
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CERIAS Tech Report 2001-03 
 

Sharing Vulnerability Information using a 
Taxonomically-correct, Web-based 

Cooperative Database 
 

L. Ma, S. Mandujano, G. Song, P. Meunier 
Center for Education and Research in 
Information Assurance and Security 

Purdue University, West Lafayette, IN 47907 
 



1

Sharing Vulnerability Information using a
Taxonomically-correct, Web-based Cooperative Database

L. Ma, S.Mandujano, G. Song, P.Meunier
{lingfeng, sam, songg, pmeunier}@cerias.purdue.edu

Center for Education and Research in Information Assurance and Security (CERIAS)
Purdue University

W. Lafayette, IN 47907

February 12th, 2001

ABSTRACT

Software vulnerabilities are potential attack points in computing systems that can lead to
considerable losses and severe security incidents. The way in which the information
describing these vulnerabilities is handled is extremely important. Vulnerability data is
very sensitive and therefore should be disclosed to the right people in the right
circumstances.  However, information sharing is currently mostly unidirectional;  the
present paper discusses a new approach for handling software vulnerability information: a
cooperative system supported by a vulnerability classification. The system is composed by
internal protocols that determine state transitions through which new vulnerability
information is submitted, classified, verified, and made available via a Web Interface.
Based on features like effects and nature, vulnerabilities in the  collection can also be
assigned a type. The proposed type system is a set of sub-classes that contain features of
well-known vulnerability groups. Vulnerabilities can be linked together through these
types and can be referenced as a group when retrieving or storing entries, hereby,
speeding up the process. A voting mechanism allows a set of cooperating arbiters to
review the information submitted from different sources. Approved descriptions of
vulnerabilities can then be made available to the members of the cooperative system. The
data model storing the vulnerability information is composed of a comprehensive set of
features whose values are selected through decision trees. The leaves of the trees represent
the most detailed qualities of a vulnerability.

1 Introduction

The prevention and removal of vulnerabilities constitute one of the main challenges in software
development and computer security. Vulnerabilities may appear during the conception, the
implementation or the deployment of software packages, and even through the interaction of
separately designed packages. The growing complexity of software and the increasing number of
interacting subsystems promises an unending discovery of new vulnerabilities.  The exploitation
of vulnerabilities may result in considerable losses [CSI/FBI survey].

Multiple vulnerability data banks and bug-tracking systems already exist. They provide
information that helps identify, work around or fix vulnerabilities. The public ones have limited
information that is usually selected in such a way as to strike a balance between helping system
administrators and avoiding giving useful information to hostile entities.  An example of this is
the absence of exploits in information released by CERT (Computer Emergency Response Team,
http://www.cert.org).  The private ones that are known do not have mechanisms for easy sharing



2

of information.  Moreover, the sharing of vulnerability information with the maintainers of
databases is often unidirectional.

During the 2nd Workshop on Research with Vulnerability Databases [Meunier1], security experts
from different sectors discussed the requirements and obstacles of developing and maintaining
vulnerability databases. The workshop supported the idea of carefully sharing vulnerability
information so that it reaches the right people in the right circumstances without giving attackers
more information than users have to protect and fix their own systems.

Multiple ideas were collected in the workshop from the various groups analyzing the different
data sharing models that could be used with vulnerability information. From all the technical,
consequential, and motivational challenges discussed, we identified a particular need regarding
the systems that could successfully store and control this particular kind of information. A system
capable of receiving vulnerability data submitted by multiple users was necessary. It was also
clear that a classification of software vulnerabilities was mandatory in order to have a strong
structure that allowed properly storing, querying, and expanding a vulnerability data collection.
The quality of the information being stored was another important concern. Information accepted
by an open system could be misleading or false if no screening process is applied. The problems
would outweigh the benefits, therefore a rigorous control over the data needs to be enforced.
There should be a process that provides confidence in the quality of the vulnerability information.
A successful approach in information quality assurance is the appointment of a reviewer.

The design and construction of a vulnerability database system are not trivial. Besides the choice
of taxonomy, access control, security, user interface issues and a review process, there is the
question of sharing.  Harm may come of not revealing it to those who need to know, and from
revealing it to hostile agents.  We suggest that the most important objective of vulnerability
management is minimizing the "window of vulnerability", the interval between the times a
vulnerability is discovered and the time at which it is fixed or the time a vulnerability is
discovered and the time at which it is fixed or worked around.  By letting manufacturers of
implicated software know as soon as possible, the CERT helps initiate the process of closing the
window.  By doing so, the value of the information to hostile agents diminishes with time. CERT
publicly releases limited vulnerability information after approximately 45 days.  This implies a
judgment that at that time, it is or should be more valuable to legitimate users and system
administrators than to hostile agents.  The situation is different depending on whether or not
hostile agents are aware of that information; if the information is widely known by hostile agents,
little harm may be done by publicly releasing it, and it may help legitimate users.

The CERT model does not distinguish between legitimate and hostile agents, excepted for the
producer of the software; the information is either publicly released or it is withheld.  An
alternative model (the "federated model") proposes to share the information as soon as possible
between a subset of legitimate, cooperating entities or individuals [Meunier1].

