
CERIAS Tech Report 2005-20

ON SAFETY IN DISCRETIONARY ACCESS CONTROL

by Ninghui Li and Mahesh V. Tripunitara

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

On Safety in Discretionary Access Control

Ninghui Li Mahesh V. Tripunitara
Center for Education and Research in Information Assurance and Security

and Department of Computer Sciences
Purdue University

656 Oval Drive, West Lafayette, IN 47907-2086
{ninghui, mtripuni}@cs.purdue.edu

Abstract

An apparently prevailing myth is that safety is undecidable in Discretionary Access Control (DAC);
therefore, one needs to invent new DAC schemes in which safetyanalysis is decidable. In this paper, we
dispel this myth. We argue that DAC should not be equated with the Harrison-Ruzzo-Ullman scheme,
in which safety is undecidable. We present an efficient (running time cubic in its input size) algorithm
for deciding safety in the Graham-Denning DAC scheme, which subsumes the DAC schemes used in the
literature on comparing DAC with other access control models. We also refute several claims made in recent
work by Solworth and Sloan [26], in which the authors present anew access control scheme based on labels
and relabelling and claim that it can “implement the full range of DAC models”. We present a precise
characterization of their access control scheme and show that it does not adequately capture a simple DAC
scheme.

1 Introduction

Safety analysis, first formulated by Harrison, Ruzzo, and Ullman [11] for the access matrix model [13, 9],
has been recognized as a fundamental problem in access control. Safety analysis decides whether rights can
be leaked to unauthorized principals in future states. Safety analysis was shown to be undecidable in the HRU
scheme. Since then, considerable research effort has gone into designing access control schemes in which safety
analysis is decidable [1, 2, 5, 12, 16, 18, 19, 22, 23, 24, 25, 26, 28, 29]. Safety analysis is particularly interesting
in DAC [6, 7, 9, 10], in which a subject gets rights to resources at the discretion of other subjects. Recently,
there appears to be renewed interest in the topic of safety inDAC, as evidenced by the work by Solworth
and Sloan [26], which was published at the IEEE Symposium on Security and Privacy in 2004. In that work,
the authors assert that “in general”, safety is undecidablein DAC, and use this assertion as the motivation for
introducing a new access control scheme based on labels and relabelling that has decidable safety properties.

Our goals in this paper are to present a clear picture of safety in DAC and to refute several erroneous
claims in Solworth and Sloan [26]. The work in Solworth and Sloan [26] is based on the myth that “safety is
undecidable in DAC; therefore, one needs to design new schemes for DAC so that safety analysis is decidable”.
We conjecture that the basis for this myth is that DAC is sometimes erroneously equated to the HRU scheme [11]
(for instance, in work such as [17, 21]). As we discuss in Section 3, DAC cannot be equated to HRU for the
following reasons. First, the HRU scheme can be used to encode schemes that are not DAC schemes; therefore,
the fact that safety is undecidable in the HRU scheme should not lead one to conclude that safety is undecidable
in DAC. Second, features in DAC cannot always be encoded in the HRU scheme. For example, some DAC
schemes require that each object be owned by exactly one other subject; thus removal of a subject who has the
ownership of some objects requires the transfer of ownership to some other subject (often times the owner of
the subject being removed) so that this property is maintained. Both the removal of the subject and the transfer

1

of ownership of objects it owns occur in a single state-change. A single HRU command cannot capture these
features, because it cannot loop over all objects owned by a subject.

We dispel the myth that safety is undecidable in DAC by presenting an efficient algorithm for deciding
safety in the DAC scheme proposed by Graham and Denning [9]. Our algorithm runs in time cubic in the size
of the input. The Graham-Denning scheme is, to our knowledge, the first DAC scheme to have been proposed,
and several other DAC schemes proposed subsequently are either subsumed by or are simple extensions of the
Graham-Denning scheme. Examples of such DAC schemes include those used in Osborn et al. [20] to show
that RBAC can be used to implement DAC. The same schemes were used in Solworth and Sloan [26] to show
that the Solworth-Sloan scheme can implement DAC. Our algorithm suggests that safety in these DAC schemes
can be efficiently decided and there is no need to invent new access control schemes.

Some may hold the view that safety can be trivially decided inDAC schemes. For instance, if the owner
of an object is untrusted, then he can grant rights over the object to any other subject. Therefore, if such
an owner exists, then the system will be unsafe for that object. While it may be easy to identify one or two
such conditions that make a DAC system unsafe, identifying all such conditions may not be trivial. To our
knowledge, algorithms for deciding safety in the Graham-Denning or other derived DAC schemes have not
appeared in the literature before. The proof that our algorithm is correct, which is in Appendix A, was not
trivial for us.

We have also developed an algorithm for deciding safety in the DAC scheme developed Griffiths and
Wade [10] in the context of database access control. This scheme is the basis for DAC schemes used in most
relational database systems currently in use. Owing to space limitations, we are unable to include a detailed
description and analysis of the Griffiths-Wade scheme, but present them separately in a technical report [8].
We summarize our results for the Griffiths-Wade scheme in Section 5. We point out that safety analysis is this
scheme is more involved than in the Graham-Denning scheme. Our conclusion is that safety can be decided in
time quartic in the size of the input for the Griffiths-Wade scheme.

We also refute several erroneous claims in Solworth and Sloan [26], in which the authors claim:

“We note that ours is the first general access control model which both has a decidable safety
property and is able to implement the full range of DAC models.”

We show that the proposed implementation of DAC schemes in the Solworth-Sloan scheme is incorrect. Two
particular limitations that we discuss are the lack of support for removing subjects and objects and the inability
to ensure that an object has only one owner, as required by DACschemes such as Strict DAC with Change of
Ownership (SDCO), which is a simplified version of the Graham-Denning scheme.

We observe that the presentation in [26] does not clearly specify what information is maintained in a state,
how states may change, and the precise construction to implement DAC in their scheme. Many details are
scattered in the paper and need to be inferred from descriptions in several places. This makes the understanding
of the scheme and the study of implementation of DAC in this scheme very difficult. In this paper we give a
precise characterization of the Solworth-Sloan scheme andan “implementation” of the SDCO scheme [20] in it.
We observe the “implementation” incurs considerable overhead. Essentially for each new object to be created,
a data structure of the size at least as large as the total number of subjects needs to be created. Furthermore, the
“implementation” is incorrect as it does not preserve the property that every object has only one owner in every
state. We believe that a precise characterization of the Solworth-Sloan scheme is of independent interest. The
publication of two papers [26, 27] based on this scheme in recent major security conferences reflects that there
is interest in such a access control scheme based on labels and relabelling.

The rest of this paper is organized as follows. We discuss related work in Section 2 and give precise
definitions of safety analysis in DAC in Section 3. In Section4, we study safety analysis in the Graham-
Denning scheme. In Section 5, we briefly summarize our results on safety analysis for the Griffiths-Wade
scheme. We analyze the Solworth-Sloan scheme in Section 6 and conclude in Section 7.

2

2 Related Work

There is considerable work on DAC and safety analysis. To ourknowledge, Graham and Denning [9] proposed
the first DAC scheme. Their scheme is based on the work by Lampson on the access matrix model [13].
Subsequently, Griffiths and Wade proposed their DAC scheme for relational database systems [10]. Downs et
al. [7] discussed salient aspects of DAC, and their work was subsequently subsumed by the NCSC’s guide to
DAC [6]. In her work on issues in access control, Lunt [17] examined various issues in DAC as well. Samarati
and de Capitani di Vimercati [21] included discussions on DAC in their treatment of access control. Osborn
et al. [20] discussed several DAC schemes that are sub-casesor variants of the Graham-Denning scheme in
their comparison of DAC to RBAC. DAC was extended to include temporal constructs by Bertino et al. [3, 4].
Solworth and Sloan [26] presented a new DAC scheme based on labels and relabelling rules. The same scheme
was also used by Solworth and Sloan in [27].

Safety is a fundamental property that was first proposed in the context of access control by Harrison et
al. [11]. As we mention in the previous section, subsequently, there has been considerable work on safety in
various contexts related to security [1, 2, 5, 12, 14, 15, 16,18, 19, 22, 23, 24, 25, 26, 28, 29]. Recent work
by Li et al. [14, 15] perceived various forms of safety as special cases of more general security properties, and
safety analysis is subsumed by security analysis. In this paper, we adopt this perspective in defining safety
analysis in the next section. To our knowledge, the work by Solworth and Sloan [26] is the first to directly
address safety in DAC. Other work on safety has been on specific schemes such as the HRU scheme [11], the
ESPM scheme [1] and a trust management scheme [15]. Furthermore, to our knowledge, there is no prior work
on safety analysis in the context of specific DAC schemes suchas the Graham-Denning scheme [9] and the
Griffiths-Wade scheme [10].

3 Defining Safety Analysis in DAC

In this section, we define access control schemes and systems, and the general problem of security analysis in
the context of such schemes and systems. We then define safetyanalysis as a special case of security analysis.
In our definitions, we adopt the meta-formalism introduced by Li et al. [15, 14].

Definition 1 (Access Control Schemes and Systems)An access control scheme is a four-tuple〈Γ,Ψ, Q,⊢〉,
whereΓ is a set of states,Ψ is a set of state-change rules,Q is a set of queries and⊢: Γ×Q→ {true, false} is
the entailment function, that specifies whether a propositional logic formula of queries is true or not in a state.

A state-change rule,ψ ∈ Ψ, determines how the access control system changes state. Given two statesγ
andγ1 and a state-change ruleψ, we writeγ 7→ψ γ1 if the change fromγ to γ1 is allowed byψ, andγ

∗
7→ψ γ1

if a sequence of zero or more allowed state changes leads fromγ to γ1.
An access control system based on a scheme is a state-transition system specified by the four-tuple

〈γ, ψ,Q,⊢〉, whereγ ∈ Γ is the start (or current) state, andψ ∈ Ψ specifies how states may change.

We recognize that our formalism for schemes and systems is fairly abstract. Nonetheless, we need such an
formalism to be able to represent disparate access control schemes, such as those based on the access matrix,
role-based access control and trust management. When we specify a particular access control scheme, we
specify each component precisely, using constructs that are well-understood.

An example of an access control scheme is the HRU scheme [11],in which the state is maintained in an
access matrix. Examples of queries,q1, q2 ∈ Q in the HRU scheme are “q1 = r ∈ M [s, o]” and “q2 = r′ ∈
M [s, o]”. The queriesq1 andq2 ask whether the subjects has the rightr andr ′ over the objecto, respectively.
Given a state,γ, and a state-change rule,ψ, in an HRU system, letSγ be the set of subjects that exist in the
state,γ,Oγ be the set of objects that exist,Mγ [] be the access matrix, andRψ be the set of rights in the system.
Then,γ ⊢ q1 ∧ ¬q2 if and only if s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈Mγ [s, o] ∧ r

′ 6∈Mγ [s, o].

3

Definition 2 (Security Analysis) Given an access control scheme〈Γ,Ψ, Q,⊢〉, a security analysis instance is
of the form〈γ, ψ,�φ〉, whereφ is a propositional logic formula of queries. Given such an instance, we say that
the instance is true if for all statesγ ′ such thatγ

∗
7→ψ γ

′, γ′ ⊢ φ. That is,φ represents a security invariant that
must be satisfied in all states reachable fromγ underψ for the instance to be true. Otherwise, the instance is
false.

