, ask whether the subjesthas the right andr’ over the objecb, respectively.
Given a statey, and a state-change rulg, in an HRU system, let’, be the set of subjects that exist in the
state,y, O, be the set of objects that exist/, [| be the access matrix, atti, be the set of rights in the system.
Then,y =g A—gzifandonly ifs € Sy Ao € Oy A1 € My[s, o] A" & M,][s, o).

3

Definition 2 (Security Analysis) Given an access control scherfie ¥,),), a security analysis instance is
of the form(~, ¢, O¢), where¢ is a propositional logic formula of queries. Given such atance, we say that
the instance is true if for all stateg such thaty »iw ~',+' F ¢. That is,¢ represents a security invariant that
must be satisfied in all states reachable frpmindery for the instance to be true. Otherwise, the instance is
false.

Harrison et al. [11] informally characterize safety as thadition “that a particular system enables one to
keep one’s own objects ‘under control’ ”. This informal cheterization seems to be appropriate as a security
property of interest in DAC systems, as the very purpose dC¥that subjects should be able to keep objects
that they own, under their control. More formally, safetyabysis is a special case of the security analysis,
where the invariant is such that an unauthorized subjecildhmt have a particular right to a given object.

Definition 3 (Safety Analysis) Given an access control scherig ¥,),), let the set of subjects that can
exist in a system based on the scheme&blet the set of objects b@, and let the set of rights BB. Assume
that there exists a functidmsRight: S x O x R — {true, false} that returngrue if in the current states and

o exist,r is a right in the system, andhas the right- overo, and false otherwise. A safety analysis instance
is (v, 1, 0-hasRight(s,0,)) for somes € S, 0 € O andr € R. That is, safety analysis is security analysis
with ¢ instantiated to-hasRight(s, o,). The safety analysis instance is truéatRight(s, o, r) is false in any
reachable state, and true otherwise.

What is DAC? The NCSC guide titled ‘A Guide To Understanding Discretignaccess Control in Trusted
Systems’ [6], portions of which were published as a resepager [7], states that “the basis for (DAC) is that
an individual user, or program operating on the user’s ligisallowed to specify explicitly the types of access
other users (or programs executing on their behalf) may baweformation under the user’s control.” We
point out two specific properties from this characterizatad DAC: (1) The notion of “control” — there is a
notion that users exercise control over resources in thaeathat controls a resource gets to dictate the sorts
of rights other users have over the resource, and (2) themofiinitiation of an action by a user to change the
protection state — such state changes occur because [gartisars initiate such changes. A representation of a
DAC scheme needs to capture both these properties.

Some literature (for example, [17, 21]) appears to equat€ kh the HRU scheme [11]. This is incorrect,
as there exist some systems based on the HRU scheme that Bathsystems. For instance, consider an HRU
system in which there is only one command, and that commasahdi@ondition. This system is not a DAC
system as it does not have the first property from above ondh&at of resources by a subject. In addition,
there are DAC schemes that do not have natural represerga®mHRU schemes. For instance, the Graham-
Denning scheme [9] (see Section 4.1) is a DAC scheme in whatlbgect may be ‘owned’ or ‘controlled’ by
at most one other subject. An system based on the HRU schemetapture this feature in a natural way.

Trusted subjects in safety analysis In considering the safety property discussed above, eathrice of the
analysis is associated with a sEtof trusted subjects. The meaning of a trusted subject isviegbreclude
state-changes initiated by any subject fr@nin our analysis. The intuition is that we expect these subjer

be “well-behaved”. That is, while such subjects may efféateschanges, they do so in such a way that the
state that results from the state-changes they effectés s&drrison et al. [11] do consider trusted subjects as
part of their safety analysis. Nonetheless, as pointed mviqusly by Li et al. [15], the way they deal with
trusted subjects is incorrect. They require that we defeedws and columns corresponding to trusted subjects
prior to the analysis. While a trusted subject is not alloweeditiate a state-change, she may be used as an
intermediary, and the way Harrison et al. [11] deal with tedssubjects does not consider this possibility. In
this paper, we require only that a member of the set of trustégects not initiate a state-change. In all other
ways, these subjects continue to be part of the system.

4

4 Safety Analysis in the Graham and Denning Scheme

In this section, we study safety analysis in the Graham-ignDAC scheme [9]. We first present a description
of the scheme in the following section. Our description dledescribes the states and state-change rules in the
scheme. In Section 4.2, we present a correct algorithm tolelsafety in the scheme. We also assert that the
algorithm is efficient.

4.1 The Graham-Denning Scheme

In this section, We present a precise representation foGthbam-Denning scheme. We define what data are
stored in a protection state, and how a state-change rutgjeban state.

States,I" We postulate the existence of the following countably indirsiets:O, the set of objectsS, the set
of subjects § C O); andR, the set of rights.

Note that the set of objects (or subjects) in any given sgfaite; however, the number of objects that
could be added in some future state is unbounded. Simithgyset of rights in any given access control system
is finite; however, different access control systems maydifferent set of rights. Therefore, we assu§e),
andR are countably infinite.

We assume a haming convention so that we can determine, stactrtime, whether a given objeet,is a
subject (i.e.p € S) or not (i.e.,o € O — S). There exists a special “universal subjett’in S; the role ofi/
will be explained later. The set of righf& contains two special rightswn andcontrol, a countably infinite set
Ry, of “basic” rights, and a countably infinite sRt; of basic rights with the copy flag, i.6R; = {r*|r € Rs}.

In other words;R = {own, control} U R, U R;. The meaning of the copy flag is clarified when we discuss
the state-change rules for the scheme. An access contitelnsysased on the Graham-Denning scheme is
associated with a protection state, and a state-change rule

A state in the Graham-Denning schemejs associated with the tupl®.,, S, M, []), whereO, C O is
afinite set of objects that exist in the stateS, C S is a finite set of subjects that existinands., is a subset
of O,. M,[] is the access matrix, and,[]: S, x O, — 2R. Thatis,M,[s,0] C R is the finite set of rights
the subject € S, has over the object € O,.

Every stateyy = (O, S, M,[]), in the Graham-Denning scheme satisfies the following spueperties.

1. Every object must be owned by at least one subjectyies O, 3s € S, (own € M, s, 0]).

2. Objects are not controlled, only subjects are, V/@.c O, — S,Vs € S, (control ¢ M[s,0]).

3. The special subjeéf exists in the state, is not owned by any subject, and is ndtaéed by any other
subject, i.e.ld € Sy AVs € Sy(own & M,[s,U]) N\Vs € Sy, — {U}(control & M, [s,U]).

4. A subject other thatY is owned by exactly one other subject, i.e., for every S, — {U/}, there exists
exactly ones’ € S, such thabown € M, [s, s];

5. Every subject controls itself, i.e/s € S, (control € M,[s, s]).

6. A subject other thaty is controlled by at most one other subject, i.e., for every S, — {U/}, there
exists at most ong’ € S, such thats’ # s and control € M, [s', s].

7. There exists no set of subjects such that they form a “tyeléerms of ownership of each other (and
in particular, a subject does not own itself), i.e(3{s1,...,s,} C Sy(own € M,[s2,s1| A own €
M, [s3,82) A+ N own € My[sp,sp—1] A own € M,[s1, sy])).

These state invariants are maintained by the state-chaiese r

State-Change Rulesy Each member, of the set of state-change rulds,in the Graham-Denning scheme,

is a set of commands parameterized by a set of rights, These commands are shown in Figure 1. Where
possible, we use the syntax for commands from the HRU schéd]e jut as we mention in Section 3, we
cannot represent all aspects of DAC schemes using onlyrooisfrom commands in the HRU scheme. We
use some additional well-known constructs sucki asdd in these commands. A state-change is the successful
execution of one of the commands. We assume that the statecidnt to the execution of a command is

We denote such a state-changeyas») ~', wheres is the initiator of the command. We point out that for
each command, unless specified otherwisg,= S,, O, = O,, andM.,[s, 0] = M,[s, o] for everys € S,
ando € O,. We use— to denote assignment, i.e.,—— b means that the value mis replaced with the value

in b. The commands in the Graham-Denning scheme are the foljowin

transfer_r(i, s,0) This command is used to grant the righby an initiator that has the right* overo.
There is one such command for everg R, NR,. The initiator,i, must possess the right overo, and
the subject must exist for this command execution to succeed.

transfer_r*(i, s, 0) This command is used to grant the rigtitby an initiator that has the right overo.
There is one such command for everyc R, NR * b*. The initiator,i, must possess the right over
o, and the subject must exist for this command execution to succeed.

transfer_own(i, s, 0) This command is used to transfer ownership av&om i to s. For this command

to succeed; must have thewn right overo, s must exist, and the transfer of ownership must not violate
invariant (7) from the list of state invariants we discuss\a After the execution of this command,
will no longer have theywn right overo (but s will).

grant_r(i, s,0) This command is used to grant the righbver o by the owner ofo. There is one such
command for every € R, N'Ry. For this command execution to succeédjust have thewn right
overo, ands must exist.

