
SPATIAL TEXTURE MODELS FOR VIDEO COMPRESSION

Marc Bosch, Fengqing Zhu and Edward J. Delp

Video and Image Processing Lab (VIPER),
School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN 47907, USA

ABSTRACT

In this paper we integrate several spatial texture tools into a texture-
based video coding scheme. We implemented texture techniques and
segmentation strategies in order to detect texture regions in video
sequences. These textures are analyzed using temporal motion tech-
niques and are labeled as skipped areas that are not encoded. After
the decoding process, frame reconstruction is performed by insert-
ing the skipped texture areas into the decoded frames. We are able to
show an improvement over previous texture-based implementations
in terms of compression efficiency.

Index Terms— Video coding, image segmentation, texture mod-
eling, feature extraction

1. INTRODUCTION

New applications such as real time mobile video communications
and movies-on-demand delivered to portable receivers are driving
an increasing interest in novel techniques for increasing the cod-
ing efficiency of video compression methods. One way to increase
the coding efficiency beyond the data rates achievable by modern
codecs, such as H.264/MPEG-4 AVC, is to not encode all the pixels
in the sequence. In 1959, Schreiber and colleagues proposed a cod-
ing method he called, Synthetic Highs, which introduced the concept
of dividing an image into textures and edges [1]. Two different ap-
proaches were then described to encode each type of structure in the
image. This approach, used in image coding, was later extended by
using a model of the Human Visual System and a statistical model of
the texture pixels in a frame [2, 3]. The goal is to determine where
“insignificant” texture regions or “detail-irrelevant” regions in the
frame are located and then use a texture model for the pixels in the
region. By “insignificant” pixels we mean regions in the frame that
the observer will not notice what has been changed. The encoder
then fits the model to the image and transmits the model parameters
to the decoder as side information which uses the model to recon-
struct the pixels.

The problem with using this approach in video is that if each
frame is encoded separately the areas that have been reconstructed
with the texture models will be obvious when the video is displayed.
This then requires that the texture to be modeled both spatially and
temporally. An example of such approach is described in [4], where
a video coder was designed using the notion that textures such as
grass, water, sand, and flowers can be synthesized with acceptable
perceptual quality instead of coding them using mean square error.
Since the latter has a higher data rate in order to represent the details

This work was partially supported by grants from the Indiana 21
st Cen-

tury Research and Technology Fund and by Nokia. Address all correspon-
dence to E. J. Delp, ace@ecn.purdue.edu

Original
Sequence Analyzer Encoder

C
H

A
N

N
EL

Decoder
Texture

Side Information Side Information

Texture
Synthesizer

Reconstructed

Sequence

Fig. 1. Texture Coding System Overview.

Fig. 2. Model Used to Reconstruct Texture Regions.

in the textures which are not visually important, the approach can be
used to increase the overall coding efficiency. The issues then are the
trade-offs between data rate, modeling efficiency, and image quality.

A general scheme for video coding using texture analysis and
synthesis is illustrated in Figure 1. The texture analyzer identifies
homogeneous regions in a frame and labels them as textures. To en-
sure the temporal consistency of the identified textures throughout
the video sequence, global motion models are used to warp texture
regions from frame-to-frame. A set of parameters for each texture re-
gion is sent to the texture synthesizer at the decoder as side informa-
tion. The output of the texture analyzer is passed to a conventional
video codec, e.g. H.264, with synthesizable regions labeled as skip
macroblocks. At the decoder, frames are partially reconstructed ex-
cept for the synthesizable parts which are inserted later by the texture
synthesizer using the texture side information as shown in Figure 2
[5].

In this paper, we examine various configurations for the texture
analyzer by means of several texture models. We experimentally
evaluate the performance of these methods with respect to coding
efficiency (data rate) and visual quality.

2. TEXTURE ANALYSIS

2.1. Overview

In texture analysis, there are two major issues that need to be ad-
dressed, namely texture feature extraction and texture boundary de-
tection or segmentation. Feature extraction is used to measure local
texture properties in an image, followed by boundary detection or
segmentation to group the features into similar regions.

