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Abstract—The coding efficiency of a Wyner–Ziv video codec re-
lies significantly on the quality of side information extracted at the
decoder. The construction of efficient side information is difficult
thanks in part to the fact that the original video sequence is not
available at the decoder. Conventional motion search methods are
widely used in the Wyner–Ziv video decoder to extract the side in-
formation. This substantially increases the Wyner–Ziv video de-
coding complexity. In this paper, we propose a new method to con-
struct side estimation based on the idea of universal prediction.
This method, referred to as Wyner–Ziv video coding with universal
prediction (WZUP), does not perform motion search or assume an
underlying model of the original input video sequences at the de-
coder. Instead, WZUP estimates the side information based on its
observations on the past reconstructed video data. We show that
WZUP can significantly reduce decoding complexity at the decoder
and achieve a fair side estimation performance, thus making it pos-
sible to design both the video encoder and the decoder with low
computational complexity.

Index Terms—Universal prediction, Wyner–Ziv video coding.

I. INTRODUCTION

WYNER–ZIV video coding has created considerable in-
terest in recent years [1]–[12]. Unlike the conventional

motion-compensated prediction (MCP)-based video coding,
side information is only available to the decoder but not to
the encoder in Wyner–Ziv video coding. In MCP-based video
coding, side information is analyzed at the encoder to reduce
the redundancy in the input video sequence. This in general in-
volves a computationally intensive motion search and is hence
inconvenient for applications that require a simple encoder
such as a video camera phone or video surveillance. In contrast,
Wyner–Ziv video coding shifts the side information analysis to
the decoder and tries to maintain a coding performance that is
comparable to that of MCP-based video coding.

The conceptual structure of source coding with side informa-
tion only available at the encoder is shown in Fig. 1. Two corre-
lated information sources and are encoded by two separate
encoders and ; neither has the access to the other source. A
rate is achievable if, for any , there exists an encoder
and decoder such that . If joint decoding were
allowed, the Slepian–Wolf theorem [13] proves that the achiev-
able rate region for the system in Fig. 1 is
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Fig. 1. Slepian–Wolf coding.

Hence, regardless of its access to side information , encoder
can encode with arbitrarily high fidelity as long as the

decoder has access to and the rate is equal to or larger
than .

This result is extended to lossy compression by Wyner and
Ziv in [14]. Denote as the rate-distortion function when
side information is only available at the decoder and
as the rate-distortion function when side information is avail-
able at both the encoder and decoder. In [14], it is proved that,
although , in certain cases the equality can be
achieved, e.g., for Gaussian source and mean-square-error dis-
tortion metric. Therefore, the side information at the encoder is
not always necessary to achieve the rate-distortion bound in a
lossy compression scenario as well.

Based on this idea, Wyner–Ziv video coding only exploits
video source statistics at the decoder. In MCP-based video
coding [15]–[20], each frame is decoded and reconstructed at
the encoder, which is then stored at the frame buffer and used
to construct a reference for the encoding of the next frame. At
the decoder, each decoded frame is also stored at the frame
buffer and used to construct the reference for the decoding of
the next frame. As long as the frame buffers store the same
reconstructed frame at the encoder and decoder and the motion
vector is correctly transmitted to the decoder, it is guaranteed
that both the encoder and decoder have the same reference
information. The reference information can be regarded as the
side information for the next frame to be coded.

However, the construction of reference information without
the original video sequence is difficult. Existing Wyner–Ziv
video decoders, in general, resort to conventional motion es-
timators to extract motion information from the reconstructed
video frames at the decoder. To do this, an underlying motion
model needs to be assumed. Motion field research has pro-
vided many useful insights into the reconstruction of motion
information without the original video sequence. For example,
linear motion models can be used, in which it is assumed that
the motion in the current frame is a continuous extension of
the previous frames’ motion. While this is true for some video
sequences, the motion of natural video sequences is not well
defined, and a simple model can be inadequate.
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Fig. 2. Wyner–Ziv transcoder.