Harrison et al. [11] informally characterize safety as the condition “that a particular system enables one to
keep one’s own objects ‘under control’ ”. This informal characterization seems to be appropriate as a security
property of interest in DAC systems, as the very purpose of DAC is that subjects should be able to keep objects
that they own, under their control. More formally, safety analysis is a special case of the security analysis,
where the invariant is such that an unauthorized subject should not have a particular right to a given object.

Definition 3 (Safety Analysis) Given an access control scheme〈Γ,Ψ, Q,⊢〉, let the set of subjects that can
exist in a system based on the scheme beS, let the set of objects beO, and let the set of rights beR. Assume
that there exists a functionhasRight: S ×O×R → {true, false} that returnstrue if in the current state,s and
o exist,r is a right in the system, ands has the rightr overo, and false otherwise. A safety analysis instance
is 〈γ, ψ,�¬hasRight(s, o, r)〉 for somes ∈ S, o ∈ O andr ∈ R. That is, safety analysis is security analysis
with φ instantiated to¬hasRight(s, o, r). The safety analysis instance is true ifhasRight(s, o, r) is false in any
reachable state, and true otherwise.

What is DAC? The NCSC guide titled ‘A Guide To Understanding Discretionary Access Control in Trusted
Systems’ [6], portions of which were published as a researchpaper [7], states that “the basis for (DAC) is that
an individual user, or program operating on the user’s behalf, is allowed to specify explicitly the types of access
other users (or programs executing on their behalf) may haveto information under the user’s control.” We
point out two specific properties from this characterization of DAC: (1) The notion of “control” – there is a
notion that users exercise control over resources in that a user that controls a resource gets to dictate the sorts
of rights other users have over the resource, and (2) the notion of initiation of an action by a user to change the
protection state – such state changes occur because particular users initiate such changes. A representation of a
DAC scheme needs to capture both these properties.

Some literature (for example, [17, 21]) appears to equate DAC with the HRU scheme [11]. This is incorrect,
as there exist some systems based on the HRU scheme that are not DAC systems. For instance, consider an HRU
system in which there is only one command, and that command has no condition. This system is not a DAC
system as it does not have the first property from above on the control of resources by a subject. In addition,
there are DAC schemes that do not have natural representations as HRU schemes. For instance, the Graham-
Denning scheme [9] (see Section 4.1) is a DAC scheme in which asubject may be ‘owned’ or ‘controlled’ by
at most one other subject. An system based on the HRU scheme cannot capture this feature in a natural way.

Trusted subjects in safety analysis In considering the safety property discussed above, each instance of the
analysis is associated with a setT of trusted subjects. The meaning of a trusted subject is thatwe preclude
state-changes initiated by any subject fromT in our analysis. The intuition is that we expect these subjects to
be “well-behaved”. That is, while such subjects may effect state-changes, they do so in such a way that the
state that results from the state-changes they effect is safe. Harrison et al. [11] do consider trusted subjects as
part of their safety analysis. Nonetheless, as pointed out previously by Li et al. [15], the way they deal with
trusted subjects is incorrect. They require that we delete the rows and columns corresponding to trusted subjects
prior to the analysis. While a trusted subject is not allowedto initiate a state-change, she may be used as an
intermediary, and the way Harrison et al. [11] deal with trusted subjects does not consider this possibility. In
this paper, we require only that a member of the set of trustedsubjects not initiate a state-change. In all other
ways, these subjects continue to be part of the system.

4

4 Safety Analysis in the Graham and Denning Scheme

In this section, we study safety analysis in the Graham-Denning DAC scheme [9]. We first present a description
of the scheme in the following section. Our description clearly describes the states and state-change rules in the
scheme. In Section 4.2, we present a correct algorithm to decide safety in the scheme. We also assert that the
algorithm is efficient.

4.1 The Graham-Denning Scheme

In this section, We present a precise representation for theGraham-Denning scheme. We define what data are
stored in a protection state, and how a state-change rule changes a state.

States,Γ We postulate the existence of the following countably infinite sets:O, the set of objects;S, the set
of subjects (S ⊂ O); andR, the set of rights.

Note that the set of objects (or subjects) in any given state is finite; however, the number of objects that
could be added in some future state is unbounded. Similarly,the set of rights in any given access control system
is finite; however, different access control systems may usedifferent set of rights. Therefore, we assumeS,O,
andR are countably infinite.

We assume a naming convention so that we can determine, in constant time, whether a given object,o, is a
subject (i.e.,o ∈ S) or not (i.e.,o ∈ O − S). There exists a special “universal subject”U in S; the role ofU
will be explained later. The set of rightsR contains two special rightsown andcontrol , a countably infinite set
Rb of “basic” rights, and a countably infinite setR∗

b of basic rights with the copy flag, i.e.,R∗

b = {r∗|r ∈ Rb}.
In other words,R = {own, control} ∪ Rb ∪ R

∗

b . The meaning of the copy flag is clarified when we discuss
the state-change rules for the scheme. An access control system based on the Graham-Denning scheme is
associated with a protection state, and a state-change rule.

A state in the Graham-Denning scheme,γ, is associated with the tuple〈Oγ , Sγ ,Mγ []〉, whereOγ ⊂ O is
a finite set of objects that exist in the stateγ, Sγ ⊂ S is a finite set of subjects that exist inγ, andSγ is a subset
of Oγ . Mγ [] is the access matrix, andMγ []: Sγ × Oγ → 2R. That is,Mγ [s, o] ⊂ R is the finite set of rights
the subjects ∈ Sγ has over the objecto ∈ Oγ .

Every state,γ = 〈Oγ , Sγ ,Mγ []〉, in the Graham-Denning scheme satisfies the following sevenproperties.

1. Every object must be owned by at least one subject, i.e.,∀ o ∈ Oγ ∃s ∈ Sγ(own ∈Mγ [s, o]).

2. Objects are not controlled, only subjects are, i.e.,∀ o ∈ Oγ − Sγ∀ s ∈ Sγ(control 6∈Mγ [s, o]).

3. The special subjectU exists in the state, is not owned by any subject, and is not controlled by any other
subject, i.e.,U ∈ Sγ ∧ ∀ s ∈ Sγ(own 6∈Mγ [s,U]) ∧ ∀ s ∈ Sγ − {U}(control 6∈Mγ [s,U]).

4. A subject other thanU is owned by exactly one other subject, i.e., for everys ∈ Sγ − {U}, there exists
exactly ones′ ∈ Sγ such thatown ∈Mγ [s

′, s];

5. Every subject controls itself, i.e.,∀s ∈ Sγ(control ∈Mγ [s, s]).

6. A subject other thanU is controlled by at most one other subject, i.e., for everys ∈ Sγ − {U}, there
exists at most ones′ ∈ Sγ such thats′ 6= s andcontrol ∈Mγ [s

′, s].

7. There exists no set of subjects such that they form a “cycle” in terms of ownership of each other (and
in particular, a subject does not own itself), i.e.,¬(∃ {s1, . . . , sn} ⊆ Sγ(own ∈ Mγ [s2, s1] ∧ own ∈
Mγ [s3, s2] ∧ · · · ∧ own ∈Mγ [sn, sn−1] ∧ own ∈Mγ [s1, sn])).

These state invariants are maintained by the state-change rules.

5

State-Change Rules,Ψ Each member,ψ, of the set of state-change rules,Ψ, in the Graham-Denning scheme,
is a set of commands parameterized by a set of rights,Rψ. These commands are shown in Figure 1. Where
possible, we use the syntax for commands from the HRU scheme [11], but as we mention in Section 3, we
cannot represent all aspects of DAC schemes using only constructs from commands in the HRU scheme. We
use some additional well-known constructs such as∀ and∃ in these commands. A state-change is the successful
execution of one of the commands. We assume that the state subsequent to the execution of a command isγ ′.
We denote such a state-change asγ 7→ψ(s) γ

′, wheres is the initiator of the command. We point out that for
each command, unless specified otherwise,Sγ′ = Sγ , Oγ′ = Oγ , andMγ′ [s, o] = Mγ [s, o] for everys ∈ Sγ
ando ∈ Oγ . We use← to denote assignment, i.e.,a ← b means that the value ina is replaced with the value
in b. The commands in the Graham-Denning scheme are the following.

• transfer r(i, s, o) This command is used to grant the rightr by an initiator that has the rightr∗ overo.
There is one such command for everyr ∈ Rψ ∩Rb. The initiator,i, must possess the rightr∗ overo, and
the subjects must exist for this command execution to succeed.

• transfer r∗(i, s, o) This command is used to grant the rightr∗ by an initiator that has the rightr∗ overo.
There is one such command for everyr∗ ∈ Rψ ∩R ∗ b∗. The initiator,i, must possess the rightr∗ over
o, and the subjects must exist for this command execution to succeed.

• transfer own(i, s, o) This command is used to transfer ownership overo from i to s. For this command
to succeed,i must have theown right overo, s must exist, and the transfer of ownership must not violate
invariant (7) from the list of state invariants we discuss above. After the execution of this command,i
will no longer have theown right overo (but s will).

• grant r(i, s, o) This command is used to grant the rightr over o by the owner ofo. There is one such
command for everyr ∈ Rψ ∩ Rb. For this command execution to succeed,i must have theown right
overo, ands must exist.

• grant r∗(i, s, o) This command is very similar to the previous command, exceptthe the owner grants
r∗ ∈ Rψ ∩R

∗

b .

• grant control(i, s, o) This command is used to grant thecontrol right over o by its owner. For the
execution of this command to succeed,i must have the rightcontrol over o, s must exist,o must be a
subject, and another subject must not already have the rightcontrol overo. These checks are needed to
maintain the state invariants related to thecontrol right that we discuss above.

• grant own(i, s, o) This command is used to grant theown right over o. This is different from the
transfer own command in that in this case,i retains (joint) ownership overo. For the execution of
this command to succeed,i must have the rightown overo, o must not be a subject, ands must exist.

• delete r(i, s, o) This command is used to delete a right a subject has overo. There is one such command
for everyr ∈ Rψ ∩Rb. For the execution of this command to succeed,i must have the rightown overo,
ands must exist.

• delete r∗(i, s, o) This command is similar to the previous command, except thata rightr∗ ∈ Rψ ∩R∗

b is
deleted.

• create object(i, o) This command is used to create an object that is not a subject.For the execution of
this command to succeed,i must exist, ando must be an object that is not a subject, that does not exist.
An effect of this command is thati gets theown right overo in the new state.

• destroy object(i, o) This command is used to destroy an object that exists. For theexecution of this
command to succeed,i must have the rightown overo, ando must be an object that is not a subject.

• create subject(i, s) This command is used to create a subject. For the execution ofthis command to
succeed,i must exist, ands must be a subject that does not exist. In the new state,i has theown right
overs, ands has thecontrol right over itself.

6

• destroy subject(i, s) This command is used to destroy a subject. For the execution of this command to
succeed,i must have theown right overs. An effect of this command is that ownership over any object
owned bys is transferred toi.

4.2 Safety analysis

An algorithm to decide whether a system based on the Graham-Denning scheme is safe is shown in Figure 2.
A system based on the Graham-Denning scheme is characterized by a start-state,γ, and state-change rule,ψ
(which is a set of commands). The algorithm takes as inputγ, ψ, a triple,ω = 〈s, o, x〉 ∈ S × O × R, and a
finite set,T ⊂ S, of trusted subjects. The algorithm outputs “true” if the system satisfies the safety property
with respect to the subjects, objecto and rightx, and “false” otherwise. We first discuss the algorithm, and
then its correctness and time-complexity.