grant_r*(i, s,0) This command is very similar to the previous command, exteptthe owner grants
r* e Rw N 'RZ

grant_control(i, s,0) This command is used to grant tlentrol right overo by its owner. For the
execution of this command to succeeédnust have the rightontrol overo, s must exist,o must be a
subject, and another subject must not already have the digltol overo. These checks are needed to
maintain the state invariants related to thetrol right that we discuss above.

grant_own(i, s,0) This command is used to grant thevn right overo. This is different from the
transfer_.own command in that in this caseé,retains (joint) ownership oves. For the execution of
this command to succeedmust have the rightwn overo, o must not be a subject, asdmust exist.

delete_r(4, s, 0) This command is used to delete a right a subject has®vEhnere is one such command
for everyr € R, N'Ry,. For the execution of this command to succeadust have the rightwn overo,
ands must exist.

delete_r*(4, s, 0) This command is similar to the previous command, exceptahight* € R, NR; is
deleted.

create_object(7, 0) This command is used to create an object that is not a sulffectthe execution of
this command to succeedmust exist, an@ must be an object that is not a subject, that does not exist.
An effect of this command is thatgets theown right overo in the new state.

destroy_object(i,0) This command is used to destroy an object that exists. Foexkeution of this
command to succeedmust have the rightwn overo, ando must be an object that is not a subject.
create_subject(i, s) This command is used to create a subject. For the executitimsotommand to

succeedj must exist, and must be a subject that does not exist. In the new stdtas theown right
overs, ands has thecontrol right over itself.

e destroy_subject(i, s) This command is used to destroy a subject. For the executitmsocommand to
succeed; must have thewn right overs. An effect of this command is that ownership over any object
owned bys is transferred ta.

4.2 Safety analysis

An algorithm to decide whether a system based on the GrahanmiBg scheme is safe is shown in Figure 2.
A system based on the Graham-Denning scheme is charadténjze start-statey, and state-change rulé,
(which is a set of commands). The algorithm takes as input, a triple,w = (s,0,z) € S x O x R, and a
finite set,7 C S, of trusted subjects. The algorithm outputs “true” if thesteyn satisfies the safety property
with respect to the subject objecto and rightx, and “false” otherwise. We first discuss the algorithm, and
then its correctness and time-complexity.

In lines 5-8 of the algorithm, we check the cases for which wendt have to consider potential state-
changes before we are able to decide whether the systeneisrsabt. In line 7, we check that the rightis
indeed in the system. In line 8, we check whether we are beikgdawhethes can get thecontrol right over
0, whereo is an object that is not a subject (we knewloes not have and cannot get the right, by property (2)
of the six properties we discuss in the previous section)in;9, we check whether the righthas already
been acquired by overo. In line 10, we check that if the right has already been acquired byver o (the
check in line 10 is needed whenc R, as then, the possessionadfimplies the possession af in the case
thatz € R;, the lines 9 and 10 are identical). When= own or x = control, the condition of line 10 will
never be true, and we will not return from that line. In the agmder of the algorithm, we consider those cases
in which a state-change is needed befoan getr overo (if it can at all). In line 11, we check whether there
is at least one subject that can initiate state-changesif aad, we know that the system is safe. In line 12,
we check whethes exists, and if it does not, given that there exists a subjedtdan create (from our check
in line 11), the subject can then granto s overo. In line 13, we check whether there is a subject that can
initiate state-changes, and that hasith the copy-flag (ow itself, if z € R}). If x = own or x = control, the
condition of line 13 cannot be true. In lines 14-16, we chetlether there is a sequence of subjects with the
particular property that each owns the next in the sequemzkthe last subject in the sequence ownl§ any
one of those subjects can initiate state-changes, then maducke that the system is not safe and return false.
In all other cases, we conclude that the system is safe, &unth teue.

The following lemma asserts that the algorithm is correttedrem 2 summarizes our results with respect
to safety analysis in the Graham-Denning scheme.

Lemma 1 A system based on the Graham-Denning scheme, that is chdract by the start-statey, and
state-change ruley, is safe with respect tow = (s,0,z) and 7 C S (where7 is finite) if and only if
isSafeGD(~, ¥, w, T) returns true.

Proof. Sketch: the proof is quite lengthy, and we present it in Apulde A. We present a sketch of the proof
here. For the “if” part, we need to show that if the system issade with respect tw and7, thenisSafeGD
returns false on inputy,vy,w, 7). If the system is not safe, then we know that there exists te-steange
SEQUENCEY 4 (51) V1 Frap(sa) *** Frap(sn) Yns SUCH thate € M., [s, o]. If such a sequence exists with= 0,
then this can only be becausealready has the right, and we show that in this case the tigorieturns false.
If n = 1, then the right has to appear M., [s, o] in only one state-change, and we show that in this case as
well, the algorithm returns false. For the general case, sednduction om, with n = 1 as the base case.

For the “only if” part, we need to show that if the algorithmumns false, then the system is not safe with
respect tav and7. We consider each case in which the algorithm returns fétses(9, 10, 12, 13 and 16). In
each case, we construct a state-change sequence suchthieefinal state of the sequeneg, z € M., [s,0]. B

command transfer_r(i, s,0)
if 7 € M,[i,o] Ns € Sy then
M.[s,0] « M,[s,o] U {r}
command transfer_own(i, s, 0)
if own € My[i,o]No € Sy Ns €S, then
if #{s1,...,8n} € S such that
own € My[s1,s] A own € M,[s2, s1]
Ao Nown € My[sy, Sp—1]
N own € Mo, sy] then
M. [s, 0] < M,[s,0] U {own}
M./i, 0] < M, i, 0] — {own}

command grant_control(i, s, 0)
if own € M,[i,0o] No€ SyNs €S, then
ifB s’ € S, such that
s’ # o A control € M, [s', o] then
M. [s,0] < M, s, 0] U {control}
command delete_r(i, s, 0)
if (own € My[i,o] As € Sy)
V control € M,[i, s] then
My[s, 0] = My[s, 0] = {r}

command create_object(i, 0)
if o O, Ni€ Sy Noe€ O—S then
Oy «— 04U {o}
M./[i, 0] < own

command create_subject(i, s)
if sgO0yNi€S,Ns€eS then
Oy «— 04U {s}
Sy — Sy U{s}
M. [i, s] < {own}
M.[s, s] < {control}

command transfer r*(i, s, 0)
if 7 € M,[i,o] N's € S, then
M/[s,0] < M,[s,ol U{r*}
command grant_r(i, s,0)
if own € M,[i,o] N's € S, then

M.[s, 0] « M,[s,o] U{r}

command grant_r*(i, s, 0)
if own € M,[i,o] N s € S, then
My[s, 0] « My[s, o] U {r*}
command grant_own(i, s, 0)
if own € My[i,o] No¢& S,
Ns € Sy then
M. [s,0] < M,[s,0] U {own}

command delete_r*(i, s, 0)
if (own € My[i,o] As € Sy)
V control € M,[i, s] then
My[s, 0] — My[s,o] — {r*}

command destroy_object(i, 0)
if own € M,[i,o] No & S then
Oy — 0y —{o}

command destroy_subject(i, s)
if own € M,[i,s] \s €S, then
Vo€ Oy, if own € M,[s,o0] then
M., 0] < M,[i, o] U {own}
Oy — Oy —{s}
Sy 8 {s)

Figure 1: The set of commands that constitutes the stategehaule,), for a system based on the Graham-
Denning scheme. Each command has a name (eagsfer_own), and a sequence of parameters. The first
parameter is always nameédand is the initiator of the command, i.e., the subject tlhatates the command.
There is oneransfer_r, grant_r, anddelete_r command for each € R, N Ry, and onetransfer_r*, grant_r*,
anddelete_r* command for each™ € Ry N'R;.

1 Subroutine isSafeGD(~,v,w,T)

2 I* inputs: v, ¢, w={(s,0,2), TCS */

3 [* output: true or false */

4 if xeRy then let y— 2=

5 else if x# own A x # control then let y«— z*

6 el se let y<« invalid /* No copy flags for own or control */
7 if z¢ Ry then return true

8 if z=controlNoeO—S then return true

9 if xzeMys,0] then return false

10 if yeM,[s,0] then return false

11 if 7265, then return true

12 if o¢0O, then return false

13 if 35€S5,—-7 such that ye M,[5,0] then return fal se

14 for each sequence U,s,,...,s2,s1 such that

15 own € My[s1,0] A--- A own € My[syp, Sn—1] A own € M,[U,s,] do

16 if ds;e€{s1,...,s,} such that s; €S,—7 then return false
17 return true

Figure 2: The subroutingSafeGD returns “true” if the system based on the Graham-Denningraeh char-
acterized by the start-state, and state-change rule, satisfies the safety property with respectitand7 .
Otherwise, it returns “false”. In line 6, we assign some lidvaalue toy, as there is not corresponding right
with the copy flag for the rightswn and control. In this case, the algorithm will not return in line 10 or 13.

