Parallel Algorithms for Maximum Matching in Complements of Interval Graphs and Related Problems
Download
Author
M.G. Andrews, M.J. Atallah, D.Z. Chen, D.T. Lee
Tech report number
CERIAS TR 2003-16
Entry type
article
Abstract
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O(log3n) time using O(n/log2n) processors on the EREW PRAM and using n processor on the hypercubes. For the case of proper interval graphs, our algorithm runs in O(log n) time using O(n) processors if the input intervals are not given already sorted and using O(n/log n) processors otherwise, on the EREW PRAM. On n-processor hypercubes, our algorithm for the proper interval case takes O(log n log log n) time for unsorted input and O(log n) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs.
Download
Date
2000
Booktitle
Algorithmica
Key alpha
Atallah
Pages
263-289
Volume
26
Publication Date
2000-01-01
Keywords
Parallel algorithms, Maximum matching problems, complement graphs, EREW PRAM, Hypercubes
Language
English
Location
A hard-copy of this is in the CERIAS Library