In lines 5-8 of the algorithm, we check the cases for which we do not have to consider potential state-
changes before we are able to decide whether the system is safe or not. In line 7, we check that the rightx is
indeed in the system. In line 8, we check whether we are being asked whethers can get thecontrol right over
o, whereo is an object that is not a subject (we knows does not have and cannot get the right, by property (2)
of the six properties we discuss in the previous section). Inline 9, we check whether the rightx has already
been acquired bys overo. In line 10, we check that if the righty has already been acquired bys overo (the
check in line 10 is needed whenx ∈ Rb, as then, the possession ofx∗ implies the possession ofx; in the case
thatx ∈ R∗

b , the lines 9 and 10 are identical). Whenx = own or x = control , the condition of line 10 will
never be true, and we will not return from that line. In the remainder of the algorithm, we consider those cases
in which a state-change is needed befores can getx overo (if it can at all). In line 11, we check whether there
is at least one subject that can initiate state-changes, andif not, we know that the system is safe. In line 12,
we check whethero exists, and if it does not, given that there exists a subject that can createo (from our check
in line 11), the subject can then grantx to s over o. In line 13, we check whether there is a subject that can
initiate state-changes, and that hasx with the copy-flag (orx itself, if x ∈ R∗

b). If x = own or x = control , the
condition of line 13 cannot be true. In lines 14-16, we check whether there is a sequence of subjects with the
particular property that each owns the next in the sequence,and the last subject in the sequence ownso. If any
one of those subjects can initiate state-changes, then we conclude that the system is not safe and return false.
In all other cases, we conclude that the system is safe, and return true.

The following lemma asserts that the algorithm is correct. Theorem 2 summarizes our results with respect
to safety analysis in the Graham-Denning scheme.

Lemma 1 A system based on the Graham-Denning scheme, that is characterized by the start-state,γ, and
state-change rule,ψ, is safe with respect toω = 〈s, o, x〉 and T ⊂ S (whereT is finite) if and only if
isSafeGD(γ, ψ, ω,T) returns true.

Proof. Sketch: the proof is quite lengthy, and we present it in Appendix A. We present a sketch of the proof
here. For the “if” part, we need to show that if the system is not safe with respect toω andT , thenisSafeGD

returns false on input(γ, ψ, ω,T). If the system is not safe, then we know that there exists a state-change
sequenceγ 7→ψ(s1) γ1 7→ψ(s2) · · · 7→ψ(sn) γn, such thatx ∈ Mγn [s, o]. If such a sequence exists withn = 0,
then this can only be becauses already has the right, and we show that in this case the algorithm returns false.
If n = 1, then the right has to appear inMγ1 [s, o] in only one state-change, and we show that in this case as
well, the algorithm returns false. For the general case, we use induction onn, with n = 1 as the base case.

For the “only if” part, we need to show that if the algorithm returns false, then the system is not safe with
respect toω andT . We consider each case in which the algorithm returns false (lines 9, 10, 12, 13 and 16). In
each case, we construct a state-change sequence such that inthe final state of the sequence,γ ′, x ∈Mγ′ [s, o].

7

command transfer r(i, s, o) command transfer r∗(i, s, o)
if r∗ ∈Mγ [i, o] ∧ s ∈ Sγ then if r∗ ∈Mγ [i, o] ∧ s ∈ Sγ then

Mγ′ [s, o]←Mγ [s, o] ∪ {r} Mγ′ [s, o]←Mγ [s, o] ∪ {r
∗}

command transfer own(i, s, o) command grant r(i, s, o)
if own ∈Mγ [i, o] ∧ o ∈ Sγ ∧ s ∈ Sγ then if own ∈Mγ [i, o] ∧ s ∈ Sγ then

if ∄ {s1, . . . , sn} ∈ Sγ such that Mγ′ [s, o]←Mγ [s, o] ∪ {r}
own ∈Mγ [s1, s] ∧ own ∈Mγ [s2, s1]
∧ · · · ∧ own ∈Mγ [sn, sn−1]
∧ own ∈Mγ [o, sn] then command grant r∗(i, s, o)
Mγ′ [s, o]←Mγ [s, o] ∪ {own} if own ∈Mγ [i, o] ∧ s ∈ Sγ then

Mγ′ [i, o]←Mγ [i, o] − {own} Mγ′ [s, o]←Mγ [s, o] ∪ {r
∗}

command grant control(i, s, o) command grant own(i, s, o)
if own ∈Mγ [i, o] ∧ o ∈ Sγ ∧ s ∈ Sγ then if own ∈Mγ [i, o] ∧ o 6∈ Sγ

if ∄ s′ ∈ Sγ such that ∧ s ∈ Sγ then

s′ 6= o ∧ control ∈Mγ [s
′, o] then Mγ′ [s, o]←Mγ [s, o] ∪ {own}

Mγ′ [s, o]←Mγ [s, o] ∪ {control}

command delete r(i, s, o) command delete r∗(i, s, o)
if (own ∈Mγ [i, o] ∧ s ∈ Sγ) if (own ∈Mγ [i, o] ∧ s ∈ Sγ)
∨ control ∈Mγ [i, s] then ∨ control ∈Mγ [i, s] then
Mγ′ [s, o]←Mγ [s, o]− {r} Mγ′ [s, o]←Mγ [s, o]− {r

∗}

command create object(i, o) command destroy object(i, o)
if o 6∈ Oγ ∧ i ∈ Sγ ∧ o ∈ O − S then if own ∈Mγ [i, o] ∧ o 6∈ Sγ then

Oγ′ ← Oγ ∪ {o} Oγ′ ← Oγ − {o}
Mγ′ [i, o]← own

command create subject(i, s) command destroy subject(i, s)
if s 6∈ Oγ ∧ i ∈ Sγ ∧ s ∈ S then if own ∈Mγ [i, s] ∧ s ∈ Sγ then

Oγ′ ← Oγ ∪ {s} ∀ o ∈ Oγ , if own ∈Mγ [s, o] then
Sγ′ ← Sγ ∪ {s} Mγ′ [i, o]←Mγ [i, o] ∪ {own}
Mγ′ [i, s]← {own} Oγ′ ← Oγ − {s}
Mγ′ [s, s]← {control} Sγ′ ← Sγ − {s}

Figure 1: The set of commands that constitutes the state-change rule,ψ, for a system based on the Graham-
Denning scheme. Each command has a name (e.g.,transfer own), and a sequence of parameters. The first
parameter is always namedi, and is the initiator of the command, i.e., the subject that executes the command.
There is onetransfer r, grant r, anddelete r command for eachr ∈ Rψ ∩ Rb, and onetransfer r∗, grant r∗,
anddelete r∗ command for eachr∗ ∈ Rψ ∩R∗

b .

8

1 Subroutine isSafeGD(γ, ψ, ω, T)
2 /* inputs: γ, ψ, ω = 〈s, o, x〉, T ⊆ S */
3 /* output: true or false */
4 if x ∈ R∗

b then let y ← x

5 else if x 6= own ∧ x 6= control then let y ← x∗

6 else let y ← invalid /* No copy flags for own or control */
7 if x 6∈ Rψ then return true
8 if x = control ∧ o ∈ O − S then return true
9 if x ∈Mγ [s, o] then return false

10 if y ∈Mγ [s, o] then return false
11 if T ⊇ Sγ then return true
12 if o 6∈ Oγ then return false
13 if ∃ŝ ∈ Sγ − T such that y ∈Mγ [ŝ, o] then return false
14 for each sequence U , sn, . . . , s2, s1 such that
15 own ∈Mγ [s1, o] ∧ · · · ∧ own ∈Mγ [sn, sn−1] ∧ own ∈Mγ [U , sn] do
16 if ∃si ∈ {s1, . . . , sn} such that si ∈ Sγ − T then return false
17 return true

Figure 2: The subroutineisSafeGD returns “true” if the system based on the Graham-Denning scheme, char-
acterized by the start-state,γ, and state-change rule,ψ, satisfies the safety property with respect toω andT .
Otherwise, it returns “false”. In line 6, we assign some invalid value toy, as there is not corresponding right
with the copy flag for the rightsown andcontrol . In this case, the algorithm will not return in line 10 or 13.

Theorem 2 Safety is efficiently decidable in a system based on the Graham-Denning scheme. In particular,
isSafeGD runs in time at worst cubic in the size of the components of thestart state and the set of rights in the
system.

Proof. We make the following observations about the running time of isSafeGD in terms of its input, namely,
Sγ , Oγ , Rψ, Mγ [], ω andT , by considering each line in the algorithm as follows. Each of the lines 5-10 runs
in time at worst linear in the size of the input. In particular, as we mention in the previous section, we adopt
a naming convention for subjects and objects that enables usto perform the checko ∈ O − S in line 8, in
constant time. Line 11 runs in time at worst quadratic in the size of the input (|Sγ | × |T |), line 12 runs in time
at worst linear (|Oγ |), and line 13 runs in time at worst quadratic (|Sγ | × |Rψ|). As each subject is owned only
by one other subject, each sequence to which line 14 refers isof size at most|Sγ |. Furthermore, there are at
most|Sγ | such sequences. Therefore, lines 14-16 run in time at worst cubic in the size of the input. The fact
that isSafeGD(γ, ψ, ω,T) runs in time polynomial in the size of the input in conjunction with Lemma 1 proves
our assertion. .

5 The Griffiths-Wade Scheme

Griffiths and Wade [10] present a DAC scheme for relational database systems. Their scheme is different from
the Graham-Denning scheme in important respects. A key difference is that in the Griffiths-Wade scheme, we
have three kinds of objects, base relations, views and rows,and safety analysis must consider all three kinds of
objects. Furthermore, rights over views depend on rights over base relations, and rights over rows depend on
rights over relations and views.

As we mention in Section 1, owing to space limitations, we areunable to include a detailed description
and analysis of the Griffiths-Wade scheme. We include these details in [8], and present only the results here.
The algorithm to decide safety in the Griffiths-Wade scheme (in [8]) is more involved that the algorithm for

9

deciding safety in the Graham-Denning scheme (in Section 4.2), but we adopt a similar strategy in its proof of
correctness.

Theorem 3 Safety is efficiently decidable in a system based on the Griffiths-Wade scheme. In particular, there
exists an algorithm that returns true if a system based on theGriffiths-Wade scheme is safe and false otherwise,
and the algorithm runs in time quartic in the size of the components of the start state.

6 The Solworth-Sloan Scheme, Revisited

Solworth and Sloan [26] present a new DAC scheme based on labels and relabelling rules, and we call it the
Solworth-Sloan scheme. While the presentation in [26] doesnot clearly specify what information is maintained
in a state and how states may change, we were able to infer whatis intended after considerable effort.

In this section, we give a precise characterization of the Solworth-Sloan scheme as a state transition system.
Our objective in doing so is to represent the Solworth-Sloanscheme sufficiently precisely to enable comparisons
to other DAC schemes. In particular, our intent is to assess the mapping of DAC schemes to the Solworth-Sloan
scheme that is discussed by Solworth and Sloan [26]. Solworth and Sloan [26] refer to the DAC schemes dis-
cussed by Osborn et al. [20] and assert that “. . . we present a general access control model which is sufficiently
expressive to implement each of these DAC models. . . ” In thissection, we show that this claim is incorrect.