Theorem 2 Safety is efficiently decidable in a system based on the Grdbanning scheme. In particular,
isSafeGD runs in time at worst cubic in the size of the components oétidn state and the set of rights in the
system.

Proof. We make the following observations about the running tifaSafeGD in terms of its input, namely,
Sy, O+, Ry, M, [], wandT, by considering each line in the algorithm as follows. Eatthe lines 5-10 runs

in time at worst linear in the size of the input. In particulas we mention in the previous section, we adopt
a naming convention for subjects and objects that enablés perform the check € O — S in line 8, in
constant time. Line 11 runs in time at worst quadratic in iae of the input (S, | x |7), line 12 runs in time

at worst linear [0,]), and line 13 runs in time at worst quadrati§{| x |R,|). As each subject is owned only
by one other subject, each sequence to which line 14 refafssige at mostS,|. Furthermore, there are at
most|S,| such sequences. Therefore, lines 14-16 run in time at wakst én the size of the input. The fact
thatisSafeGD(v, 1, w, 7') runs in time polynomial in the size of the input in conjunatiwith Lemma 1 proves
our assertion. [}

5 The Griffiths-Wade Scheme

Griffiths and Wade [10] present a DAC scheme for relationhloiase systems. Their scheme is different from
the Graham-Denning scheme in important respects. A kegrdifice is that in the Griffiths-Wade scheme, we
have three kinds of objects, base relations, views and mmessafety analysis must consider all three kinds of
objects. Furthermore, rights over views depend on righé&s base relations, and rights over rows depend on
rights over relations and views.

As we mention in Section 1, owing to space limitations, we wable to include a detailed description
and analysis of the Griffiths-Wade scheme. We include thesailsl in [8], and present only the results here.
The algorithm to decide safety in the Griffiths-Wade schemdq(]) is more involved that the algorithm for

deciding safety in the Graham-Denning scheme (in Secti®)) But we adopt a similar strategy in its proof of
correctness.

Theorem 3 Safety is efficiently decidable in a system based on thet@sifilade scheme. In particular, there
exists an algorithm that returns true if a system based orithikiths-Wade scheme is safe and false otherwise,
and the algorithm runs in time quatrtic in the size of the congrus of the start state.

6 The Solworth-Sloan Scheme, Revisited

Solworth and Sloan [26] present a new DAC scheme based ols labd relabelling rules, and we call it the
Solworth-Sloan scheme. While the presentation in [26] ca¢slearly specify what information is maintained
in a state and how states may change, we were able to inferisviméénded after considerable effort.

In this section, we give a precise characterization of tHe/@th-Sloan scheme as a state transition system.
Our objective in doing so is to represent the Solworth-Skdreme sufficiently precisely to enable comparisons
to other DAC schemes. In particular, our intent is to asdesstapping of DAC schemes to the Solworth-Sloan
scheme that is discussed by Solworth and Sloan [26]. Sdiveortl Sloan [26] refer to the DAC schemes dis-
cussed by Osborn et al. [20] and assert that “. . . we presegnergl access control model which is sufficiently
expressive to implement each of these DAC models. ..” Ingbdion, we show that this claim is incorrect.

We reiterate that the DAC schemes discussed by Osborn @0dlafe either subsumed by, or are minor
extensions of the Graham-Denning scheme that we discussctin8 4. We have shown in Section 4.2 that
safety is efficiently decidable in the Graham-Denning saneamd our algorithm can be used with relatively
minor modifications to decide safety in these schemes. blieBolworth and Sloan’s [26] other assertion in
reference to the DAC schemes discussed by Osborn et altf2@T.. . . every published general access control
model. .. either is insufficiently expressive to represéet full range of DACs or has an undecidable safety
problem...”, has been rendered invalid.

6.1 The Solworth-Sloan Scheme

Overview There exists the following countably infinite sets of contda a setS of subjects, a se® of
objects, a seR of rights, a setj of groups, a sef ° of object tags, and a s&t¢ of group tags. Arobject label
is a pair(s,t), wheres € S is a subject and € 7° is a object tag.

Which rights a subject has over a particular object are deted indirectly in the following three steps.

1. There is a labelling functiolabel that assigns an object label to each object.

An object’s label may be changed by object relabelling rudsch determine whether an action rewrit-
ing one object label into another succeeds or not. For exgmyien the object labél, = (s1,¢1) is
relabelled to/; = (s9, t2), all objects that originally have the lab&l now have the labél,.

2. There is an authorization functiauth that decides which rights a group has over a particular objec
label. For each object labéland each right, there is one group who has the righbver the labe¥.
Members of the group have rightover objects that are assigned the label

3. Which subjects are members of a group is determined byengtoup sets (NGS’s), which are compli-
cated structures that we describe below. We define a funetionbers that maps each group to a set of
subjects.

We schematically illustrate the steps to determine whedtsibject can access an object or not as follows.

objects®® object labels™™ groups™ ™™ subjects

10

States,I" A state,y, is characterized by a 9-tup(¢,, O,, R, G, L., label,, auth,,ORS,, E,).
¢ S, is the set of subjects in the staieO, is the set of objects in the state 12, is the set of rights in the
statey, andG,, is the set of groups in state
There is a distinguished rightr, which exists in every state, i.evy € R,,.

e L, C S, x T?isthe finite set of object labels in the state
e label,: O, — L., assigns a unique object label to each object in the curratg. st

e authy: (L, x R,) — G, maps each pair of an object label and a right to a group. Fangba
auth, [/, re] = g; means that the group has there right over all objects labelled

e ORS, is an ordered sequence of object relabelling rules, eaerhag the form ofl(p1, p2) = h, where
rl is a keyword, anch, po are object patterns. Aabject patternis a pair, where the first element is a
subject inS or one of the three special symbels«u, and«w, and the second element is an object tag in
7° or the special symbal. In the rulerl(py, p2) = h, his a group, a subject, or one of the four following
sets:{}, {*}, {xu}, {*w}. Whenh is {xu} (resp.,{*w}), {*xu} (resp.,{*w}) must appear ip; or p.

For example, the following is an RLS, in which is a subject{; is an object tag, ang, is a group:

A((xu,t1), (s1,%)) = ¢
r((s1,*), (xu,t1)) = {x}
A((xu, %), (xu,%)) = {xu}
A((eu, %), (xw, %)) = {}
e F, is afinite set of native group sets (NGS’s) that exist in tlaest.. Eache € E, is characterized by
the 7-tuple(e.G, e.T9, e.gtag, e.nt9, e.admin, e.patterns, ,e.GRS).

— e.G C G, is the set of groups that are defined in this NGS.
— e.T9 C TYis the set of group tags that are used in this NGS.

The functione.gtag : S, — e.7Y assigns a unique tag to each subject in the current state.

e.nt9 is a group tag ire.79; it determines when a new subject is added to the state, wairis
assigned to that subject. That is, if a subjett added, ther.gtag[s] would be set te.nt9.

e.admin points to one NGS it ; it identifies a NGS in the current state as the adminiseaioup
set of the NG&; e.admin could bee, in which case: is the administrative group set for itself.

e.patterns is a function mapping each group G to a (possibly empty) set of group patterns.
Eachgroup patternis a pair where the first element is either a subject in theeotirstate or a
special symboku, and the second element is a group tag.ifi. In other words, the set of all
group patterns that are can be used,idenoted by.PY, is (S, U {xu}) x e.TY, and the signature

of e.patternsis e.G — 2¢ where2¢? denote the powerset ef P9.

For any groupy € e.G, e.patterns[g] gives a set of patterns for determining memberships of the
group. Intuitively, the labe{xu, t9) is in e.patterns[g] means that any subject who is assigned (via
the egtag function) the group tagf is a member of the group; and the labelt?) is in e.patterns|g]
means that the subjegfs a member of the group if it is assigned the groupttag

— eGRS is a set of group relabelling rules, each has the fdtebel(t{,t3) = g, where Relabel
is a keyword,t{,tJ € e.T9 are two group tags used in this NGS, ané a group defined in the
administrative group setadmin (i.e.,g € e.admin.G).

11

We define the following auxiliary functioa.members| | : e.G — S, such thate.members|g] is the
set of all subjects that are members of the grou\ subjects € e.members[g] if and only if the tag
t9 assigned tx (via e.gtag) satisfies the condition that at least one of the two groupl&fs, t9) and
(xu,t9) are in the patterns fay, i.e.,

3t € eTY (e.gtag(s) =t7 A ((s,t7) € e.patterns|g] V (xu,t?) € e.patterns[g]))

An additional constraint on the stateis that each group is defined in exactly one NGS and each group
tag can be used in at most one NGS, i.e.,

Ve, € E-YVGQ € E-y (e1.GNes.g =0 A e T9Ney. T9 = @)

State-Change Rulesy There is a single state transition ruldn this schemei) consists of six actions that
can result in state changes. These actions are mentionextiio®s 3.4 of [26] without precise definition. (We
break up the “Relabel an object” operation in [26] into twabelling actions.) We describe the actions and
their effects when applying them to a state= (S, O,, R, G-, L., label.,, auth,, ORS,, E,). We usey’ to
denote the state after the change.