I - 931-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

Typically, four approaches have been used for texture feature
extraction: structural methods, statistical or feature-based methods,
model-based methods and transform or spatial-frequency methods.
Structural methods represent textures by well-defined primitives (mi-
crotextures) and spatial arrangements (macrotextures) of the primi-
tives [6]. Statistical methods represent textures by non-deterministic
properties that model the relationships of the gray levels of the im-
age. Particularly, second-order statistical methods have been devel-
oped that achieve higher performance than structural techniques [7].
The most popular second order statistical features are derived from
the co-occurrence matrix [8]. Model-based texture analysis, using
fractal and stochastic models [9, 10], describe an image texture by
the use of repeated geometric and stochastic models. Transform
methods, such as Fourier, Gabor and wavelet transforms, measure
local texture properties in the frequency domain.

Once the texture features are extracted and feature vectors are
formed, texture segmentation then groups regions in an image that
have similar texture properties. Based on [11], several texture anal-
ysis algorithms were investigated in this paper and separately inte-
grated into the texture analyzer of our video compression scheme to
compare data rate savings. The following texture features + segmen-
tation schemes have been considered in our experiments: Gray level
Co-occurrence matrix + Split and Merge, Gray level Co-occurrence
matrix + K-means algorithm, and Gabor filter + K-means algorithm.

2.2. Texture Features

In previous work [12, 4, 5], color and edge based features were ex-
amined. In this paper, we introduce more sophisticated features in-
cluding Gray Level Co-occurrence Matrix and Gabor filters. We will
show in Section 3 that these methods increase the performance of the
texture-based video coding approach without quality loss.

One aspect of texture is concerned with the spatial distribution
among the gray levels of the pixels in a local area. Haralick et al.
introduced the Gray Level Co-occurrence Matrix (GLCM) in [8],
suggesting an approach to characterize the two-dimensional spatial
dependence of the pixels in an image. GLCM describes the spatial
relationship between pixels by means of the occurrence of pairs of
gray levels in the image. The GLCM is an estimate of the two di-
mensional probability distribution of the pixels and depends on the
the distance between the pixels and their angular displacement [8].
Once the GLCM is generated, features, such as entropy, uniformity,
and contrast are obtained and formed into feature vectors used for
texture segmentation. In our simulations we have considered four
angular relationships: 0◦, 45◦, 90◦ and 135◦. Five distance values
or spatial resolutions have been tested: 1, 2, 3, 5 and 10. We have
used the following features: uniformity, dissimilarity, correlation,
entropy and contrast. The features are described in more detail in
[8].

Gabor filters describe properties related to the local power spec-
trum of a signal and have been used for texture features [13]. A
Gabor impulse response in the spatial domain consists of a sinu-
soidal plane wave of some orientation and frequency, modulated by
a two-dimensional Gaussian envelope and is given by:

h(x, y) = exp

[
−

1

2

(
x2

σ2
x

+
y2

σ2
y

)]
cos (2πUx + ϕ) (1)

In our work, we used a Gabor filter-bank proposed in [14]. It is
highly suitable for our use where the texture features are obtained
by subjecting each image (or in our case each macroblock) to a Ga-
bor filtering operation in a window around each pixel and compute

the mean and the standard deviation of the energy of the filtered im-
age. A Gabor filter-bank consists of Gabor filters with Gaussians of
several sizes modulated by sinusoidal plane waves of different ori-
entations from the same Gabor-root filter as defined in Equation (1),
it can be represented as:

gm,n(x, y) = a−mh(x̃, ỹ), a > 1 (2)

where x̃ = a−m(x cos θ + y sin θ), ỹ = a−m(−x sin θ + y cos θ),
θ = nπ/K (K = total orientation, n = 0, 1, ..., K − 1, and m =
0, 1, ..., S − 1), and h(·, ·) is defined in Equation (1). Given a video
frame IE(r, c) of size H ×W , the discrete Gabor filtered output is
given by a 2D convolution:

Igm,n
(r, c) =

∑
s,t

IE(r − s, c− t)gm,n
∗(s, t), (3)

As a result of this convolution, the energy of the filtered image is
computed and then, the mean and standard deviation are estimated
and used as features. In our implementation, the following parame-
ters are considered: 4 scales (S=4), and 8 orientations (K=8).