We reiterate that the DAC schemes discussed by Osborn et al. [20] are either subsumed by, or are minor
extensions of the Graham-Denning scheme that we discuss in Section 4. We have shown in Section 4.2 that
safety is efficiently decidable in the Graham-Denning scheme, and our algorithm can be used with relatively
minor modifications to decide safety in these schemes. Thereby, Solworth and Sloan’s [26] other assertion in
reference to the DAC schemes discussed by Osborn et al. [20],that “. . . every published general access control
model. . . either is insufficiently expressive to represent the full range of DACs or has an undecidable safety
problem. . . ”, has been rendered invalid.

6.1 The Solworth-Sloan Scheme

Overview There exists the following countably infinite sets of constants: a setS of subjects, a setO of
objects, a setR of rights, a setG of groups, a setT o of object tags, and a setT g of group tags. Anobject label
is a pair〈s, t〉, wheres ∈ S is a subject andt ∈ T o is a object tag.

Which rights a subject has over a particular object are determined indirectly in the following three steps.

1. There is a labelling functionlabel that assigns an object label to each object.

An object’s label may be changed by object relabelling rules, which determine whether an action rewrit-
ing one object label into another succeeds or not. For example, when the object labelℓ1 = 〈s1, t1〉 is
relabelled toℓ2 = 〈s2, t2〉, all objects that originally have the labelℓ1 now have the labelℓ2.

2. There is an authorization functionauth that decides which rights a group has over a particular object
label. For each object labelℓ and each rightr, there is one group who has the rightr over the labelℓ.
Members of the group have rightr over objects that are assigned the labelℓ.

3. Which subjects are members of a group is determined by native group sets (NGS’s), which are compli-
cated structures that we describe below. We define a functionmembers that maps each group to a set of
subjects.

We schematically illustrate the steps to determine whethera subject can access an object or not as follows.

objects
label
−→ object labels

auth
−→ groups

members
−→ subjects

10

States,Γ A state,γ, is characterized by a 9-tuple〈Sγ , Oγ , Rγ , Gγ , Lγ , labelγ , authγ ,ORSγ , Eγ〉.

• Sγ is the set of subjects in the stateγ; Oγ is the set of objects in the stateγ; Rγ is the set of rights in the
stateγ, andGγ is the set of groups in stateγ.

There is a distinguished rightwr, which exists in every state, i.e.,wr ∈ Rγ .

• Lγ ⊂ Sγ × T
o is the finite set of object labels in the stateγ.

• labelγ: Oγ −→ Lγ assigns a unique object label to each object in the current state.

• authγ : (Lγ × Rγ) −→ Gγ maps each pair of an object label and a right to a group. For example,
authγ [ℓ, re] = g1 means that the groupg1 has there right over all objects labelledℓ.

• ORSγ is an ordered sequence of object relabelling rules, each rule has the form ofrl(p1, p2) = h, where
rl is a keyword, andp1, p2 are object patterns. Anobject patternis a pair, where the first element is a
subject inS or one of the three special symbols∗, ∗u, and∗w, and the second element is an object tag in
T o or the special symbol∗. In the rulerl(p1, p2) = h, h is a group, a subject, or one of the four following
sets:{}, {∗}, {∗u}, {∗w}. Whenh is {∗u} (resp.,{∗w}), {∗u} (resp.,{∗w}) must appear inp1 or p2.

For example, the following is an RLS, in whichs1 is a subject,t1 is an object tag, andg1 is a group:

rl(〈∗u, t1〉, 〈s1, ∗〉) = g1
rl(〈s1, ∗〉, 〈∗u, t1〉) = {∗}
rl(〈∗u, ∗〉, 〈∗u, ∗〉) = {∗u}
rl(〈∗u, ∗〉, 〈∗w, ∗〉) = {}

• Eγ is a finite set of native group sets (NGS’s) that exist in the state,γ. Eache ∈ Eγ is characterized by
the 7-tuple〈e.G, e.T g, e.gtag, e.nt g, e.admin, e.patterns, , e.GRS〉.

– e.G ⊆ Gγ is the set of groups that are defined in this NGS.

– e.T g ⊆ T g is the set of group tags that are used in this NGS.

– The functione.gtag : Sγ −→ e.T g assigns a unique tag to each subject in the current state.

– e.nt g is a group tag ine.T g; it determines when a new subject is added to the state, whichtag is
assigned to that subject. That is, if a subjects is added, thene.gtag[s] would be set toe.nt g.

– e.admin points to one NGS inEγ ; it identifies a NGS in the current state as the administrative group
set of the NGSe; e.admin could bee, in which casee is the administrative group set for itself.

– e.patterns is a function mapping each group ine.G to a (possibly empty) set of group patterns.
Eachgroup patternis a pair where the first element is either a subject in the current state or a
special symbol∗u, and the second element is a group tag ine.T g. In other words, the set of all
group patterns that are can be used ine, denoted bye.P g, is (Sγ ∪ {∗u})× e.T

g, and the signature
of e.patterns is e.G −→ 2e.P

g

, where2e.P
g

denote the powerset ofe.P g.

For any groupg ∈ e.G, e.patterns[g] gives a set of patterns for determining memberships of the
group. Intuitively, the label〈∗u, tg〉 is in e.patterns[g] means that any subject who is assigned (via
the e.gtag function) the group tagtg is a member of the group; and the label〈s, tg〉 is in e.patterns[g]
means that the subjects is a member of the group if it is assigned the group tagtg.

– e.GRS is a set of group relabelling rules, each has the formRelabel(tg1, t
g
2) = g, whereRelabel

is a keyword,tg1, t
g
2 ∈ e.T g are two group tags used in this NGS, andg is a group defined in the

administrative group sete.admin (i.e.,g ∈ e.admin.G).

11

We define the following auxiliary functione.members [] : e.G −→ Sγ such thate.members [g] is the
set of all subjects that are members of the groupg. A subjects ∈ e.members [g] if and only if the tag
tg assigned tos (via e.gtag) satisfies the condition that at least one of the two group labels 〈s, tg〉 and
〈∗u, tg〉 are in the patterns forg, i.e.,

∃ tg ∈ e.T g (e.gtag(s) = tg ∧ (〈s, tg〉 ∈ e.patterns[g] ∨ 〈∗u, tg〉 ∈ e.patterns[g]))

An additional constraint on the stateγ is that each group is defined in exactly one NGS and each group
tag can be used in at most one NGS, i.e.,

∀e1 ∈ Eγ∀e2 ∈ Eγ (e1.G ∩ e2.g = ∅ ∧ e1.T
g ∩ e2.T

g = ∅)

State-Change Rules,Ψ There is a single state transition ruleψ in this scheme;ψ consists of six actions that
can result in state changes. These actions are mentioned in Section 3.4 of [26] without precise definition. (We
break up the “Relabel an object” operation in [26] into two relabelling actions.) We describe the actions and
their effects when applying them to a stateγ = 〈Sγ , Oγ , Rγ , Gγ , Lγ , labelγ , authγ ,ORSγ , Eγ〉. We useγ′ to
denote the state after the change.

1. create object(s, o, ℓ = 〈s1, t
o
1〉): the subjects creates the objecto and assigns the object labelℓ to the

objecto.

This action succeeds whens ∈ Sγ , o 6∈ Oγ , ℓ ∈ Lγ and the subjects has thewr right on the object label
ℓ, i.e.,s ∈ members [authγ(ℓ,wr)].

Effects of the action areOγ′ = Oγ ∪ {o} and the functionlabel is extended so thatlabelγ′(o) = 〈s1, t
o
1〉.

2. create label(s, ℓ = 〈s, t1〉, g1, g2, · · · , gk), wherek = |Rγ | is the number of rights inγ: the subjects
creates the new object labelℓ, and assigns the groupsg1, g2, · · · , gk to have the rights overℓ, .

This action succeeds whens ∈ Sγ , ℓ 6∈ Lγ , the subject inℓ is s, andg1, · · · , gk ∈ Gγ .

The effects of this action are follows. Letr1, r2, · · · , rk be thek rights inRγ . ThenLγ′ = Lγ ∪ {ℓ} and
the functionauth is extended such thatauthγ′(ℓ, ri) = gi for 1 ≤ i ≤ k.

3. create subject(s, s′): the subjects creates a new subjects′.

This action succeeds whens ∈ Sγ ands′ 6∈ Sγ .

The effects of this action areSγ′ = Sγ ∪ {s
′} and for every NGSe ∈ Eγ , e.gtag is extended so that in

γ′, e.gtag(s′) = e.nt g.

4. object relabel(s, ℓ1 = 〈s1, t1〉, ℓ2 = 〈s2, t2〉): the subjects relabels objects having labelℓ1 to have the
labelℓ2.

This action succeeds when the first relabelling rule in the object relabelling rule sequenceORSγ that
matches(ℓ1, ℓ2) is rl(p1, p2) = h ands ∈ value[h]. The rulerl(p1, p2) = h matches(ℓ1, ℓ2) whenp1

matchesℓ1 andp2 matchesℓ2 at the same time. When the pattern〈∗u, ∗〉 matches the label〈s1, t1〉, we
say that∗u is unified with the subjects1. Note that when∗u occurs more than one times inp1, p2, they
should be unified with the same subject. Recall thath maybe a groupg, a subjects ′, or one of the four
sets:{}, {∗}, {∗u}, {∗w}. The functionvalue is defined as follows:value[g] = e.members [g], wheree
is the NGS in whichg is defined;value[s′] = {s′}; value[{}] = ∅, value[{∗}] = Sγ , value[{∗u}] is the
subject that is unified with∗u.

Consider the following RLS.

12

rl(〈∗u, t1〉, 〈s1, ∗〉) = g1
rl(〈s1, ∗〉, 〈∗u, t1〉) = {∗}
rl(〈∗u, ∗〉, 〈∗u, ∗〉) = {∗u}
rl(〈∗u, ∗〉, 〈∗w, ∗〉) = {}

The actionobject relabel(s, 〈s2, t1〉, 〈s1, t2〉) would match the first relabelling rule and succeeds when
s is a member of the groupg1. The actionobject relabel(s, 〈s1, t1〉, 〈s2, t2〉) would match the second
relabelling rule and always succeeds. The actionobject relabel(s, 〈s2, t2〉, 〈s2, t1〉) would match the
third relabelling rule and fail, because∗u is unified withs2. The actionobject relabel(s, 〈s2, t2〉, 〈s1, t1〉)
would match the fourth relabelling rule and fail.

The effect of the relabel action is in the functionlabel. For every objecto such thatlabelγ [o] = ℓ1, in the
new state,labelγ′ [o] = ℓ2.

5. group tag relabel(s, s′, tg1, t
g
2): the subjects relabels the group tag for the subjects′ from t

g
1 to tg2.

This action succeeds when there is an NGSe ∈ Eγ such thattg1 andtg2 are used ine, the subjects′ has
the group tagtg1 in e, there is a corresponding group relabelling rule ine.GRS, ands is a member of the
group that can use the relabelling rule. More precisely, theaction succeeds when

∃e ∈ Eγ
(
e.gtag[s′] = t

g
1 ∧ “Relabel (tg1, t

g
2) = g” ∈ e.GRS ∧ s ∈ e.members [g]

)

Note that the tagstg1 andtg2 can appear only in one NGS and they must appear in the same NGS for the
action to succeed. The effect of this action is such that the functione.gtag is changed such that inγ ′,
e.gtag[s′] = t

g
2.