1. create_object(s,0,¢ = (s1,t9)): the subjects creates the object and assigns the object labeto the
objecto.

This action succeeds where S, 0 € O,, ¢ € L., and the subject has thewr right on the object label
¢,i.e.,s € members[auth, (¢, wr)].

Effects of the action ar®., = O, U {o} and the functioriabel is extended so thadbel./ (0) = (s1,17).
2. create_label(s,/ = (s,t1),91,92, - , gx), wherek = |R,| is the number of rights iry: the subjects
creates the new object lab&land assigns the groups, ¢o, - - - , g t0 have the rights ovef, .
This action succeeds wherc S, ¢ ¢ L., the subjectirfis s, andgy,--- , gx € G,.
The effects of this action are follows. Let, 7, - - -, be thek rights inR,,. ThenL,, = L, U {¢} and
the functionauth is extended such thatith/ (¢,r;) = g; for 1 <i < k.
3. create_subject(s, s): the subject creates a new subjegt
This action succeeds where S, ands’ ¢ S,,.
The effects of this action arg,, = S, U {s'} and for every NG% € E,, e.gtag is extended so that in
v, e.gtag(s’) = e.nt?.
4. object_relabel(s, £; = (s1,t1),¢2 = (sq,t2)): the subjects relabels objects having labé] to have the
label /5.

This action succeeds when the first relabelling rule in thealrelabelling rule sequend@RS., that
matches(¢y, ¢2) is rl(p1,p2) = h ands € value[h]. The rulerl(pi,p2) = h matcheg¢;, ¢3) whenp,

matches; andp, matche<, at the same time. When the pattéru, x) matches the labels,¢;), we

say thatxu is unified with the subject;. Note that whenxu occurs more than one timesjin, ps, they
should be unified with the same subject. Recall thataybe a groug, a subjects’, or one of the four
sets:{}, {x}, {*u}, {*w}. The functionvalue is defined as followsvaluelg] = e.members|g], wheree

is the NGS in whicly is defined;value(s'] = {s'}; value[{}] = 0, value[{+}] = S, value[{*u}] is the
subject that is unified withu.

Consider the following RLS.

12

(1 g1
r((s1,*), (xu,t1)) = {x}

((u,), (ruyx)) = {xu}

A((xu, %), (xw, %)) = {}

The actionobject_relabel(s, (s2,t1), (s1,t2)) would match the first relabelling rule and succeeds when
s is a member of the group;. The actionobject_relabel(s, (s1,%1), (s2,t2)) would match the second
relabelling rule and always succeeds. The actibject_relabel(s, (so,t2), (s2,t1)) would match the
third relabelling rule and fail, because is unified withss. The actiorobject_relabel(s, (s2, t2), (s1,%1))
would match the fourth relabelling rule and fail.

The effect of the relabel action is in the functilibel. For every objecb such thatabel o] = /1, in the
new statelabel./[0] = (5.

5. group_tag_relabel(s, s’, t{,t9): the subjeck relabels the group tag for the subjetfrom ¢{ to ¢3.

This action succeeds when there is an NGS E., such that{ andt] are used ir, the subject’ has
the group tag? in e, there is a corresponding group relabelling rule @RS, ands is a member of the
group that can use the relabelling rule. More preciselyattisn succeeds when

Je € E, (e.gtag[s'] = t] A “Relabel(t{,t]) = g" € e.GRS A s € e.members[q])

Note that the tags] andt can appear only in one NGS and they must appear in the same tiG&f
action to succeed. The effect of this action is such that ginetfon e.gtag is changed such that i,
e.gtag[s'] = 5.

6. create_ngs(s, e): the subject creates a new NG&

To perform this action, one must provide the complete dpsori of a new NG, i.e., the 7-tuple
(e.G, eTY, e.gtag, e.ntY, e.admin, e.patterns, , e.GRS). For this action to succeed, the groups defined
in e and the group tags inmust be new, i.e., they do not appear in any existing NGSs in

The effects are that.,, = G, Ue.G andE, = E, Ue.

Given the above state transition rule, we make the followaibgervations. No removal of subjects, objects,
labels, or groups is defined. Given a statg, O, R, G, L, label,,auth,,ORS,, E,), S, (the set of sub-
jects),0,, (the set of objects), and., (the set of groups) may change as a resultefte_subject, create_object,
andcreate_label, respectively.RR., the set of rights, is fixed for the system and does not chatigethe set of
groups, may change when a new NGS is added byre_ngs action. The functiorlabel,: O, — L, is
extended when a new object is added and is changed when an k@gdbelling actiorobject relabel happens.
The functionauth,, is extended when a new object label is created; existingmssnts do not chang@RS .,
the object relabelling rule sequence, always stay the samés extended when a new NGS is added.

6.2 Encoding a simple DAC scheme in the Solworth-Sloan scheme

In this section, we encode a relatively simple DAC schemberSolworth-Sloan scheme. The DAC scheme we
consider is a sub-scheme of the Graham-Denning schemecadliésl Strict DAC with Change of Ownership
(SDCO) and is one of the DAC schemes discussed by Osbor{20hlOur construction is based on comments
by Solworth and Sloan [26] on how various DAC schemes can bedad in the Solworth-Sloan scheme. As
the presentation in that paper is not detailed, we offer aerdetailed construction. Our constructions lets us
assess the utility of the Solworth-Sloan scheme in enco8DGO. After we present our encoding, we discuss
the overhead introduced by mapping SDCO to the SolworthsSéecheme and the correctness of this mapping.

13

Strict DAC with Change of Ownership (SDCO) As we mention above, SDCO is a sub-scheme of the
Graham-Denning scheme (see Section 4.1). In SDCO, therdistimguished rightpwn, but nocontrol right.
Also, there are no rights with the copy flag. The state-chantgs in SDCO are the commangsant r (for
eachr € Ry), delete_r (for eachr € R,), grant_own, create_object andcreate_subject. We do not consider
commands to destroy subjects or objects as their countsrg@ not specified for the Solworth-Sloan scheme.

For simplicity, we consider an SDCO scheme that has onhethghtsown, re, wr. In the Solworth-Sloan
scheme, if two objects; ando, have the same label, thepando, always have the same access characteristics.
Thatis, in every state, the set of subjects having a rigivero, is the same as the set of subjects having the right
r overos. In SDCO, one can reach states in whighando, have different access characteristics. Therefore,
each object needs to be assigned a distinct label, wésus@)) to denote such an label.

Therefore, before creating an object, one has to create datmk When creating a new labél one
has to assign a group tath(¢,own) and a group tauth(¢, re); and a group tauth(¢, wr). Each pair(¢, r)
determines a unique access class. Therefore, a distingd geeds to be created. We yge,) to denote the
group that will be assigned to have the rightver objecto.

In order to keep track of which subset of rights a subject h&s an object, we neesl group tags, one
corresponding to each subset{@fun, re,wr}, we uset? (o,), wherez is a 3-bit string to denote these tags.

In order for a subject to create an object, s needs to do the following:

1. Create an NG8 = (e.G, e.TY, e.gtag, e.ntY, e.admin, e.patterns, , e.GRS) as follows.

e c.G = {g(o,own),g(o,re), g(o,wr)}
e.T9 = {t9(0,000), 9 (0,001), 9 (0, 010), 9 (0, 011), 19 (0, 100), £9 (0, 101), 9 (0, 110), 9 (0, 111)}.
e.gtag[s] = t9(o, 100) ande.gtag[s'] = t9(0,000) for everys’ € S, s.t.s' # s.
e.ntd = t9(o,000)
e cadmin=e¢
e.patterns[g(o,own)] = {(xu, t9(0,100)), (xu, t9 (0, 101)), (xu, t9 (0, 110)), (xu,t9 (0, 111))}
]

e.patterns[g(o, re)] = {(xu,t9(0,010)), (xu, 7 (0,011)), (xu, t9 (0, 110)), (xu, 9 (0, 111))}
e.patterns[g(o, wr)] = {(xu, t9(0,001)), (xu,t9(0,011)), (xu,t9 (0, 101)), (xu,tI (0, 111))}

e.GRS = { Relabel(g(o, b1babs), g0, b1 bhb5)) = g(o, own)
| bybabs, bbby € {0,1}3 A bibabs andb)bhb} differ in exactly one bi}

2. Use the actiorreate_label(s, (s, t(0)), g(o,re), g(o,wr)) to create the labél(o).

3. Use the actiorreate_object(s, o, (s, t(0))) to create the objectand label it with¢(o).

To grant or revoke a right, one uses group relabelling. Fsinirce, supposeis a subject, and for the NGS,
e, e.gtag[s| = t9(0,000). Then, we know that is not a member of any of the group$o, own), g(o, re) or
g(o,wr). The subject would be granted the righby relabelling(s, t9(o, 000)) to the labek's, t9(0,010)). The
execution of this relabelling results in the subject beecwra member of the grougo, re), thereby giving him
the rightre over the objecb. Similarly, the subject would have the rigltrevoked by relabellings, t9(o, 010))
to the label(s, t9(0,000)). These operations can be carried out only by a subject tlaanismber of the group
g(o,own).