Another downside to this method is the video decoder com-
plexity. Since the motion estimation tasks are shifted to the
decoder, Wyner–Ziv video coding requires much higher com-
plexity at the decoder. Although this may not be a problem for
video surveillance where computational complexity is less of
a concern at the decoder, it does pose a challenge for applica-
tions such as a wireless video camera phone, where both the
sender and the receiver have limited computational resources.
Some methods have been proposed to address this problem. For
example, one of the methods proposes to use an intermediate
transcoding server to process the video stream. The idea, as
shown in Fig. 2, is to send the Wyner–Ziv encoded video stream
to an intermediate server first. At this server the Wyner–Ziv
video stream is decoded by a Wyner–Ziv video decoder and then
recompressed by a conventional MCP-based video encoder. The
recompressed video stream is then sent to the receiver to be de-
coded by the MCP-based video decoder. This method increases
the transmission cost and delay, which eventually will lead to
increased cost and delay on the receiver side.

In this paper, we propose a new side information reconstruc-
tion method that is independent of the underlying video se-
quence model. This method, referred to as Wyner–Ziv video
coding with universal prediction (WZUP), exploits the source
statistics of the reconstructed video sequence and does not as-
sume an underlying model of the input sequence. As shown in
Fig. 3, the goal is to construct a video codec with low coding
complexity at both the encoder and the decoder while preserving
comparable coding efficiency.

The remainder of this paper is organized as follows. In
Section II, we present the method of side estimation with
universal prediction. Experimental results are presented and
discussed in Section III. Section IV concludes the paper.

Fig. 3. WZUP.

II. WYNER–ZIV VIDEO CODING WITH UNIVERSAL PREDICTION

Here, we first present an introduction to universal predic-
tion and then present our new side estimator with universal
prediction.

A. Universal Prediction

The idea of universal prediction rises from the practice of pre-
dicting the next outcome of a sequence. We borrow the introduc-
tion of universal prediction from a survey by Merhav and Feder
in [21].

Can the future of a sequence be predicted based on its past? If
so, how good could this prediction be? These questions are fre-
quently encountered in many applications. Generally speaking,
one may wonder why should the future be at all related to the
past. Evidently, often there is such a relation, and if it is known
in advance, then it might be useful for prediction. In reality,
however, the knowledge of this relation or the underlying model
is normally unavailable or inaccurate, and this calls for devel-
oping methods of universal prediction. Roughly speaking, a uni-
versal predictor is one that does not depend on the unknown
underlying model and yet performs essentially as well as if the
model were known in advance.

One early example of universal prediction is Shannon’s
“mind-reading” machine inspired by Hagelbarger’s “penny-
matching” game [21]. Hence, universal prediction is closely
related to universal lossless source coding, most notably
Lempel–Ziv coding [22], [23]. It is also related to the research
on universal gambling in [24]. The universal prediction problem
was revisited in [25]. Although none of these works has led to
the optimal predictor, some finite-state predictors have been
proposed and achieve suboptimality [26]–[28]. A more detailed
survey is presented in [21]. Applications of universal predic-
tion includes lossless predictive compression, estimation, and
denoising. Universal denoising was proposed in [29] with more
research described in [30]–[33].

The universal prediction problem is formulated as fol-
lows. Consider an observer who receives a sequence of data

and wishes to predict the next outcome
subject to a loss metric defined on the predicted outcome

and the real outcome . If the underlying statistical model
of the data source is known and the prediction objective is
well defined, classical statistical prediction theory can be used,
among which are maximum-likelihood prediction, maximum
a posteriori (MAP) prediction, and Wiener prediction theory.
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Fig. 4. Wyner–Ziv video coding.

In these cases, it is assumed that the data are generated by a
source with a statistical model . If, however, the underlying
source statistics are not known, which is the case for many
natural video sequences, the prediction solution is then not as
well defined as the previous case. In this scenario, a universal
prediction algorithm tries to estimate the underlying statistical
characteristics of the sequence based on its observation of the
past data.

In this paper, we consider the reconstructed video data at
the Wyner–Ziv video decoder as observations and the decoder
tries to predict the outcome of the next video frame without
knowing the statistical mechanism that generates the video
source. This prediction will then serve as the initial estimate for
the Wyner–Ziv video decoder.