6. create ngs(s, e): the subjects creates a new NGSe.

To perform this action, one must provide the complete description of a new NGSe, i.e., the 7-tuple
〈e.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns, , e.GRS〉. For this action to succeed, the groups defined
in e and the group tags ine must be new, i.e., they do not appear in any existing NGS’s inγ.

The effects are thatGγ′ = Gγ ∪ e.G andEγ′ = Eγ ∪ e.

Given the above state transition rule, we make the followingobservations. No removal of subjects, objects,
labels, or groups is defined. Given a state〈Sγ , Oγ , Rγ , Gγ , Lγ , labelγ , authγ ,ORSγ , Eγ〉, Sγ (the set of sub-
jects),Oγ (the set of objects), andGγ (the set of groups) may change as a result ofcreate subject, create object,
andcreate label, respectively.Rγ , the set of rights, is fixed for the system and does not change.Gγ , the set of
groups, may change when a new NGS is added by thecreate ngs action. The functionlabelγ : Oγ −→ Lγ is
extended when a new object is added and is changed when an object relabelling actionobject relabel happens.
The functionauthγ is extended when a new object label is created; existing assignments do not change.ORSγ ,
the object relabelling rule sequence, always stay the same.Eγ is extended when a new NGS is added.

6.2 Encoding a simple DAC scheme in the Solworth-Sloan scheme

In this section, we encode a relatively simple DAC scheme in the Solworth-Sloan scheme. The DAC scheme we
consider is a sub-scheme of the Graham-Denning scheme. It iscalled Strict DAC with Change of Ownership
(SDCO) and is one of the DAC schemes discussed by Osborn et al.[20]. Our construction is based on comments
by Solworth and Sloan [26] on how various DAC schemes can be encoded in the Solworth-Sloan scheme. As
the presentation in that paper is not detailed, we offer a more detailed construction. Our constructions lets us
assess the utility of the Solworth-Sloan scheme in encodingSDCO. After we present our encoding, we discuss
the overhead introduced by mapping SDCO to the Solworth-Sloan scheme and the correctness of this mapping.

13

Strict DAC with Change of Ownership (SDCO) As we mention above, SDCO is a sub-scheme of the
Graham-Denning scheme (see Section 4.1). In SDCO, there is adistinguished right,own , but nocontrol right.
Also, there are no rights with the copy flag. The state-changerules in SDCO are the commandsgrant r (for
eachr ∈ Rψ), delete r (for eachr ∈ Rψ), grant own, create object andcreate subject. We do not consider
commands to destroy subjects or objects as their counterparts are not specified for the Solworth-Sloan scheme.

For simplicity, we consider an SDCO scheme that has only three rightsown, re,wr. In the Solworth-Sloan
scheme, if two objectso1 ando2 have the same label, theno1 ando2 always have the same access characteristics.
That is, in every state, the set of subjects having a rightr overo1 is the same as the set of subjects having the right
r overo2. In SDCO, one can reach states in whicho1 ando2 have different access characteristics. Therefore,
each object needs to be assigned a distinct label, we use〈s, t(o)〉 to denote such an label.

Therefore, before creating an object, one has to create a newlabel. When creating a new labelℓ, one
has to assign a group toauth(ℓ, own) and a group toauth(ℓ, re); and a group toauth(ℓ,wr). Each pair〈ℓ, r〉
determines a unique access class. Therefore, a distinct group needs to be created. We useg(o, r) to denote the
group that will be assigned to have the rightr over objecto.

In order to keep track of which subset of rights a subject has over an object, we need8 group tags, one
corresponding to each subset of{own , re,wr}, we usetg(o, x), wherex is a 3-bit string to denote these tags.

In order for a subjects to create an objecto, s needs to do the following:

1. Create an NGSe = 〈e.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns, , e.GRS〉 as follows.

• e.G = {g(o, own), g(o, re), g(o,wr)}

• e.T g = {tg(o, 000), tg(o, 001), tg(o, 010), tg(o, 011), tg(o, 100), tg(o, 101), tg(o, 110), tg(o, 111)}.

• e.gtag[s] = tg(o, 100) ande.gtag[s′] = tg(o, 000) for everys′ ∈ Sγ s.t. s′ 6= s.

• e.nt g = tg(o, 000)

• e.admin = e

• e.patterns[g(o, own)] = {〈∗u, tg(o, 100)〉, 〈∗u, tg(o, 101)〉, 〈∗u, tg (o, 110)〉, 〈∗u, tg(o, 111)〉}
e.patterns[g(o, re)] = {〈∗u, tg(o, 010)〉, 〈∗u, tg (o, 011)〉, 〈∗u, tg(o, 110)〉, 〈∗u, tg (o, 111)〉}
e.patterns[g(o,wr)] = {〈∗u, tg(o, 001)〉, 〈∗u, tg (o, 011)〉, 〈∗u, tg(o, 101)〉, 〈∗u, tg (o, 111)〉}

• e.GRS = {Relabel (g(o, b1b2b3), g(o, b
′
1b

′
2b

′
3)) = g(o, own)

| b1b2b3, b
′
1b

′
2b

′
3 ∈ {0, 1}

3 ∧ b1b2b3 andb′1b
′
2b

′
3 differ in exactly one bit

}

2. Use the actioncreate label(s, 〈s, t(o)〉, g(o, re), g(o,wr)) to create the labelℓ(o).

3. Use the actioncreate object(s, o, 〈s, t(o)〉) to create the objecto and label it withℓ(o).

To grant or revoke a right, one uses group relabelling. For instance, supposes is a subject, and for the NGS,
e, e.gtag[s] = tg(o, 000). Then, we know thats is not a member of any of the groupsg(o, own), g(o, re) or
g(o,wr). The subject would be granted the rightre by relabelling〈s, tg(o, 000)〉 to the label〈s, tg(o, 010)〉. The
execution of this relabelling results in the subject becoming a member of the groupg(o, re), thereby giving him
the rightre over the objecto. Similarly, the subject would have the rightre revoked by relabelling〈s, tg(o, 010)〉
to the label〈s, tg(o, 000)〉. These operations can be carried out only by a subject that isa member of the group
g(o, own).

We make the following observations about the above mapping.

• There is considerable overhead in implementing a relatively simple DAC scheme (SDCO) in the
Solworth-Sloan scheme. For each object, we need to create a set of labels whose size is linear in the
number of the subjects in the state. We also need to create a set of tags whose size is exponential in

14

the number rights in the system. These tags are used to define groups, and the therefore, the number of
entries in all the sets of patterns is also exponential in thenumber of rights in the system. This is con-
siderable overhead considering the simplicity of SDCO, andthe fact that we can “directly” implement it,
with efficiently decidable safety.

• We are unable to capture destruction of subjects and objectsas such constructs have not been specified
for the Solworth-Sloan scheme. Destruction of subjects andobjects is generally considered to be an
important component of any access control system. In particular, it is unclear how and with what overhead
we can capture in the Solworth-Sloan scheme, the notion of transfer of ownership over objects owned by
a subject that is being destroyed.

• The above mapping does not capture the state invariant in SDCO that in every state, there is exactly one
owner for every object that exists. In the Solworth-Sloan system that results from the above mapping,
one can perform relabelling operations and reach states in which there are mutiple owners for an object,
or no owner for an object. For instance, suppose that there already exists a subjects such thats ∈
e.members [g(o, own)]. Given the above relabelling rules, there is nothing that precludes another subject
from also becoming a member of the groupg(o, own) while s continues to maintain membership in that
group. It is also possible to remove the membership ofs in the groupg(o, own) thereby leaving the object
with no owner. It is unclear how we would prevent such situations from occuring in a system based on
the Solworth-Sloan scheme.

Our conclusion is that several of the claims made by Solworthand Sloan [26] are incorrect. In particular,
not only is the motivation (decidable safety) for the creation of their new scheme invalid, but it is also not
effective in implementing relatively simple DAC schemes.

7 Conclusions

The focus of this paper is to provide a clear picture of safetyanalysis in DAC. We have used a state-transition-
system-based meta-formalism to precisely model access control schemes and systems and have studied safety
analysis in two general DAC schemes from the literature, theGraham-Denning scheme [9], and the Griffiths-
Wade scheme [10]. For the Graham-Denning scheme, we have presented an algorithm for deciding safety with
running timeO(n3) and proved that the algorithm is correct. Because of space limitations, we were unable
to include details of our analysis of the Griffiths-Wade scheme, but we have summarized that there exists an
O(n4) algorithm for deciding safety in the scheme. We have also refuted several claims made by Solworth and
Sloan [26]. In particular, we have refuted the claim that themapping presented there encodes all DAC schemes
by considering a relatively simple DAC scheme and demonstrating that the mapping has several deficiencies.
We conclude by asserting that safety in existing general DACschemes is decidable and there is no need to
invent new DAC schemes with decidable safety as the goal.

References

[1] Paul Ammann and Ravi S. Sandhu. Safety analysis for the extended schematic protection model. In
Proceedings of the 1991 IEEE Symposium on Security and Privacy, pages 87–97, May 1991.

[2] Paul Ammann and Ravi S. Sandhu. The extended schematic protection model. Journal of Computer
Security, 1(3-4):335–383, 1992.

15

[3] Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. An access control model supporting
periodicity constraints and temporal reasoning.ACM Transactions on Database Systems, 23(3):231–285,
1998.

[4] Elisa Bertino, Claudio Bettini, and Pierangela Samarati. A temporal authorization model. InProceedings
of the ACM Conference on Computer and Communications Security (CCS), pages 126–135. ACM Press,
1994.

[5] T. Budd. Safety in grammatical protection systems.International Journal of Computer and Information
Sciences, 12(6):413–430, 1983.

[6] National Computer Security Center. A guide to understanding discretionary access control in trusted
systems, September 1987. NCSC-TG-003.

[7] Deborah D. Downs, Jerzy R. Rub, Kenneth C. Kung, and Carole S. Jordan. Issues in discretionary access
control. InProceedings of IEEE Symposium on Research in Security and Privacy, pages 208–218, April
1985.

[8] Anonymous (for blind review). On safety in discretionary access control. Technical report, 2004.

[9] G. Scott Graham and Peter J. Denning. Protection — principles and practice. InProceedings of the AFIPS
Spring Joint Computer Conference, volume 40, pages 417–429. AFIPS Press, May 16–18 1972.

[10] Patricia P. Griffiths and Bradford W. Wade. An authorization mechanism for a relational database system.
ACM Transactions on Database Systems, 1(3):242–255, 1976.

[11] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating systems.Commu-
nications of the ACM, 19(8):461–471, August 1976.

[12] Anita K. Jones, Richard J. Lipton, and Lawrence Snyder.A linear time algorithm for deciding security. In
17th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 33–41, October 1976.

[13] Butler W. Lampson. Protection. InProceedings of the 5th Princeton Conference on InformationSciences
and Systems, 1971. Reprinted in ACM Operating Systems Review, 8(1):18-24, Jan 1974.

[14] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access control. InProceedings of
the Ninth ACM Symposium on Access Control Models and Technologies (SACMAT 2004), pages 126–135,
June 2004.

[15] Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond proof-of-compliance: Safety and
availability analysis in trust management. InProceedings of IEEE Symposium on Security and Privacy,
pages 123–139. IEEE Computer Society Press, May 2003.