We make the following observations about the above mapping.

e There is considerable overhead in implementing a relgtigginple DAC scheme (SDCO) in the
Solworth-Sloan scheme. For each object, we need to created Ebels whose size is linear in the
number of the subjects in the state. We also need to createdd &@s whose size is exponential in

14

the number rights in the system. These tags are used to definpsy and the therefore, the number of
entries in all the sets of patterns is also exponential imtmaber of rights in the system. This is con-
siderable overhead considering the simplicity of SDCO,thedact that we can “directly” implement it,
with efficiently decidable safety.

e We are unable to capture destruction of subjects and olgscssich constructs have not been specified
for the Solworth-Sloan scheme. Destruction of subjects @jdcts is generally considered to be an
important component of any access control system. In pdatidt is unclear how and with what overhead
we can capture in the Solworth-Sloan scheme, the notioran$ter of ownership over objects owned by
a subject that is being destroyed.

e The above mapping does not capture the state invariant inCsb@t in every state, there is exactly one
owner for every object that exists. In the Solworth-Sloastem that results from the above mapping,
one can perform relabelling operations and reach statefichvthere are mutiple owners for an object,
or no owner for an object. For instance, suppose that theeady exists a subject such thats €
e.members[g(o,own)]. Given the above relabelling rules, there is nothing thatimdes another subject
from also becoming a member of the grag(@, own) while s continues to maintain membership in that
group. Itis also possible to remove the membershipinfthe groupy(o, own) thereby leaving the object
with no owner. It is unclear how we would prevent such situaifrom occuring in a system based on
the Solworth-Sloan scheme.

Our conclusion is that several of the claims made by Solwanith Sloan [26] are incorrect. In particular,
not only is the motivation (decidable safety) for the creatof their new scheme invalid, but it is also not
effective in implementing relatively simple DAC schemes.

7 Conclusions

The focus of this paper is to provide a clear picture of sadelysis in DAC. We have used a state-transition-
system-based meta-formalism to precisely model accedstsnhemes and systems and have studied safety
analysis in two general DAC schemes from the literature Ghgham-Denning scheme [9], and the Griffiths-
Wade scheme [10]. For the Graham-Denning scheme, we hasenpeel an algorithm for deciding safety with
running timeO(n?) and proved that the algorithm is correct. Because of spauéations, we were unable

to include details of our analysis of the Griffiths-Wade sobke but we have summarized that there exists an
O(n*) algorithm for deciding safety in the scheme. We have alastedfseveral claims made by Solworth and
Sloan [26]. In particular, we have refuted the claim thatrtregpping presented there encodes all DAC schemes
by considering a relatively simple DAC scheme and dematistrahat the mapping has several deficiencies.
We conclude by asserting that safety in existing general Bakmes is decidable and there is no need to
invent new DAC schemes with decidable safety as the goal.

References

[1] Paul Ammann and Ravi S. Sandhu. Safety analysis for theneed schematic protection model. In
Proceedings of the 1991 IEEE Symposium on Security anddipages 87-97, May 1991.

[2] Paul Ammann and Ravi S. Sandhu. The extended schematiegion model. Journal of Computer
Security 1(3-4):335-383, 1992.

15

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Elisa Bertino, Claudio Bettini, Elena Ferrari, and Riegela Samarati. An access control model supporting
periodicity constraints and temporal reasonid:M Transactions on Database Systef%(3):231-285,
1998.

Elisa Bertino, Claudio Bettini, and Pierangela Samamtemporal authorization model. IRroceedings
of the ACM Conference on Computer and Communications $g¢QCS) pages 126-135. ACM Press,
1994.

T. Budd. Safety in grammatical protection systerfrgernational Journal of Computer and Information
Sciences12(6):413-430, 1983.

National Computer Security Center. A guide to underdtag discretionary access control in trusted
systems, September 1987. NCSC-TG-003.

Deborah D. Downs, Jerzy R. Rub, Kenneth C. Kung, and @aBolJordan. Issues in discretionary access
control. InProceedings of IEEE Symposium on Research in Security auddyrpages 208—-218, April
1985.

Anonymous (for blind review). On safety in discretiopaccess control. Technical report, 2004.

G. Scott Graham and Peter J. Denning. Protection — piesiand practice. IRroceedings of the AFIPS
Spring Joint Computer Conferencslume 40, pages 417-429. AFIPS Press, May 16-18 1972.

Patricia P. Griffiths and Bradford W. Wade. An authoti@ga mechanism for a relational database system.
ACM Transactions on Database Systef(8):242—-255, 1976.

Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. tdkn. Protection in operating systen@ommu-
nications of the ACM19(8):461-471, August 1976.

Anita K. Jones, Richard J. Lipton, and Lawrence Snyéldimear time algorithm for deciding security. In
17th Annual IEEE Symposium on Foundations of Computer &ei@fOCS)pages 33—41, October 1976.

Butler W. Lampson. Protection. Rroceedings of the 5th Princeton Conference on Informafoiences
and Systemd971. Reprinted in ACM Operating Systems Review, 8(1248Jan 1974.

Ninghui Li and Mahesh V. Tripunitara. Security anafy/si role-based access control. Rroceedings of
the Ninth ACM Symposium on Access Control Models and Teatjiesl(SACMAT 2004pages 126—135,
June 2004.

Ninghui Li, William H. Winsborough, and John C. MitcthelBeyond proof-of-compliance: Safety and
availability analysis in trust management. Pmoceedings of IEEE Symposium on Security and Privacy
pages 123-139. IEEE Computer Society Press, May 2003.

Richard J. Lipton and Lawrence Snyder. A linear timepalipm for deciding subject securityournal of
the ACM 24(3):455-464, 1977.

Teresa Lunt. Access control policies: Some unansweresktions. InProceedings of the 2nd IEEE
Computer Security Foundations Workshppges 227-245. IEEE Computer Society Press, June 1988.

Naftaly H. Minsky. Selective and locally controlledatrsport of privileges ACM Transactions on Pro-
gramming Languages and Systei®@!}):573—602, October 1984.

16

[19] Rajeev Motwani, Rina Panigrahy, Vijay A. Saraswat, &uwesh Ventkatasubramanian. On the decid-
ability of accessibility problems (extended abstract).Phaceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computipgges 306-315. ACM Press, May 2000.

[20] Sylvia Osborn, Ravi S. Sandhu, and Qamar Munawer. Corifig role-based access control to enforce
mandatory and discretionary access control policd&3M Transactions on Information and System Secu-
rity, 3(2):85-106, May 2000.

[21] Pierangela Samarati and Sabrina de Capitani di Vintieréacess control: Policies, models, and mech-
anisms. In Ricardo Focardi and Roberto Gorrieri, editBosindations of Security Analysis and Design
volume 2171 ol ecture Notes in Computer Scienpages 137-196. Springer, 2001.

[22] Ravi S. Sandhu. The schematic protection model: Itsnidiefh and analysis for acyclic attenuating
systems.Journal of the ACM35(2):404-432, 1988.

[23] Ravi S. Sandhu. Expressive power of the schematic giiote model. Journal of Computer Security
1(1):59-98, 1992.

[24] Ravi S. Sandhu. The typed access matrix moddPrateedings of the 1992 IEEE Symposium on Security
and Privacy pages 122-136. IEEE Computer Society Press, May 1992.

[25] Ravi S. Sandhu. Undecidability of the safety problem tfte schematic protection model with cyclic
creates.Journal of Computer and System Scieneek1):141-159, February 1992.

[26] Jon A. Solworth and Robert H. Sloan. A layered designis€mtionary access controls with decidable
safety properties. IRroceedings of IEEE Symposium on Research in Security daddyrMay 2004.

[27] Jon A. Solworth and Robert H. Sloan. Security propedgdd administrative controls. FProceedings
of the Ninth European Symposium on Research in Computeri§g&SORICS 2004)pages 244-259.
Springer, September 2004.

[28] Masakazu Soshi. Safety analysis of the dynamic-tymmeass matrix model. IRroceedings of the Sixth
European Symposium on Research in Computer Security (ESR000) pages 106—-121. Springer,
October 2000.

[29] Masakazu Soshi, Mamoru Maekawa, and Eiji Okamoto. Tymathic-typed access matrix model and
decidability of the safety problemlEICE Transactions on Fundamentalg&87-A(1):190-203, January
2004.