2.3. Texture Segmentation

In our schemes, two segmentation strategies are used by the texture
analyzer: Split and Merge algorithm [15], and K-means clustering
[16].

Split and Merge algorithm uses the entire feature image as the
input of the first stage and successively splits the image into sub-
regions based on the homogeneity of the features of each sub-region.
Following this operation, the merge process is performed by compar-
ing the distance between the feature vector of each sub-region and
its four neighbors with a predetermined threshold to decide whether
or not they can be combined [15].

Clustering methods label parts of the image by partitioning the
feature vectors of the image into compact, well-defined and sepa-
rated clusters. The non-hierarchical method we used selects an ini-
tial partition with K clusters [16]. Next, a new partition is generated
by examining each component in the population and assigning it to
one of the clusters depending on a metric. Then new cluster centers
are obtained as the centroids of the cluster. The last two steps are
repeated until the centroids are fixed. The metrics considered in our
experiments are Euclidean distance and Manhattan distance.

2.4. Temporal Analysis

The spatial texture models referred in the previous section operate on
each frame of a given sequence independently of the other frames of
the same sequence. This may yield an inconsistency in segmenta-
tion across the sequence. To maintain temporal consistency of the
texture regions, they are warped from frame-to-frame using a mo-
tion model[5]. The mapping is based on a global motion assumption
for every texture region in the frame, i.e., the displacement of the en-
tire region can be described by just one set motion parameters. We
modified a 8-parameter (i.e. planar perspective) motion model to
compensate the global motion.The motion parameters are estimated
using a simplified implementation of a robust M-estimator for global
motion estimation [5] and sent as side information to the synthesizer.

3. EXPERIMENTAL RESULTS

3.1. System Integration

The texture models described in the previous sections were inte-
grated into the H.264/AVC JM 11.0 reference software. In our im-

I - 94

plementation, the video sequence was first divided into groups of
frames (GoF). Each GoF consisted of two reference frames (first and
last frame of the considered GoF) and several middle frames between
the two reference frames. The reference frames were conventionally
coded as I or P frames; the middle frames were encoded as B frames
that were candidates for texture synthesis [5]. For every texture re-
gion in each of the middle frames, the texture analyzer looked for
similar textures in both reference frames. The corresponding area
(if it can be found in at least one of the reference frames) was then
mapped into the segmented texture region based on a global mo-
tion model. When a B frame contained identified synthesizable tex-
ture regions, the corresponding segmentation masks, motion param-
eters as well as the control flag to indicate which reference frame
was used were transmitted as side information to the decoder [5].
All macroblocks belonging to a synthesizable texture region were
handled as skipped macroblocks in the H.264/AVC reference soft-
ware. Hence, all parameters and variables used for decoding the
macroblocks inside the slice, in decoder order, were set as speci-
fied for skipped macroblocks. After all macroblocks of a current
frame were completely decoded, texture synthesis was performed in
which macroblocks belonging to a synthesizable texture region were
replaced with the textures identified in the corresponding reference
frame.

Our goal was to measure the performance of the models we
tested in terms of data rate savings. By data rate savings we mean,
the absolute difference between the original data rate i.e. the entire
video sequence coded with the H.264 codec and the texture data rate.
The texture data rate is obtained by adding the data rate of the video
sequences without the irrelevant-detail parts that are not coded, to
the side information which is no more than 1.25Kb per frame [5].
The side information contains the coarse texture masks (typically
about 800 bits), 8 motion parameters (256 bits) which ensure tem-
poral consistency at the decoder and 1 control flag (1 bit) to indicate
which frame is used as the reference frame (the first or the last frame
of the GOF).