B. Wyner–Ziv Video Coding

The Wyner–Ziv video coder we used is shown in Fig. 4. At
the encoder, each frame is coded either as an INTRA frame or
a Wyner–Ziv frame. H.264 INTRA mode is used to code an
INTRA frame. A Wyner–Ziv frame is operated in the spatial
domain. After all pixels are quantized, the quantized pixels are
coded bit plane by bit plane by a turbo coder. The parity bits are
stored at the encoder and sent to the decoder upon the decoder’s
request. After receiving the parity bits, the decoder starts the
decoding by first constructing an initial estimate of each frame.
The initial estimate is constructed by the side estimator. The
turbo decoder uses this initial estimate and incoming parity bits
to decode the frame. It may request more parity bits from the
encoder until a predetermined decoding accuracy is met.

C. Side Estimator With Universal Prediction

We propose a new side estimator based on the universal
prediction formulation. Consider each video frame as a vector
and group the pixel values at the same spatial coordinate as

, where is the spatial coordinate inside a video
frame. Without loss of generality, consider one of such ,
denoted as , where in denotes
the temporal order in the sequence. Also, the loss function

is , , ,

where is the loss from estimating pixel value with .
Denote the th column of as and .
is the maximum pixel value allowed, which is 255. Denote the
reconstructed at the decoder as .

is an initial guess of the current reconstructed outcome.
Since this initial guess is arbitrary and generally not reliable,
the side estimator tries to provide a more accurate estimate
of . Therefore, the side estimation can be formulated as a
denoising problem, which can be solved by the method in [29].

Denote the transition matrix from to as
and is the probability when the input in

is while the corresponding reconstructed value in is .
Denote as the conditional probability of , whose th

component is . The optimal estimate of is
the one that minimizes the expected loss, i.e.,

(2)

where

(3)

If we know the joint distribution of and the recon-
structed context , the optimal estimator can be found readily
by Lagrangian optimization and root finding methods. However,
since we do not assume the statistical knowledge of the video se-
quence model in the decoder, this probability distribution is not
available. Therefore we need to find a good estimate of .
Since

(4)

where . In vector form, we have

(5)
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Fig. 5. MCP-based side estimator.

where . Marginalize (5) with respect to and
iterate over all possible to yield

(6)

Hence

(7)

and the optimal estimate is

(8)

We now consider the case when the distortion is measured by
mean square error (MSE), i.e.,

(9)

Also consider the simple case that the transition probability
if or 0 if . In this case, the optimal

estimator in (8) is a minimum mean square error (MMSE) es-
timator. Using Lagrangian optimization, (8) yields the MMSE
estimator as

(10)

i.e., the optimal estimator is a weighted average of the previous
occurrence with the same context. The weighting coefficient is
determined by the number of occurrences.

III. EXPERIMENTAL RESULTS

Here, we evaluate the performance of WZUP. We compare it
with the Wyner–Ziv video coding with MCP-based motion side
estimator (WZ-MCP) and the conventional MCP- based hybrid
video coding.

We first describe the encoder and decoder of WZ-MCP. To
estimate the motion vector without using the original frame,
one general assumption is to assume a linear motion model in
the video sequence. An MCP-based side estimator was shown
in Fig. 5. The INTRA frame is reconstructed with an H.264
INTRA decoder. At the decoder, the side estimator estimates the
reference using forward motion search. As shown in Fig. 5, for
every block to be decoded in the current Wyner–Ziv frame ,

Fig. 6. Universal prediction side estimator context.

Fig. 7. Universal prediction side estimator.

its colocated block in the previous reconstructed INTRA frame
searches for the best match in and obtains a

motion vector . Assuming that the motion is linear for the
block to be decoded in the current frame, the estimated motion
vector from to is also . As shown in
[34] and [35], conventional motion search methods may be used
to further improve the side estimator accuracy.

The side estimator in WZUP is constructed based on (10). For
each pixel to be decoded at the decoder, we first collect its con-
texts in the previous frames. This context is the pixel values at
the same spatial coordinate in the previous frames, as shown
in Fig. 6. In our experiment, we set and the context is

. The universal prediction side estimator
is shown in Fig. 7. The decoder searches the occurrence of this
context in the previous decoded data. For each matched context,
it output , which is the pixel value after this matched context.
The initial estimate of the pixel to be decoded is the average
of all these ’s. Currently, we only use the above method to
derive the side estimate for the first three most significant bit-
planes. The five less significant bitplanes are set to be the same
as their counterpart in the previous reconstructed frame.