A Proof for Lemma 1l

Proof. The “if” part: we need to show that i§SafeGD(~, ¢, w, T) returns true, then the system is safe with
respect taw and7. We show, equivalently, that if the system is not safe witbpeet tow and 7', then
isSafeGD(v, ¢, w, 7T") returns false. Assume that the system is not safe with respec and7. We have
two cases. The first case is that in the start-state,hasxz overo. This case consists of two subcases: either
(1) z € M,[s, 0], or (2)x € Ry andz™ € M, [s, o] (possession af* implies possession af). If both (1) and

(2) are true, we consider either one of those two subcasesibtfase (1) is true, then we know that R,

and ifz = control ando € O — S, thenz ¢ M, (s, o] (by property (2) from the previous section that objects
that are not subjects cannot have thetrol right over them). Therefore, the ‘if’ conditions of lines fich8 are

not satisfied, and line 9 of the algorithm returns false, andive done. For subcase (2), in line 5 we instantiate
yto z*. We know thatr,y € Ry, and thatr # control. Therefore, the ‘if’ conditions for lines 7 and 8 are not

17

satisfied. The ‘if’ condition for line 9 may be satisfied andt i, the algorithm returns false and we are done.
Otherwise, the algorithm returns false in line 10.

The second case is thatdoes not have: over o in the start-state, i.eg ¢ M,[s,o0] and ifz € Ry,
thena* ¢ M,[s,0]. In this case, as the system is not safe, there exists a fetnjgesce of state-changes
Y Fg(sn) V1 Fre(ss) 0 Fr(sn) Yn WHEren is an integer andh > 1, such that eithex € M., [s, o], or if
x € Ry, thenz* € M, [s,0]. Eachs; € S,, | — 7 and thes;’s are not necessarily distinct from one another.
We point out also that if; € S,, — 7 for somei andj, ands; € S, for somek # j, thens; € S, — 7,
becauserl is specified a-priori and does not change with changes inttie.sWe now show that if such a
sequence of state-changes exists, then the algorithrmsdtlse. We show this by induction an For the base
case, if there exists a sequence of length 1, then,;,y 71, andx & M, [s, o] andz* & M, [s, o] if x € Ry,
andx € M, [s,0], orz € Ry andz* € M., [s,0]. In this case, the state-change is the execution of one of the
following commands, and we show that the algorithm retuatsefin each case. The state-change has to be the
execution of one of these commands because these are theoomiyands that enter a right in to a cell of the
access matrix.

transfer_r — in this case we know that € R, N Ry, 2* € Ry, ©* € M,[s1,0] for somes; € S, — 7, and
s € Sy. The algorithm will not return in any of the lines 7-11 as tlespective ‘if’ conditions are not
satisfied. Ifo ¢ O, then the algorithm returns false in line 12, and we are ddhe.< O., then the
conditions for line 13 are mey (s instantiated ta:*), and the algorithm returns false.

transfer_r* —we have two subcases to consider: either(£)R; N Ry, or, (2)z € Ry N Ry. Incase (2), ley
bex*, and in case (1), lej bex. We know in either case thagte M, (s, 0] for somes; € S, — 7, and
s € S, (otherwises would not get the right overo after the execution of the command). The algorithm
will not return in any of the lines 7-11 as the respective dbnditions are not satisfied. éfZ O, then
the algorithm returns false in line 12, and we are done.dfO., then the conditions for line 13 are met
and the algorithm returns false.

transfer_own — in this case we know that = own, own € M,[i,o] for somei € S, — 7,0 € S, and
s € S,. The ‘if’ conditions for each of lines 7-13 are not met (fandi 11, we know thabwn™ ¢ R).
Consider lines 14-16. We know that such a sequence of salggists (as has theown right overo in
S,), and furthermore; € S, — 7. Therefore, the conditions to return false in lines 14-I6raet, and
the algorithm returns false.

grant_r —in this case, we know thatwn € M,[i, o] for somei € S, — 7 andxz € Ry N Ry, (in particular,
x # control andx # own — there are other commands to grant those rights). The ‘ifidamns for
each of lines 7-11 are not met. dfZ O., the algorithm returns false in line 12, and we are done. If
o € O, the conditions for line 13 may be met, and if they are, thertigm returns false and we are
done. If the conditions in line 13 are not met, then we obstraethe conditions for lines 14-16 are met
(the sequence of subjects containas: has theown right overo in S,), and the algorithm returns false.

grant_r* —we have two subcases to consider. Either(®) R, N Ry, or, (2)x € R} N Ry. For case (1), let
y bez* and for case (2), leg bex. In either case, we know thatvn € M, [i, o] for somei € S, — 7.
The ‘if’ conditions for lines 7-11 are not met. ¢f¢ O, then the algorithm returns false in line 12, and
we are done. Otherwise, the conditions for line 13 may be ared,if they are, the algorithm returns
false, and we are done. Otherwise, we observe that the @mrlfor lines 14-16 are met (the sequence
of subjects containg as: has theown right overo in S,), and the algorithm returns false.

grant_control — in this case, we know that = control, own € M,[i,o] for somei € S, — 7 ando € S,.
Therefore, the ‘if’ conditions for lines 7-12 are not met. ertif’ conditions for line 13 are not met
because we know that¢Z R,. But, we observe that the conditions for lines 14-16 are betause the

18

subject: that is not trusted exists iy, and: has theown right overo. Therefore, the algorithm returns
false in line 16.

grant_own —in this case, we know that= own andown € M, [i, o] for somei € S, —7. The ‘if’ conditions
for lines 7-11 are not satisfied. ¢ ¢ O., then the algorithm returns false in line 12 and we are done.
Otherwise, the condition in line 13 is not satisfied, but, Weeayve that the conditions for lines 14-16 are
satisfied, and the algorithm returns false.

create_object —in this case, we know that= own ando ¢ O,. The ‘if’ conditions for lines 7-11 are not met,
but the ‘if’ condition for line 12 is met, and the algorithmtuens false.

create_subject —in this case, we know thati € S, — 7, and eithetr = own or x = control. Furthermore,
we know thab ¢ O,. The reason is that in the body of the command, we enter agigitn the column
corresponding to the subject that is created in the exatatithe command, and not any other object.
Therefore, forw = (s, 0, x), we know thato must be the subject that is created in the execution of the
create_subject command. We know also thatZ O — S, because the object that is created is a subject.
Therefore, the respective ‘if’ conditions for lines 7-1% anot satisfied, but the ‘if’ condition for line 12
is satisfied, and the algorithm returns false.

destroy_subject — in this case, we know that = own, andown € M, [s,s'], wherew = (s,0,z) ands’ is
the subject that is destroyed in the execution of the comma@hé reason is that we enter a right only
in the row corresponding to such a subjecFurthermore, we know thate O, andown € M, [s', o],
because the only columns in which a right is entered in thewdian of the command are columns with
that property. We know also thate S, — 7 ass is the initiator of the command-execution. Given
these facts, we know that the ‘if’ conditions for lines 7-I2 aot satisfied. The conditions for line 13
may be met, and if they are, the algorithm returns false andre/elone. Otherwise, we observe that the
conditions for lines 14-16 are satisfied; the sequence géstghcontaing ands’ with s’ being the last
member of the sequence, aninmediately preceding’ in the sequence. As< S., — 7, the algorithm
returns false in line 16.

For the induction hypothesis, we assume that if there eaistate-change sequenge— ;) 71 —y(ss)
(s y) Ye—1 Of lengthk — 1 (for £ — 1 > 1) such thatr ¢ M, [s, o] and ifz € Ry, 2* ¢ M, s, o], and
eitherz € M,, | [s,o]or,ifx € Ry, z* € M,, | [s,0], then the algorithm returns false. Now assume that there
exists a state-change sequences) - -+ Fy(s,) Yk Of lengthk (for & > 2) such thate ¢ M, [s, o] and if
x € Ry, x* & M,[s,0], and eitherr € M., [s,0] or, if x € Ry, 2* € M,, [s,0]. We need to show that the
algorithm returns false fav = (s, o, x).

We have two cases. The first case has two subcases: eitherda)l,, ,[s,o], or, (b)z € R; and
z* € M, ,[s,0]. In either case, we have a state-change sequence of léngth with the appropriate
properties, and by the induction hypothesis, we know thatallgorithm returns false. In the second case, we
assume that: ¢ M., [s,o] and ifx € Ry, 2* & M,, [s,0], and eitherr € M, [s,0] or z € R; and
x* € M,,[s,o0]. We need to show that the algorithm returns false in this.cé¢e consider the state-change
Ye—1 —y(sy,) Vk- It must be the execution of one of the following commande @me as those we considered
for the base case), as those are the only commands that agltt gora cell in the access matrix. We consider
each in turn. We point out that &s> 2, we have at least 3 states in our state-change sequenagingcthe
start-state, i.e., we know that at least the states, y._1 andy. (where the start-state, = ~,) exist in the
state-change sequence.

transfer_r — in this case, we know that € R, N R, andz* € M,, | [sk,0]. Letw® = (sj,0,2*). Then, we
know by the induction hypothesis thaSafeGD(~, ¥, w”, T') returns false (as there exists a state-change
sequence of length — 1 with the appropriate properties). We refer to the execubitiie algorithm for
the input(y,w, T) ase, and for the input~, w*, T) ase®. Consider the following cases.