[16] Richard J. Lipton and Lawrence Snyder. A linear time algorithm for deciding subject security.Journal of
the ACM, 24(3):455–464, 1977.

[17] Teresa Lunt. Access control policies: Some unansweredquestions. InProceedings of the 2nd IEEE
Computer Security Foundations Workshop, pages 227–245. IEEE Computer Society Press, June 1988.

[18] Naftaly H. Minsky. Selective and locally controlled transport of privileges.ACM Transactions on Pro-
gramming Languages and Systems, 6(4):573–602, October 1984.

16

[19] Rajeev Motwani, Rina Panigrahy, Vijay A. Saraswat, andSuresh Ventkatasubramanian. On the decid-
ability of accessibility problems (extended abstract). InProceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pages 306–315. ACM Press, May 2000.

[20] Sylvia Osborn, Ravi S. Sandhu, and Qamar Munawer. Configuring role-based access control to enforce
mandatory and discretionary access control policies.ACM Transactions on Information and System Secu-
rity, 3(2):85–106, May 2000.

[21] Pierangela Samarati and Sabrina de Capitani di Vimercati. Access control: Policies, models, and mech-
anisms. In Ricardo Focardi and Roberto Gorrieri, editors,Foundations of Security Analysis and Design,
volume 2171 ofLecture Notes in Computer Science, pages 137–196. Springer, 2001.

[22] Ravi S. Sandhu. The schematic protection model: Its definition and analysis for acyclic attenuating
systems.Journal of the ACM, 35(2):404–432, 1988.

[23] Ravi S. Sandhu. Expressive power of the schematic protection model. Journal of Computer Security,
1(1):59–98, 1992.

[24] Ravi S. Sandhu. The typed access matrix model. InProceedings of the 1992 IEEE Symposium on Security
and Privacy, pages 122–136. IEEE Computer Society Press, May 1992.

[25] Ravi S. Sandhu. Undecidability of the safety problem for the schematic protection model with cyclic
creates.Journal of Computer and System Sciences, 44(1):141–159, February 1992.

[26] Jon A. Solworth and Robert H. Sloan. A layered design of discretionary access controls with decidable
safety properties. InProceedings of IEEE Symposium on Research in Security and Privacy, May 2004.

[27] Jon A. Solworth and Robert H. Sloan. Security property based administrative controls. InProceedings
of the Ninth European Symposium on Research in Computer Security (ESORICS 2004), pages 244–259.
Springer, September 2004.

[28] Masakazu Soshi. Safety analysis of the dynamic-typed access matrix model. InProceedings of the Sixth
European Symposium on Research in Computer Security (ESORICS 2000), pages 106–121. Springer,
October 2000.

[29] Masakazu Soshi, Mamoru Maekawa, and Eiji Okamoto. The dynamic-typed access matrix model and
decidability of the safety problem.IEICE Transactions on Fundamentals, E87-A(1):190–203, January
2004.

A Proof for Lemma 1

Proof. The “if” part: we need to show that ifisSafeGD(γ, ψ, ω,T) returns true, then the system is safe with
respect toω and T . We show, equivalently, that if the system is not safe with respect toω and T , then
isSafeGD(γ, ψ, ω,T) returns false. Assume that the system is not safe with respect to ω andT . We have
two cases. The first case is that in the start-state,γ, s hasx overo. This case consists of two subcases: either
(1) x ∈ Mγ [s, o], or (2)x ∈ Rb andx∗ ∈ Mγ [s, o] (possession ofx∗ implies possession ofx). If both (1) and
(2) are true, we consider either one of those two subcases. Ifsubcase (1) is true, then we know thatx ∈ Rψ,
and ifx = control ando ∈ O − S, thenx 6∈ Mγ [s, o] (by property (2) from the previous section that objects
that are not subjects cannot have thecontrol right over them). Therefore, the ‘if’ conditions of lines 7 and 8 are
not satisfied, and line 9 of the algorithm returns false, and we are done. For subcase (2), in line 5 we instantiate
y to x∗. We know thatx, y ∈ Rψ, and thatx 6= control . Therefore, the ‘if’ conditions for lines 7 and 8 are not

17

satisfied. The ‘if’ condition for line 9 may be satisfied and ifit is, the algorithm returns false and we are done.
Otherwise, the algorithm returns false in line 10.

The second case is thats does not havex over o in the start-state, i.e.,x 6∈ Mγ [s, o] and if x ∈ Rb,
thenx∗ 6∈ Mγ [s, o]. In this case, as the system is not safe, there exists a finite sequence of state-changes
γ 7→ψ(s1) γ1 7→ψ(s2) · · · 7→ψ(sn) γn wheren is an integer andn ≥ 1, such that eitherx ∈ Mγn [s, o], or if
x ∈ Rb, thenx∗ ∈ Mγn [s, o]. Eachsi ∈ Sγi−1

− T and thesi’s are not necessarily distinct from one another.
We point out also that ifsi ∈ Sγj

− T for somei andj, andsi ∈ Sγk
for somek 6= j, thensi ∈ Sγk

− T ,
becauseT is specified a-priori and does not change with changes in the state. We now show that if such a
sequence of state-changes exists, then the algorithm returns false. We show this by induction onn. For the base
case, if there exists a sequence of length 1, thenγ 7→ψ(s1) γ1, andx 6∈ Mγ [s, o] andx∗ 6∈ Mγ [s, o] if x ∈ Rb,
andx ∈ Mγ1 [s, o], or x ∈ Rb andx∗ ∈ Mγ1 [s, o]. In this case, the state-change is the execution of one of the
following commands, and we show that the algorithm returns false in each case. The state-change has to be the
execution of one of these commands because these are the onlycommands that enter a right in to a cell of the
access matrix.

transfer r – in this case we know thatx ∈ Rb ∩ Rψ, x∗ ∈ Rψ, x∗ ∈ Mγ [s1, o] for somes1 ∈ Sγ − T , and
s ∈ Sγ . The algorithm will not return in any of the lines 7-11 as the respective ‘if’ conditions are not
satisfied. Ifo 6∈ Oγ , then the algorithm returns false in line 12, and we are done.If o ∈ Oγ , then the
conditions for line 13 are met (y is instantiated tox∗), and the algorithm returns false.

transfer r∗ – we have two subcases to consider: either (1)x ∈ R∗

b ∩Rψ, or, (2)x ∈ Rb∩Rψ. In case (2), lety
bex∗, and in case (1), lety bex. We know in either case thaty ∈Mγ [s1, o] for somes1 ∈ Sγ − T , and
s ∈ Sγ (otherwises would not get the rightx overo after the execution of the command). The algorithm
will not return in any of the lines 7-11 as the respective ‘if’conditions are not satisfied. Ifo 6∈ Oγ , then
the algorithm returns false in line 12, and we are done. Ifo ∈ Oγ , then the conditions for line 13 are met
and the algorithm returns false.

transfer own – in this case we know thatx = own , own ∈ Mγ [i, o] for somei ∈ Sγ − T , o ∈ Sγ and
s ∈ Sγ . The ‘if’ conditions for each of lines 7-13 are not met (for line 11, we know thatown ∗ 6∈ Rψ).
Consider lines 14-16. We know that such a sequence of subjects exists (asi has theown right overo in
Sγ), and furthermore,i ∈ Sγ − T . Therefore, the conditions to return false in lines 14-16 are met, and
the algorithm returns false.

grant r – in this case, we know thatown ∈ Mγ [i, o] for somei ∈ Sγ − T andx ∈ Rb ∩ Rψ (in particular,
x 6= control andx 6= own – there are other commands to grant those rights). The ‘if’ conditions for
each of lines 7-11 are not met. Ifo 6∈ Oγ , the algorithm returns false in line 12, and we are done. If
o ∈ Oγ , the conditions for line 13 may be met, and if they are, the algorithm returns false and we are
done. If the conditions in line 13 are not met, then we observethat the conditions for lines 14-16 are met
(the sequence of subjects containsi, asi has theown right overo in Sγ), and the algorithm returns false.

grant r∗ – we have two subcases to consider. Either (1)x ∈ Rb ∩ Rψ, or, (2)x ∈ R∗

b ∩ Rψ. For case (1), let
y bex∗ and for case (2), lety bex. In either case, we know thatown ∈ Mγ [i, o] for somei ∈ Sγ − T .
The ‘if’ conditions for lines 7-11 are not met. Ifo 6∈ Oγ , then the algorithm returns false in line 12, and
we are done. Otherwise, the conditions for line 13 may be met,and if they are, the algorithm returns
false, and we are done. Otherwise, we observe that the conditions for lines 14-16 are met (the sequence
of subjects containsi, asi has theown right overo in Sγ), and the algorithm returns false.

grant control – in this case, we know thatx = control , own ∈ Mγ [i, o] for somei ∈ Sγ − T ando ∈ Sγ .
Therefore, the ‘if’ conditions for lines 7-12 are not met. The ‘if’ conditions for line 13 are not met
because we know thaty 6∈ Rψ. But, we observe that the conditions for lines 14-16 are met,because the

18

subjecti that is not trusted exists inγ, andi has theown right overo. Therefore, the algorithm returns
false in line 16.

grant own – in this case, we know thatx = own andown ∈Mγ [i, o] for somei ∈ Sγ−T . The ‘if’ conditions
for lines 7-11 are not satisfied. Ifo 6∈ Oγ , then the algorithm returns false in line 12 and we are done.
Otherwise, the condition in line 13 is not satisfied, but, we observe that the conditions for lines 14-16 are
satisfied, and the algorithm returns false.

create object – in this case, we know thatx = own ando 6∈ Oγ . The ‘if’ conditions for lines 7-11 are not met,
but the ‘if’ condition for line 12 is met, and the algorithm returns false.

create subject – in this case, we know that∃i ∈ Sγ − T , and eitherx = own or x = control . Furthermore,
we know thato 6∈ Oγ . The reason is that in the body of the command, we enter a rightonly in the column
corresponding to the subject that is created in the execution of the command, and not any other object.
Therefore, forω = 〈s, o, x〉, we know thato must be the subject that is created in the execution of the
create subject command. We know also thato 6∈ O − S, because the object that is created is a subject.
Therefore, the respective ‘if’ conditions for lines 7-11 are not satisfied, but the ‘if’ condition for line 12
is satisfied, and the algorithm returns false.

destroy subject – in this case, we know thatx = own , andown ∈ Mγ [s, s
′], whereω = 〈s, o, x〉 ands′ is

the subject that is destroyed in the execution of the command. The reason is that we enter a right only
in the row corresponding to such a subjects. Furthermore, we know thato ∈ Oγ andown ∈ Mγ [s

′, o],
because the only columns in which a right is entered in the execution of the command are columns with
that property. We know also thats ∈ Sγ − T ass is the initiator of the command-execution. Given
these facts, we know that the ‘if’ conditions for lines 7-12 are not satisfied. The conditions for line 13
may be met, and if they are, the algorithm returns false and weare done. Otherwise, we observe that the
conditions for lines 14-16 are satisfied; the sequence of subjects containss ands ′ with s′ being the last
member of the sequence, ands immediately precedings′ in the sequence. Ass ∈ Sγ − T , the algorithm
returns false in line 16.