We encoded several CIF video sequences such as coastguard,
tabletennis, and flowergarden, as well as some high definition video
sequences (waterfall and race) using our proposed methods. All test-
ing sequences contained large texture and homogeneous areas useful
to demonstrate the phenomenon that with a similar representation of
the textures the observer would not notice any difference in terms of
visual quality. In our experiments, we used the following parameters
for the H.264/AVC codec: Quantization Parameter for intra and inter
frames = 24, 32 and 44; 1 reference frame; 3 B frames; CABAC; rate
distortion optimization; no interlace; constant channel; 30 frames per
second.

3.2. Segmentation Results

Figure 3 shows that the Gray Level Co-occurrence matrix and the
Split and Merge algorithms provide a good segmented image, detect-
ing a considerable number of possible skipped macroblocks (16x16
pixels) so that the data rate can be reduced. GLCM + K-means was
able to identify more than one type of texture and homogeneous re-
gions for each video frame. For example, Figure 3(g) shows that
we identified the wall, the table, the poster, the net and the red t-
shirt of the tabletennis sequence each as a unique candidate for the
detail-irrelevant area. The second solution (GLCM + K-means), and
particularly, the K-means algorithm had an advantage in compari-
son to other methods, since it detected several diverse texture areas
and labeled them each as a unique texture region. Finally, the third
scheme using Gabor filter + K-means clustering did not provide bet-

(a) Current Frame (b) Coastguard mask GLCM+SandM

(c) Coastguard mask GLCM+K-means (d) Coastguard mask Gabor+K-means

(e) Current Frame (f) Tabletennis mask GLCM+SandM

(g) Tabletennis mask GLCM+K-means (h) Tabletennis mask Gabor+K-means

Fig. 3. Original frames for coastguard and tabletennis sequences and their
texture masks for all the proposed schemes. The white areas represent the
detail-irrelevant texture regions to be synthesized.

ter results than GLCM + K-means algorithm because it detected less
unique texture areas than GLCM + K-means (see Figure 3). This
was caused by the fact that the features were not as homogeneous
as the GLCM features. Gabor + K-means did provide a better solu-
tion than previous methods in terms of computation time due to the
fact that the number of computational operations in Gabor feature
was less than the GLCM algorithm. This is a significant advantage,
especially for long video sequences or high definition video.

3.3. Coding Performance

The main contribution of this paper lies in the introduction of spatial
texture models for use in video coding. We have presented three
schemes that we integrated into the analyzer texture block diagram
in Figure 1. From our experiments we have observed the following:

1. The K-means segmentation algorithm identified more textures
as synthesizable areas. Although, depending on the features
used, K-means could also identify irrelevant regions as tex-
ture areas. The Split and Merge algorithm only recognized
one texture area usually the largest one.

2. In terms of data rate savings, the Gray Level Co-occurrence

I - 95

Fig. 4. Data rate savings as a function of the H.264 encoder quantiza-
tion parameter. Our three schemes compared to the results reported in [5].
Each value is the average over all sequences tested (flowergarden, coastguard,
tabletennis, waterfall and race).

matrix + K-means algorithm performed the best as shown in
Figure 4, where each scheme was tested and averaged for the
CIF and HD video sequences. For coastguard sequence we
measured data rate savings of up to 25.91% using GLCM +
K-means, 22.16% using Gabor + K-means and 16.02% using
GLCM + Split and Merge, all with quantization parameter =
24. This approach provided better data rate savings than we
previously reported in [5].

3. When computational time was considered, there was no re-
markable variation between segmentation algorithms. How-
ever, there was a notable distinction between the features. The
Gabor filter was faster than Gray level Co-occurrence matrix
when the same texture segmentation algorithm was used.

4. The side information did not influence the data rate savings
in most scenarios. Only when the quantization parameter is
larger than 36 did the side information have an effect (see
Figure 4). This was due to the fact that the number of bits
required by the side information remained constant over the
diverse quantization parameters. Since the data rate of the
side information and the B frames with skipped macroblocks
was larger than the data rate required by the reference video
codec to encode the original video sequence in these cases,
the overall data rate savings for texture-based video coding
became negative.