19

e ¢ returns in line 9: in this case, we know that € M., [s, o]. Now, e cannot return in lines 7 or 8
(becauser € Ry, N Ry). e may return false in line 9 or line 10, in which case we are ddheot,
e will not return in lines 11-12 as;, € S, — 7 ando € O,. Finally, e will return false in line 13,
because; € S, — 7, andy € M, [sy, o].

e cF returns in line 10: this cannot happen as, in this celsgyould have returned in line 9. Therefore,
the arguments for the previous case apply.

e ¢ returns in line 12: in this case,will not return in any of the lines 7-11, but will return falge
line 12.

e cF returns in line 13: in this case, we know that € S, — 7 such thaly € M., [3, o] wherey = z*.
e will not return in lines 7-8, but may return false in one of thees 9 or 10, in which case we are
done. Otherwisee will not return in line 11 (as§ exists iny) or in line 12 ¢ € O,). But, e will
return false in line 13, as the condition is m§ti(s such a subject).

e ¢ returns in line 16: in this case,will not return in lines 7-8 but may return in line 9, in which
case we are done. Otherwisewill not return in lines 10-13. We know thatwill return false in
line 16, just ag* does, because the same condition is true: fas well.

transfer_r* —in this case, we know that € R; N Ry, andz € M, | [s,o0] Wheres, € S,, , — 7. Let
wk = (s1,0,z), e* be the execution of the algorithm isSafeGD for the inpyt), w*, 7), ande be the
execution for the inputy,w, 7). Then we know that* returns false by the induction hypothesis. We

now have exactly the same arguments as in the previous gas@yae returns false.

transfer_own — in this case we know that = own and own € M,, | [sy,o0] wheres, € S, , —T. For
wk = (51,0, own), we know thate*, the execution of the algorithm on inp(, w*, 7), returns false,
by the induction hypothesis. We consider all the cases it can return false.

e cF returns in line 9: in this case, we know thatn € M, sy, 0] ands; € S, —T. Now, e does not
return in any of the lines 7-& may return in line 9, in which case we are doae&annot return in
line 10 (asy ¢ Ry), or in line 11, but may return in line 12, in which case we aneel e cannot
return in line 13. Finally, we observe that the conditionéines 14-16 are satisfied, and therefore,
e returns in line 16.

e ¢F returns in line 10: this cannot happen because whenown, i ¢ Ry.

e ¢F returns in line 12: in this case, we know thatloes not return in lines 7-11, but returns false in
line 12.

e ¢¥ returns in line 13: this cannot happen because whenown, i ¢ Ry.

e ¢ returns in line 16: in this case,does not return in lines 7-8, but may return in line 9, in which
case we are done. Otherwisecannot return in lines 10-13, but returns false in line 16edasn
the same conditions that satisfies to return in line 16.

grant_r —in this case, we know thate R, N Ry, andown € M., | [sy,0], wheres;, € S,, | — 7. We know
also thate*, the execution of the algorithm, on inpit, w*, 7') returns false, where” tuples;,, o, own.
Let e be the execution of the algorithm for the ingut w, 7). We have the following cases.

e ¢k returns in line 9: in this case, we know also that, M., [sy, 0] wheres;, € S, —T. Therefore,
e does not return in lines 7-8, but may return false in eithee B or line 10, in which case we are
done. Otherwiseg does not return in lines 11-12, but may return false in lingia3vhich case
we are done. Finally returns false in line 16, because the conditions for retgrim line 16 are
satisfied §;, is such a subject).

20

e c¥ returns in line 10: this is not possible as whes: own, y ¢ Ry.
e ¢ returns in line 12: in this case,does not return in lines 7-11, but returns false in line 12.
e c¥ returns in line 13: this is not possible as whes: own, y ¢ Ry.

e ¢ returns in line 16: in this case, we know thatoes not return in lines 7-8, but may return in one
of the lines 9-10, in which case we are done. Otherwisines not return in lines 11-12, but may
return in line 13, in which case we are done. Finalyeturns in line 16 as the conditions for which
e* returns in line 16 apply te as well.

grant_r* —in this case, we know that € R; N R, andown € M, [sy, o] for s, € S,, | — 7. The argument
now proceeds exactly as for the previous case, and we aréoadhew thaisSafeGDreturns false on the

input (v, ¥, w, 7).

grant_control — in this case, we know that = control andown € M,, ,[sy, 0] for s, € S,, |, — 7. Let
wk = (s1,0, own), ande” be the execution of the algorithm on the ingut w”*, 7). We know, by the
induction hypothesis, that’ returns false. Let be the execution of the algorithm on the ingyitw, 7).
We have the following cases.

e " returns in line 9: in this case we know also thatn € M, sy, o] andsy, € S, — 7. Thereforege
does not return in lines 7-8 (for line 8, we know thag O — S, as otherwise, we would not be able
to grant thecontrol right to s overo in the final state-change in our sequence), amday return
false in line 9, in which case we are done. Otherwisdpes not return in lines 10-13 (for lines 10
and 13,y ¢ Ry). Finally, e returns false in line 16 because we know thata subject that is not
trusted, exists iny, and has thewn right overo.

e cF returns in line 10: this is not possible as wher- own, y & Ry.
e ¢F returns in line 12: in this case,does not return in lines 7-11, but returns false in line 12.
e ¢F returns in line 13: this is not possible as wher- own, y & Ry.

e ¢F returns in line 16: in this case,does not return in lines 7-8, but may return in lines 9-10, in
which case we are done. Otherwisgjoes not return in lines 11-12, but may return in line 13, in
which case we are done. Finallyreturns in line 16 as the conditions for whieh returns in line
16 apply toe as well.

grant_own —in this case, we know that = own andown € M., | [sy, o] for s, € S, , — 7. We show that
the execution of the algorithm on inp(, w, 7) returns false using the same arguments as the ones we
use for the previous case.

create_object —in this case, we know that = own, s = s, ands, € S,, , — 7. We consider the following
cases (and sub-cases).

e sc 8, ,:inthis case we need to consider the following two sub-cases

— 0 € O4,_, inthis case, we know that the state-changes s, ,) k1 iS destroy object
of objecto by sj_;. Therefore, we know thatwn € M,, ,[sy—1,0] ands,_; € S,, , — 7.
If s = sp_1, then we have a state-change sequence of lehgth2 with the appropriate
properties, and we know that the algorithm returns falséne@tise, we have a state-change
Vh—2 F (s 1) 7_1 Which is the execution of either the commamansfer_own (if o € S), or
the commangrant_own (if o € O —), by s;_1 to s, which results imwn € Mv;,l[&o]- As
there exists a state-change sequence of lehgthl, we know that the algorithm returns false

by the induction hypothesis.

21

- 0 ¢ O,,_,inthis case, there exists a state-change, () 7., Which is the execution of
the commandtreate_object of o by s, which results inown € M., [s, 0]. As there exists a
state-change sequence of lengthl, we know that the algorithm returns false by the induction
hypothesis.

e s ¢ S, _, inthis case, we know that the state-changes ., ,) 7x-1 IS the execution of
create_subject to creates. Also, we know thab ¢ O,, ,. If y._2 = v, then we know that, on
input (v, w, 7), the algorithm will not return in lines 7-11, but will retufalse in line 12, and we
would be done in this case. Otherwise, there exists at le@spoor state; ;s in the sequence of
state-changes. We have the following sub-cases.

-s¢€8, , buto & O,, ,: inthis case, we know that the state-changes ., ,) k-2
is the execution ofdestroy_subject of s by s,_5. Consider the alternate state-changes
V-3 sk s) Te—2 Fulsks) Ve—1» Where the first state-change is the execution of
create_object of o by s;_o, and the second is the executiontaednsfer own (if o € S) or
grant_own (if o € O — §) of the objecto by s;_5 to s. We have a desired state-change
sequence of length — 1, and the algorithm returns false by the induction hypothesi

- s ¢ S,_; buto € O, _,: in this case, we know that the state-changes .,)
vi—o IS the execution oflestroy_object of o by si_5. Consider instead the state-changes
Vh-3 sk) Te—2 Fulsks) Ve—1» Where the first state-change is the execution of
create_subject of s by s;_o and the second is the executionteénsfer own (if o € S) or
grant_own (if o € O — S) of the objecto to s by s;_». We have the desired state-change
sequence of length — 1, and the algorithm returns false by the induction hypothesi

-5 ¢3S, ., ando & O,, ,: we know thats ¢ 7 (otherwises would not be able to execute
create_object as the last state-change in our state-change sequencethf i¢nWe know also
thats;_» € S,,_, — 7. Consider the following state-changes; s — (s, ,) Vi—2 Fw(w(s)

71 Where the first state-change is the executiotrefte_subject of s by s;,_» and the second
is the execution ofreate_object of o by s. We have the desired state-change sequence of length

k — 1, and the algorithm return false.