For the induction hypothesis, we assume that if there existsa state-change sequenceγ 7→ψ(s1) γ1 7→ψ(s2)

· · · 7→ψ(sk−1) γk−1 of lengthk − 1 (for k − 1 ≥ 1) such thatx 6∈ Mγ [s, o] and ifx ∈ Rb, x∗ 6∈ Mγ [s, o], and
eitherx ∈Mγk−1

[s, o] or, if x ∈ Rb, x∗ ∈Mγk−1
[s, o], then the algorithm returns false. Now assume that there

exists a state-change sequenceγ 7→ψ(s1) · · · 7→ψ(sk) γk of lengthk (for k ≥ 2) such thatx 6∈ Mγ [s, o] and if
x ∈ Rb, x∗ 6∈ Mγ [s, o], and eitherx ∈ Mγk

[s, o] or, if x ∈ Rb, x∗ ∈ Mγk
[s, o]. We need to show that the

algorithm returns false forω = 〈s, o, x〉.
We have two cases. The first case has two subcases: either (a)x ∈ Mγk−1

[s, o], or, (b) x ∈ Rb and
x∗ ∈ Mγk−1

[s, o]. In either case, we have a state-change sequence of lengthk − 1 with the appropriate
properties, and by the induction hypothesis, we know that the algorithm returns false. In the second case, we
assume thatx 6∈ Mγk−1

[s, o] and if x ∈ Rb, x∗ 6∈ Mγk−1
[s, o], and eitherx ∈ Mγk

[s, o] or x ∈ Rb and
x∗ ∈ Mγk

[s, o]. We need to show that the algorithm returns false in this case. We consider the state-change
γk−1 7→ψ(sk) γk. It must be the execution of one of the following commands (the same as those we considered
for the base case), as those are the only commands that add a right to a cell in the access matrix. We consider
each in turn. We point out that ask ≥ 2, we have at least 3 states in our state-change sequence, including the
start-state, i.e., we know that at least the statesγk−2, γk−1 andγk (where the start-state,γ = γ0) exist in the
state-change sequence.

transfer r – in this case, we know thatx ∈ Rb ∩ Rψ andx∗ ∈ Mγk−1
[sk, o]. Letωk = 〈sk, o, x

∗〉. Then, we
know by the induction hypothesis thatisSafeGD(γ, ψ, ωk,T) returns false (as there exists a state-change
sequence of lengthk − 1 with the appropriate properties). We refer to the executionof the algorithm for
the input(γ, ω,T) ase, and for the input(γ, ωk,T) asek. Consider the following cases.

19

• ek returns in line 9: in this case, we know thatx∗ ∈Mγ [sk, o]. Now, e cannot return in lines 7 or 8
(becausex ∈ Rb ∩ Rψ). e may return false in line 9 or line 10, in which case we are done.If not,
e will not return in lines 11-12 assk ∈ Sγ − T ando ∈ Oγ . Finally, e will return false in line 13,
becausesk ∈ Sγ − T , andy ∈Mγ [sk, o].

• ek returns in line 10: this cannot happen as, in this case,ek would have returned in line 9. Therefore,
the arguments for the previous case apply.

• ek returns in line 12: in this case,e will not return in any of the lines 7-11, but will return falsein
line 12.

• ek returns in line 13: in this case, we know that∃ ŝ ∈ Sγ−T such thaty ∈Mγ [ŝ, o] wherey = x∗.
e will not return in lines 7-8, but may return false in one of thelines 9 or 10, in which case we are
done. Otherwise,e will not return in line 11 (aŝS exists inγ) or in line 12 (o ∈ Oγ). But, e will
return false in line 13, as the condition is met (Ŝ is such a subject).

• ek returns in line 16: in this case,e will not return in lines 7-8 but may return in line 9, in which
case we are done. Otherwise,e will not return in lines 10-13. We know thate will return false in
line 16, just asek does, because the same condition is true fore as well.

transfer r∗ – in this case, we know thatx ∈ R∗

b ∩ Rψ, andx ∈ Mγk−1
[sk, o] wheresk ∈ Sγk−1

− T . Let
ωk = 〈sk, o, x〉, ek be the execution of the algorithm isSafeGD for the input(γ, ψ, ωk,T), ande be the
execution for the input(γ, ω,T). Then we know thatek returns false by the induction hypothesis. We
now have exactly the same arguments as in the previous case for why e returns false.

transfer own – in this case we know thatx = own andown ∈ Mγk−1
[sk, o] wheresk ∈ Sγk−1

− T . For
ωk = 〈sk, o, own〉, we know that,ek, the execution of the algorithm on input(γ, ωk,T), returns false,
by the induction hypothesis. We consider all the cases in which ek can return false.

• ek returns in line 9: in this case, we know thatown ∈Mγ [sk, o] andsk ∈ Sγ −T . Now,e does not
return in any of the lines 7-8.e may return in line 9, in which case we are done.e cannot return in
line 10 (asy 6∈ Rψ), or in line 11, but may return in line 12, in which case we are done. e cannot
return in line 13. Finally, we observe that the conditions inlines 14-16 are satisfied, and therefore,
e returns in line 16.

• ek returns in line 10: this cannot happen because whenx = own , y 6∈ Rψ.

• ek returns in line 12: in this case, we know thate does not return in lines 7-11, but returns false in
line 12.

• ek returns in line 13: this cannot happen because whenx = own , y 6∈ Rψ.

• ek returns in line 16: in this case,e does not return in lines 7-8, but may return in line 9, in which
case we are done. Otherwise,e cannot return in lines 10-13, but returns false in line 16 based on
the same conditions thatek satisfies to return in line 16.

grant r – in this case, we know thatx ∈ Rb ∩Rψ andown ∈Mγk−1
[sk, o], wheresk ∈ Sγk−1

− T . We know
also thatek, the execution of the algorithm, on input(γ, ωk,T) returns false, whereωk tuplesk, o, own .
Let e be the execution of the algorithm for the input(γ, ω,T). We have the following cases.

• ek returns in line 9: in this case, we know also thatown ∈Mγ [sk, o] wheresk ∈ Sγ−T . Therefore,
e does not return in lines 7-8, but may return false in either line 9 or line 10, in which case we are
done. Otherwise,e does not return in lines 11-12, but may return false in line 13, in which case
we are done. Finally,e returns false in line 16, because the conditions for returning in line 16 are
satisfied (sk is such a subject).

20

• ek returns in line 10: this is not possible as whenx = own , y 6∈ Rψ.

• ek returns in line 12: in this case,e does not return in lines 7-11, but returns false in line 12.

• ek returns in line 13: this is not possible as whenx = own , y 6∈ Rψ.

• ek returns in line 16: in this case, we know thate does not return in lines 7-8, but may return in one
of the lines 9-10, in which case we are done. Otherwise,e does not return in lines 11-12, but may
return in line 13, in which case we are done. Finally,e returns in line 16 as the conditions for which
ek returns in line 16 apply toe as well.

grant r∗ – in this case, we know thatx ∈ R∗

b ∩Rψ andown ∈ Mγ [sk, o] for sk ∈ Sγk−1
− T . The argument

now proceeds exactly as for the previous case, and we are ableto show thatisSafeGDreturns false on the
input (γ, ψ, ω,T).

grant control – in this case, we know thatx = control andown ∈ Mγk−1
[sk, o] for sk ∈ Sγk−1

− T . Let
ωk = 〈sk, o, own〉, andek be the execution of the algorithm on the input(γ, ωk,T). We know, by the
induction hypothesis, thatek returns false. Lete be the execution of the algorithm on the input(γ, ω,T).
We have the following cases.

• ek returns in line 9: in this case we know also thatown ∈Mγ [sk, o] andsk ∈ Sγ −T . Therefore,e
does not return in lines 7-8 (for line 8, we know thato 6∈ O−S, as otherwise, we would not be able
to grant thecontrol right to s over o in the final state-change in our sequence), ande may return
false in line 9, in which case we are done. Otherwise,e does not return in lines 10-13 (for lines 10
and 13,y 6∈ Rψ). Finally, e returns false in line 16 because we know thatsk, a subject that is not
trusted, exists inγ, and has theown right overo.

• ek returns in line 10: this is not possible as whenx = own , y 6∈ Rψ.

• ek returns in line 12: in this case,e does not return in lines 7-11, but returns false in line 12.

• ek returns in line 13: this is not possible as whenx = own , y 6∈ Rψ.

• ek returns in line 16: in this case,e does not return in lines 7-8, but may return in lines 9-10, in
which case we are done. Otherwise,e does not return in lines 11-12, but may return in line 13, in
which case we are done. Finally,e returns in line 16 as the conditions for whichek returns in line
16 apply toe as well.

grant own – in this case, we know thatx = own andown ∈ Mγk−1
[sk, o] for sk ∈ Sγk−1

− T . We show that
the execution of the algorithm on input(γ, ω,T) returns false using the same arguments as the ones we
use for the previous case.

create object – in this case, we know thatx = own , s = sk andsk ∈ Sγk−1
− T . We consider the following

cases (and sub-cases).

• s ∈ Sγk−2
: in this case we need to consider the following two sub-cases.

– o ∈ Oγk−2
: in this case, we know that the state-changeγk−2 7→ψ(sk−1) γk−1 is destroy object

of objecto by sk−1. Therefore, we know thatown ∈ Mγk−2
[sk−1, o] andsk−1 ∈ Sγk−2

− T .
If s = sk−1, then we have a state-change sequence of lengthk − 2 with the appropriate
properties, and we know that the algorithm returns false. Otherwise, we have a state-change
γk−2 7→ψ(sk−1) γ

′

k−1 which is the execution of either the commandtransfer own (if o ∈ S), or
the commandgrant own (if o ∈ O−S), by sk−1 to s, which results inown ∈Mγ′

k−1

[s, o]. As
there exists a state-change sequence of lengthk − 1, we know that the algorithm returns false
by the induction hypothesis.

21

– o 6∈ Oγk−2
: in this case, there exists a state-changeγk−2 7→ψ(s) γ

′

k−1 which is the execution of
the commandcreate object of o by s, which results inown ∈ Mγ′

k−1

[s, o]. As there exists a
state-change sequence of lengthk−1, we know that the algorithm returns false by the induction
hypothesis.

• s 6∈ Sγk−2
: in this case, we know that the state-changeγk−2 7→ψ(sk−1) γk−1 is the execution of

create subject to creates. Also, we know thato 6∈ Oγk−2
. If γk−2 = γ, then we know that, on

input (γ, ω,T), the algorithm will not return in lines 7-11, but will returnfalse in line 12, and we
would be done in this case. Otherwise, there exists at least one prior state,γk−3 in the sequence of
state-changes. We have the following sub-cases.

– s ∈ Sγk−3
, but o 6∈ Oγk−3

: in this case, we know that the state-changeγk−3 7→ψ(sk−2) γk−2

is the execution ofdestroy subject of s by sk−2. Consider the alternate state-changes
γk−3 7→ψ(sk−2) γ′k−2 7→ψ(sk−2) γ′k−1, where the first state-change is the execution of
create object of o by sk−2, and the second is the execution oftransfer own (if o ∈ S) or
grant own (if o ∈ O − S) of the objecto by sk−2 to s. We have a desired state-change
sequence of lengthk − 1, and the algorithm returns false by the induction hypothesis.