In this paper, we have investigated spatial models for texture
analysis. The goal was to use these models to increase the coding ef-
ficiency for video sequences containing textures and homogeneous
areas. We showed that this approach reduced the data rate by as
much as 26%. In terms of visual quality, all three schemes (GLCM
+ S&M, GLCM + K-means, Gabor + K-means) indicated similar re-
sults. They were comparable to the visual quality obatined by using
the H.264 codec.

4. REFERENCES

[1] W. F. Schreiber, C. F. Knapp, and N. D. Kay, “Synthetic highs,
an experimental tv bandwidth reduction system,” Journal of
Society of Motion Picture and Television Engineers, vol. 68,
pp. 525–537, August 1959.

[2] M. Kunt, A. Ikonomopoulos, and M. Kocher, “Second-
generation image-coding techniques,” Proceedings of the
IEEE, vol. 73, no. 4, pp. 549–574, April 1985.

[3] E. J. Delp, R. L. Kashyap, and O. Mitchell, “Image data
compression using autoregressive time series models,” Pattern
Recognition, vol. 11, pp. 313–323, June 1979.

[4] P. Ndjiki-Nya, C. Stuber, and T. Wiegand, “Improved video
coding through texture analysis and synthesis,” Proceedings of
the 5th International Workshop on Image Analysis for Multi-
media Interactive Services, Lisboa, Portugal, April 2004.

[5] F. Zhu, K. Ng, G. Abdollahian, and E. J. Delp, “Spatial and
temporal models for texture-based video coding,” Proceedings
of the Visual Communications and Image Processing Confer-
ence, San Jose, California, January 2007.

[6] R. M. Haralick, “Statistical and structural approaches to tex-
ture,” Proceedings of the IEEE, vol. 67, no. 5, pp. 786–804,
May 1979.

[7] J. Weszka, C. Deya, and A. Rosenfeld, “A comparative study of
texture measures for terrain classification,” Proceedings of the
IEEE International Conference on Image Processing, Atlanta,
Georgia, October 8-12 2006.

[8] R. Haralick, K. Shanmugan, and I. Dinstein, “Textural feature
for image classification,” IEEE Transactions on Systems, man
and cybernetics, vol. SMC-3, no. 6, pp. 610–621, November
1973.

[9] A. Pentlard, “Fractal-based description of natural sciences,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 6, no. 6, pp. 661–674, December 1976.

[10] M. Strzelecki and A. Materka, “Markov random fields as mod-
els of textured biomedical images,” Proceedings of the 20th
National Conference on Circuit theory and electronic net-
works, Kolobrzeg, Poland, September 1997, pp. 493–498.

[11] K. Chang, K. Bowyer, and M. Sivagurunath, “Evaluation of
texture segmentation algorithms,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Fort
Collins, Colorado, June 1999, pp. 249–299.

[12] P. Ndjiki-Nya, B. Makai, A. Smolic, H. Schwarz, and T. Wie-
gand, “Improved h.264/avc coding using texture analysis and
synthesis,” Proceedings of ICIP, IEEE International Confer-
ence on Image Processing, Barcelona, Spain, September 2003.

[13] P. Kruizinga, N. Petkov, and S. E. Grigorescu, “Comparison of
texture features based on gabor filters,” ICIAP ’99: Proceed-
ings of the 10th International Conference on Image Analysis
and Processing, Washington, DC, USA, September 1999, p.
142.

[14] A. Jain and F. Farrokhnia, “Unsupervised texture segmenta-
tion using gabor filters,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Los Angeles,
CA, November 1990.

[15] J. R. Smith and S.-F. Chang, “Quad-tree segmentation for
texture-based image query,” Proceedings of the second ACM
international conference on Multimedia, San Francisco, CA.,
October 1994.

[16] V. Ramos and F. Muge, “Image colour segmentation by ge-
netic algorithms,” ArXiv Computer Science e-prints, December
2004.

I - 96

