The Center for Education and Research in Information Assurance and Security (CERIAS)

The Center for Education and Research in
Information Assurance and Security (CERIAS)

Rate-distortion analysis of motion-compensated rate scalable video.

Author

GW Cook, J Prades-Nebot, Y Liu, EJ Delp

Entry type

article

Abstract

Generally speaking, rate scalable video systems today are evaluated operationally, meaning that the algorithm is implemented and the rate-distortion performance is evaluated for an example set of inputs. However, in these cases it is difficult to separate the artifacts caused by the compression algorithm and data set with general trends associated with scalability. In this paper, we derive and evaluate theoretical rate-distortion performance bounds for both layered and continuously rate scalable video compression algorithms which use a single motion-compensated prediction (MCP) loop. These bounds are derived using rate-distortion theory based on an optimum mean-square error (MSE) quantizer, and are thus applicable to all methods of intraframe encoding which use MSE as a distortion measure. By specifying translatory motion and using an approximation of the predicted error frame power spectral density, it is possible to derive parametric versions of the rate-distortion functions which are based solely on the input power spectral density and the accuracy of the motion-compensated prediction. The theory is applicable to systems which allow prediction drift, such as the data-partitioning and SNR-scalability schemes in MPEG-2, as well as those with zero prediction drift such as fine granularity scalability MPEG-4. For systems which allow prediction drift we show that optimum motion compensation is a sufficient condition for stability of the decoding system.

Date

2006 – 08

Journal

IEEE Trans Image Process

Key alpha

Delp

Number

8

Pages

2170-90

Volume

15

Publication Date

2006-08-01

BibTex-formatted data

To refer to this entry, you may select and copy the text below and paste it into your BibTex document. Note that the text may not contain all macros that BibTex supports.