– s 6∈ Sγk−3
, but o ∈ Oγk−3

: in this case, we know that the state-changeγk−3 7→ψ(sk−2)

γk−2 is the execution ofdestroy object of o by sk−2. Consider instead the state-changes
γk−3 7→ψ(sk−2) γ′k−2 7→ψ(sk−2) γ′k−1, where the first state-change is the execution of
create subject of s by sk−2 and the second is the execution oftransfer own (if o ∈ S) or
grant own (if o ∈ O − S) of the objecto to s by sk−2. We have the desired state-change
sequence of lengthk − 1, and the algorithm returns false by the induction hypothesis.

– s 6∈ Sγk−3
, ando 6∈ Oγk−3

: we know thats 6∈ T (otherwises would not be able to execute
create object as the last state-change in our state-change sequence of lengthk). We know also
thatsk−2 ∈ Sγk−3

− T . Consider the following state-changes:γk−3 7→ψ(sk−2) γ
′

k−2 7→ψ(ψ(s)

γ′k−1 where the first state-change is the execution ofcreate subject of s by sk−2 and the second
is the execution ofcreate object of o by s. We have the desired state-change sequence of length
k − 1, and the algorithm return false.

– s ∈ Sγk−3
, ando ∈ Oγk−3

: this case cannot happen, as then, we would need to first destroy
each ofs ando, which requires two state-changes (we know thats 6= o, because otherwise,s
would not be able to createo in the last state-change in our sequence of lengthk). We have
already fixed two additional state-changes (create subject of s, andcreate object of o as our
last two steps in our state-change sequence of lengthk). As there do not exist four state changes
betweenγk−3 andγk, we know that this case cannot happen.

create subject – in this case, we know thato ∈ Sγk
, and eithers = o (andx = control), or s = sk (and

x = own). We know also thato 6∈ Sγk−1
. We have the following cases.

• s = o: we have the following sub-cases.

– o ∈ Sγk−2
: in this case, we know thats = o ∈ Sγk−2

andcontrol ∈Mγk−2
[s, o], and therefore

we have a state-change sequence of lengthk− 2 with the appropriate properties, and therefore
by the induction hypothesis, the algorithm returns false.

– o 6∈ Sγk−2
: in this case, consider the state-changeγk−2 7→ψ(sk−1) γ

′

k−1 which is the execu-
tion of create subject of o = s by sk−2 (we know thatsk−2 ∈ Sγk−2

− T). We have the
desired state-change sequence of lengthk − 1 and the algorithm returns false by the induction
hypothesis.

• s = sk: we have the following sub-cases.

22

– o ∈ Sγk−2
: in this case, we know that the state-changeγk−2 7→ψ(sk−2) γk−1 is the execution

of destroy subject of o by sk−1 ∈ Sγk−2
− T . We know also, in this case, thats ∈ Sγk−2

,
wheres = sk. Therefore, we have the state-changeγk−2 7→ψ(s) γ

′

k−1 which is the execution
of create subject of o by s. We have the desired state-change sequence of lengthk− 1, and by
the induction hypothesis, the algorithm returns false.

– o 6∈ Sγk−2
: in this case, ifγk−2 = γ, then the algorithm does not return in lines 7-11, but

returns false in line 12, and we are done. Otherwise, we know that there exists a prior state,
γk−3. We have the following sub-sub-cases.

∗ s ∈ Sγk−2
: in this case, consider the state-changeγk−2 7→ψ(s) γ

′

k−1 which is the execution
of create subject of o by s. We have the desired state-change sequence of lengthk − 1,
and the algorithm returns false by the induction hypothesis.

∗ s 6∈ Sγk−2
, s ∈ Sγk−3

ando ∈ Sγk−3
: this cannot happen as we know thato 6∈ Sγk−2

and
s 6∈ Sγk−2

, and we cannot create botho ands in a single state-change.

∗ s 6∈ Sγk−2
, s 6∈ Sγk−3

and o ∈ Sγk−3
: in this case, we know that the state-change

γk−3 7→ψ(sk−2) γk−2 is the execution ofdestroy subject of o by sk−2. We consider, instead
the state-changesγk−3 7→ψ(sk−2) γ

′

k−2 7→ψ(sk−2) γ
′

k−1, where the first state-change is the
execution ofcreate subject of s by sk−2, and the second is the execution oftransfer own

of o to s by sk−2. We have the desired state-change sequence of lengthk − 1, and the
algorithm returns false by the induction hypothesis.

∗ s 6∈ Sγk−2
, s ∈ Sγk−3

ando 6∈ Sγk−3
: in this case, consider the state-changeγk−3 7→ψ(s)

γ′k−2 which is the execution ofcreate subject of o by s. We have the desired state-change
sequence of lengthk − 2, and the algorithm returns false by the induction hypothesis.

∗ s 6∈ Sγk−2
, s 6∈ Sγk−3

ando 6∈ Sγk−3
: in this case, we know thatsk−2 ∈ Sγk−3

− T .
Consider the following state-changes:γk−3 7→ψ(sk−2) γ

′

k−2 7→ψ(s) γ
′

k−1, where the first
state-change is the execution ofcreate subject of s by sk−2, and the second is the execution
of create subject of o by s. We have the desired state-change sequence of lengthk − 1,
and the algorithm returns false by the induction hypothesis.

destroy subject – in this case, we know thatx = own , s = sk, s 6= o (as in stateγk, s has theown right over
o), own ∈ Mγk−1

[ŝ, o] for someŝ ∈ Sγk−1
with ŝ 6= s, andown ∈ Mγk−1

[s, ŝ]. The state-change is the
execution ofdestroy subject of ŝ by s to aquireown overo. Let ω̂ = 〈ŝ, o, own〉, andê be the execution
of the algorithm for the input(γ, ω̂,T). Then we know that̂e returns false, by the induction hypothesis.
We observe that̂e cannot return either in line 10 or line 13, because when inê, y 6∈ Rψ. Similarly, let
ωs = 〈s, ŝ, own〉, andes be the execution of the algorithm for the input(γ, ωs,T). Then, we know that
es returns false by the induction hypothesis, but not in line 10or line 13 (as in the case ofes as well,
y 6∈ Rψ). Let e be the execution of the algorithm for the input(γ, ω,T). We have the following cases
and sub-cases.

• ê returns in line 9: in this case, we know thates cannot return in line 12, becauseŝ ∈ Oγ . Therefore,
we have the following two sub-cases.

– es returns in line 9: in this case,e does not return in lines 7-8, but may return false in line 9, in
which case we are done. Otherwise,e does not return in lines 10-13, bute returns false in line
16, because the conditions are satisfied: we haveŝ that ownso, ands ∈ Sγ − T that ownŝs.

– es returns in line 16: in this case,e does not return in lines 7-8, but may return false in line 9,
in which case we are done. Otherwise,e does not return in lines 10-13. Finally,e returns false
in line 16, because the conditions are satisfied: we know thatŝ ownso in γ, and that we have a
sequence of subjects as needed in lines 14-16, the first of which ownŝs.

23

• ê returns in line 12: in this casee does not return in lines 7-11, but returns false in line 12 (in
particular, we know thate does not return in line 11 becausees either returns in line 9, which means
thats ∈ Sγ − T , or returns in either line 12 or 16, which means that∃ s′ ∈ Sγ − T).

• ê returns in line 16: in this case,e does not return in lines 7-8, but may return in line 9, in which
case we are done. Otherwise,e does not return in lines 10-13, but returns in line 16, because the
same conditions that causeê to return in line 16 causee to return in line 16 as well.

The “only if” part: we need to show that if the system is safe with respect toω andT , thenisSafeGD(γ, ψ, ω,T)
returns true. We show, equivalently, that ifisSafeGD(γ, ψ, ω,T) returns false, then the system is not safe with
respect toω andT . We do this by considering each case that the algorithm returns false, and showing (by
construction) that a sequence of state-changesγ 7→ψ(s1) γ1 7→ψ(s2) · · · 7→ψ(sn) γn such thatx ∈ Mγn [s, o]
exists (eachsi ∈ Sγi−1

− T , and thesi’s may not be distinct from one another). We have the following cases.

• The algorithm returns in line 9: in this case, we have a state-change sequence of length 0 (i.e., simplyγ),
as we know thatx ∈Mγ [s, o].

• The algorithm returns in line 10: in this case, we again have astate-change sequence of length 0 (i.e.,
simplyγ), as we know that ifx ∈ Rb∩Rψ, thenx∗ ∈Mγ [s, o] (and possession ofx∗ implies possession
of x), and ifx ∈ R∗

b ∩Rψ, thenx ∈Mγ [s, o]. There are no other cases that the algorithm returns in line
10.

• The algorithm returns in line 12: in this case, we know from the check on line 11 that∃ s ′ ∈ Sγ − T .
Therefore, ifs 6∈ Sγ , we have the following state-change sequence:γ 7→ψ(s′) γ1 7→ψ(s′) γ2 7→ψ(s′) γ3,
where the first state-change is the execution ofcreate subject of s by s′, the second state-change is the
execution ofcreate object of o (if o ∈ O − S) or create subject of o (if o ∈ S) by s ′, and the last
state-change is the execution of one of the following:

– transfer own, if o ∈ S andx = own

– grant own, if o ∈ O − S andx = own

– grant control, if o ∈ S andx = control

– grant r, if x ∈ Rb ∩Rψ

– grant r∗, if x ∈ R∗

b ∩Rψ

If s ∈ Sγ , then we simply use the same sequence as above, but without the first state-change (i.e.,
γ 7→ψ(s′) γ2 7→ψ(s′) γ3).

• The algorithm returns in line 13: in this case, we know thatx 6= own andx 6= control . If s 6∈ Sγ ,
our state-change sequence isγ 7→ψ(bs) γ1 7→ψ(bs) γ2, where the first state-change is the execution of
create subject of s by ŝ, and the second state-change is the execution oftransfer r of x to s over o if
x ∈ Rb ∩Rψ, or transfer r∗ to s overo if x ∈ R∗

b ∩Rψ. If s ∈ Sγ , then we have simply exclude the first
state-change (creation ofs) from our state-change sequence.

• The algorithm returns in line 16: Letσ = {s1, . . . , sn} be the set of subjects alluded to in line 16, and
let si ∈ σ be such thatsi ∈ Sγ − T , for some integeri such that1 ≤ i ≤ n. We know thato ∈ Oγ . If
s 6∈ Sγ , then the first state-change in our state-change sequence isthe execution ofcreate subject of s by
si. If s ∈ Sγ , we exclude this state-change.

We then havei − 1 executions ofdestroy subject of each subjectsj such thatj < i, so that ifγ ′ is the
state at the end of thei− 1 executions, we haveown ∈Mγ′ [si, o]. Finally, we have the following cases.

24

– o ∈ S andx = own : in this case, we have the execution oftransfer own of o by si to s.

– o ∈ O − S andx = own : in this case, we have the execution ofgrant own of o by si to s.

– o ∈ S, x = control and∃ s′ such thatcontrol ∈Mγ′ [s
′, o]: in this case, we have two state-changes,

both initiated bysi. We first have the execution ofdelete r of thecontrol right overo from s′, and
then the execution ofgrant control overo to s.

– o ∈ S, x = control and∄ s′ such thatcontrol ∈ Mγ′ [s
′, o]: in this case, we have the execution of

grant control overo to s by si.

– x ∈ Rb ∩Rψ: in this case we have the execution ofgrant r of x overo to s by si.

– x ∈ R∗

b ∩Rψ: in this case we have the execution ofgrant r∗ of x overo to s by si.

25