-s¢e 8, , ando € O, _,: this case cannot happen, as then, we would need to firsbgestr
each ofs ando, which requires two state-changes (we know that o, because otherwiss,
would not be able to createin the last state-change in our sequence of leigthWwe have
already fixed two additional state-changese{te_subject of s, andcreate_object of o0 as our
last two steps in our state-change sequence of Idt)gths there do not exist four state changes

betweeny;._3 and~;, we know that this case cannot happen.

create_subject — in this case, we know that ¢ S,,, and eithers = o (andx = control), or s = s; (and

x = own). We know also thad ¢ S,, ,. We have the following cases.

e s = 0. we have the following sub-cases.

- o€ S, ,:inthis case, we know that= o0 € S,, , andcontrol € M,, ,[s, o], and therefore
we have a state-change sequence of lehgtt2 with the appropriate properties, and therefore
by the induction hypothesis, the algorithm returns false.

- o ¢ S, _,: inthis case, consider the state-changes s, ,) 7,_; Which is the execu-
tion of create_subject of o = s by s;_» (we know thats,_, € S,, , — 7). We have the
desired state-change sequence of lerigthl and the algorithm returns false by the induction

hypothesis.
e s = s, we have the following sub-cases.

22

— 0 € S,,_, inthis case, we know that the state-changes ., ,) 7x-1 IS the execution
of destroy_subject of o by s, € S, , — 7. We know also, in this case, thatc S, ,,
wheres = s;. Therefore, we have the state-change s s 7,_, Which is the execution
of create_subject of o by s. We have the desired state-change sequence of léngth and by

the induction hypothesis, the algorithm returns false.

-0 &S, ,. inthis case, ify,_o = 7, then the algorithm does not return in lines 7-11, but
returns false in line 12, and we are done. Otherwise, we kihatthere exists a prior state,
vx—3. We have the following sub-sub-cases.

* s € S, ,.inthis case, consider the state-change,) 7;,_; Which is the execution
of create_subject of o by s. We have the desired state-change sequence of léngth,

and the algorithm returns false by the induction hypothesis

* s ¢S ,,s€8, ,ando € S, ,:this cannot happen as we know thaf S, , and

s ¢ S,, ,, and we cannot create bothands in a single state-change.

xs &8, ,,5 &9, ,ando € S,, .. in this case, we know that the state-change
Vk—3 Fry(s,_s) Vk—2 IS the execution odestroy subject of o by s;,_». We consider, instead
the state-changes, 3 —y (s, ,) Te—2 M u(se_s) Va1, Where the first state-change is the
execution ofcreate_subject of s by s;_o, and the second is the executiontefnsfer_own
of o to s by si_5. We have the desired state-change sequence of léngth, and the
algorithm returns false by the induction hypothesis.

* s &Sy _,, s €Sy ,ando ¢ S, _,:inthis case, consider the state-changes —)
Y,_ Which is the execution afreate_subject of o by s. We have the desired state-change
sequence of length — 2, and the algorithm returns false by the induction hypothesi

*xs &S, ,,s¢ 85, ,ando & S, .. inthis case, we know that;,_» € S, , — 7.
Consider the following state-changeg; 3 (s,) Yee—s Fa(s) Y,_1» Where the first
state-change is the executioncedate _subject of s by s;_o, and the second is the execution
of create_subject of o by s. We have the desired state-change sequence of léngth,
and the algorithm returns false by the induction hypothesis

destroy_subject — in this case, we know that = own, s = s, s # o (as in statey;, s has theown right over
0), own € M,, [s, 0] for somes € S,, |, withs # s, andown € M, ,[s,5]. The state-change is the
execution ofdestroy_subject of s by s to aquireown overo. Letw = (s, o, own), ande be the execution
of the algorithm for the inputy, @, 7). Then we know thag returns false, by the induction hypothesis.
We observe that cannot return either in line 10 or line 13, because whefy in ¢ R,,. Similarly, let
w® = (s,5, own), ande® be the execution of the algorithm for the indut w®, 7). Then, we know that
e® returns false by the induction hypothesis, but not in lineoiline 13 (as in the case ef as well,
y & Ry). Lete be the execution of the algorithm for the infut w, 7). We have the following cases
and sub-cases.

e creturnsin line 9: in this case, we know thétcannot return in line 12, becauses O.. Therefore,
we have the following two sub-cases.

— e returns in line 9: in this case,does not return in lines 7-8, but may return false in line 9, in
which case we are done. Otherwisaloes not return in lines 10-13, baiteturns false in line
16, because the conditions are satisfied: we Batat ownso, ands € S, — 7 that ownss.

— e returns in line 16: in this case,does not return in lines 7-8, but may return false in line 9,
in which case we are done. Otherwisaloes not return in lines 10-13. Finalkyreturns false
in line 16, because the conditions are satisfied: we knowstbatnso in v, and that we have a
sequence of subjects as needed in lines 14-16, the first chvalnss.

23

e ¢ returns in line 12: in this case does not return in lines 7-11, but returns false in line 12 (in
particular, we know that does not return in line 11 becauseeither returns in line 9, which means
thats € S, — 7, or returns in either line 12 or 16, which means that € S, — 7).

e creturns in line 16: in this case,does not return in lines 7-8, but may return in line 9, in which
case we are done. Otherwisegoes not return in lines 10-13, but returns in line 16, beedhe
same conditions that caugdo return in line 16 causeto return in line 16 as well.

The “only if” part: we need to show that if the system is safédwespect tay and7, thenisSafeGD(y, ¥, w, T')
returns true. We show, equivalently, thats®afeGD(~, ¢, w, T) returns false, then the system is not safe with
respect tav and7. We do this by considering each case that the algorithmngtialse, and showing (by
construction) that a sequence of state-changes ;,(s,) 71 —y(sy) *** Fru(s,) Yo SUCh thate € M, [s, 0]
exists (eacly; € S,, , — 7, and thes;’s may not be distinct from one another). We have the follgnsases.

e The algorithm returns in line 9: in this case, we have a sthtge sequence of length O (i.e., simply
as we know that: € M, s, o].

The algorithm returns in line 10: in this case, we again hastage-change sequence of length O (i.e.,
simply), as we know that i: € R, N Ry, thenz* € M, [s, 0] (and possession af* implies possession

of), and ifx € R} N Ry, thenz € M,[s, o]. There are no other cases that the algorithm returns in line
10.

The algorithm returns in line 12: in this case, we know from ¢heck on line 11 thal s’ ¢ Sy, —T.
Therefore, ifs ¢ S, we have the following state-change sequences sy 71 —y(s) Y2 Fry(s’) V3s
where the first state-change is the executionredte_subject of s by s’, the second state-change is the
execution ofcreate_object of o (if 0 € O — S) or create_subject of o (if o € S) by s/, and the last
state-change is the execution of one of the following:

— transfer_own, if o € S andz = own

— grant_own, if o € O — S andx = own
— grant_control, if o € S andx = control
— grantr, if 2 € Ry N Ry,

— grantr*,if z € Ry N Ry,

If s € S,, then we simply use the same sequence as above, but wittetirdhstate-change (i.e.,
Y (s V2 (st) V3)-

The algorithm returns in line 13: in this case, we know thag own andxz # control. If s & S,

our state-change sequenceyis—) 71 —y(s) 72, Where the first state-change is the execution of
create_subject of s by s, and the second state-change is the executiamaagfer r of x to s overo if

r € Ry N Ry, ortransfer_r* to s overo if x € Ry N Ry. If s € S, then we have simply exclude the first
state-change (creation gf from our state-change sequence.

The algorithm returns in line 16: Let = {s1,...,s,} be the set of subjects alluded to in line 16, and
let s; € o be such that; € S, — 7, for some integei such thatl < i < n. We know thaib € O,. If

s & S, then the first state-change in our state-change sequetheeazgecution ofreate subject of s by

si. If s € S, we exclude this state-change.

We then have — 1 executions oflestroy subject of each subject; such thatj < 4, so that ify’ is the
state at the end of the— 1 executions, we havewn € M. [s;, o]. Finally, we have the following cases.

24

— 0 € § andz = own: in this case, we have the executiontafnsfer own of o by s; t0 s.
— 0 € O — S andz = own: in this case, we have the executiongadnt_own of o by s; to s.

— 0 € 8,z = control and3 s’ such thakontrol € M./[s', o]: in this case, we have two state-changes,
both initiated bys;. We first have the execution dtlete_r of the control right overo from s’, and
then the execution @rant_control overo to s.

— 0 € 8,z = control and$ s’ such thatcontrol € M./[s',0]: in this case, we have the execution of
grant_control overo to s by s;.

— x € Ry N Ry: in this case we have the executiongeént_r of z overoto s by s;.
— x € R; N Ry inthis case we have the executiongoéint_r* of z overo to s by s;.

25