For conventional video coding, we compare WZUP with hy-
brid video coding with the frame structure IPPPP and integer
motion search.

To obtain a fair comparison of different motion search modes,
we evaluate the PSNR of the references constructed by side es-
timators instead of the final coding efficiency. This is because
the final coding efficiency is also related to other factors such as
the correlation model between the side estimate and the original
frame. As shown in [36] and [37], a better correlation model can
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Fig. 8. PSNR of side estimator versus reference frame data rate comparison
(Foreman).

Fig. 9. PSNR of side estimator versus reference frame data rate comparison
(Coastguard).

improve the coding efficiency even if the side estimate remains
the same. For motion side estimators, a great deal of research
has been done to better understand the correlation model, and it
is shown in [36] and [37] that a Laplacian-like model provides a
good approximation to the residual distribution between the side
information and the frames to be encoded. On the other hand,
the correlation model for universal prediction based side estima-
tion remains to be studied. So, the final coding efficiency is a fair
metric when the underlying correlation model is similar, for ex-
ample, for the comparisons between two motion side estimators.
Since universal prediction is a very different side estimator from
motion side estimators and hence can lead to different correla-
tion models, in the experiment we find that the direct compar-
isons between the side estimates provide a better understanding
of the performance of different side estimators.

The results of using the universal prediction side estimator,
motion side estimator, and H.264 integer motion search are

Fig. 10. PSNR of side estimator versus reference frame data rate comparison
(Carphone).

Fig. 11. PSNR of side estimator versus reference frame data rate comparison
(Mother and Daughter).

shown in Figs. 8–13. The side estimate for the universal predic-
tion side estimator is extracted from the past four reconstructed
frames. The side estimate for the motion side estimator is
extracted from the past two reconstructed frames. For H.264
integer motion search, it only uses the past one reconstructed
frame to construct its reference. We compare the side estimators
with different qualities of reconstructed frames. As we can see,
the H.264 integer motion search always outperforms the other
two side estimators. This shows the access to the side informa-
tion in the encoder does improve the estimation accuracy in the
practical applications.

Comparing the universal prediction side estimator with
the motion side estimator, in the Foreman and Coastguard
sequences, the motion side estimator significantly outperforms
the universal prediction side estimator. This shows that in these
two sequences the motion information extracted from the pre-
vious frames is a good indicator of the following frames. The
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Fig. 12. PSNR of side estimator versus reference frame data rate comparison
(Mobile).

Fig. 13. PSNR of side estimator versus reference frame data rate comparison
(Salesman).

difference is much smaller for the other four test sequences,
Carphone, Mother and Daughter, Mobile and Salesman, and
the universal prediction side estimator even outperforms the
motion side estimator in the Mobile sequence.

Consider the computational complexity. The universal predic-
tion side estimator needs to maintain a context of length .
Therefore, there are possible entries, where 8 is the number
to store three bit planes. For each entry, there are also eight pos-
sible outputs after the matched context, which results in 32 768
entries in total. This number is independent of the video frame
size. Since the entry can be updated in real time, one does not
need to store the previous frames. For the motion side estimator,
one needs to store two previous frames, which is

. This buffer budget increases with the frame size. For each
pixel in the universal prediction side estimator, one needs to do a
table lookup to find the eight entries and compute the weighting

average. After the pixel is decoded with the parity bits, one up-
dates this context’s entries. This is much faster than the motion
side estimator, in which case each pixel has to be compared with
every pixel in the search range (typically 8 8 or 16 16 grid)
and then find the optimal motion vector.

IV. CONCLUSION

In this paper, we present a new side estimator for Wyner–Ziv
video coding. This new side estimator uses a nonmotion-search
method to construct the initial estimate at the Wyner–Ziv video
decoder. Our test results show that, for sequences in which the
motion can be predicted with the previous frames, the universal
prediction side estimator underperforms the conventional MCP-
based video coding in terms of coding efficiency. However, for
other sequences, the coding efficiency is rather close, and some-
times the universal prediction side estimator even outperforms
the MCP-based side estimator. This new method can signifi-
cantly reduces the coding complexity at the decoder and there-
fore make it possible to design a codec with low computational
complexity at both the encoder and the decoder.
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