We present the design of a structured system that takes care of these concerns while adding some
significant advantages. Within this vulnerability database system, users are able to cooperate by
sharing the information they have. This builds a richer and more useful system whose added
value resides not only on collecting information from many different sources and having a well-
defined cooperative review process, but also on the classification model supporting the database
schema.  Taxonomies are key to the successful control and storage of vulnerability information.
Having a good way of distinguishing and categorizing vulnerabilities makes the system much
more structured, consistent, and easy to use and maintain. It also helps eliminate possible
ambiguities in the description of vulnerabilities that could be similar. A vulnerability type sub-



3

system is one of the important contributions of this project. According to the multiple attributes of
vulnerabilities, we are able to construct classes or types by grouping features that belong to a
same vulnerability nature.

The ideas from the workshop were just part of the motivation behind this project. CERIAS
(previously known as COAST Lab) developed a Vulnerability Database System [Song1] that
allows local researchers to access vulnerability information and to update it at will. This system,
however, keeps this information confidential for internal use only. The system uses a
classification proposed by Krsul in [Krsul1]. We utilize that classification to build a more robust
system using a relational database engine that allows for efficient storage and retrieval of data.
This system is called the CERIAS Cooperative Web Vulnerability Database (WebVDB). The
design of the system includes a relational database schema that hosts all the information from the
original system and supports a voting mechanism where a group of reviewers verifies the
information submitted by multiple users. They submit votes indicating the level of confidence
they have on the validity of the information. Votes are then combined in order to decide whether
the vulnerability can be made public, or if any corrections are necessary.

The remainder of this paper is organized as follows. Section 2 describes the classification model
and the structure of the user interface. Section 3 outlines the privilege system, the state transition
mechanisms, and the review process. In Section 4 we describe some technical aspects of the
system such as the use of cookies, and the integration of PHP/HTML with the MySQL relational
database management system. Our concluding remarks are in Section 5.

2 Classification

The system is built on the taxonomy proposed by Krsul [Krsul1]. The classification of
vulnerabilities involves assigning correct values to a number of features; this often requires
following decision trees. An initial implementation of a vulnerability database using this
classification did not easily allow cooperation between remote parties, did not utilize an SQL-
compatible relational database, did not include submission and review processes, had a poor user
interface, and did not clearly allow several of the one-to-many or many-to-many relationships
presented here.  We adapted the classification to a normalized database schema and grouped
classifiers into functional categories and entities that explicitly provide the needed one-to-many
or many-to-many relationships.

2.1 Classification features

We assembled classifiers into related functional groups that provide the foundation for a sensible
user interface, using a different page or “tab” for each group (Table 1).  The first group is named
“Identity”.  In addition to a title and a short description, vulnerabilities are assigned a unique key.
Because vulnerabilities in the database might not yet have been assigned CVE numbers
(Common Vulnerabilities and Exposures, http://www.cve.mitre.org), these could not be used as a
key.  A simple integer was used instead.  Nevertheless, CVE numbers may be recorded when
available, because they are helpful in identifying vulnerabilities.

The vulnerability is described in depth in the Analysis section. The impact, access required, core
vulnerability, detection method, and detailed analysis are provided in this section, as defined by
[Krsul1].  A collection of exploit programs is also maintained. An exploit program can be linked
to several vulnerabilities (some hacking tools, for instance, can exploit more than one
vulnerability on a system).  In addition, vulnerabilities may be linked to several exploit programs,



4

thus defining a many-to-many relationship. The level of expertise needed to run the exploit and
its complexity are also stored with the exploit. Other groupings are the Nature, Sources, Fixes,
Policies, Operating system, Environmental features, Assumptions, Software, and other features
[Krsul1].

Group Features
Identity Title

Description
CVE

Analysis
Direct Impact
Access Required
Analysis
Core Vulnerability
Detection

Exploits Exploit programs
Description
Exploit code
Ease of exploit
Access required
Complexity of exploit

Nature Object
Effect
Method
Input

Sources CERT
Detail
Advisories
Information References
Related Documents

Fixes Main Fix
Patches
Workaround
Test

Policies Policies set
Operating system Name

Vendor
Type
Variant
Version

Environmental features Environmental features
Other features Other features
Assumptions Assumptions set
Software Name

Vendor
Version

Table 1.  Functional WebVDB groups

The nature of the vulnerability is a one-to-many relationship because many objects may be
involved.  For example, a stack buffer overflow involves overwriting the stack data, the return
address, and the stack is executed.  This generates 3 Nature entries to link to a vulnerability.
Therefore, the database schema storing this information is an entity-relationship structure
composed by multiple relations (Figure 1).



5

Map

affects

associates
     MapMap

        Map      Map

Map

Map

Map

Map

Map

Map

votes

modifies

requests

grants

generates has

Figure 1. Overview of database schema (Entity/relationship diagram)

In the database there is a total of 46 tables; 29 of them are entities and 17 are relationships. The
three major sets of tables are types, people (system users), and features.  Types will be discussed
below (2.2).

2.2 Types

A vulnerability type is a meaningful combination of values for several related features. It is a
known fact that several vulnerabilities may share the same characteristics, represented by the
unique combination of feature values. Type is a useful theoretical construct to identify the shared
characteristics in the taxonomy. By this construct, it is easy to address a group of vulnerabilities
at the same time. In practical terms, a type also helps in data input because data can be directly
copied from predefined types. For instance, Figure 2 shows three types. Nature Type describes
the nature of the vulnerability in terms of four features: object, method, effect, and input.

Objects Methods Inputs Effects

composed

natureType

vulnerability

threats

techRisks
OS

software

vendors

assumps

exploitPrograms

tools

envFeatures

otherFeatures

policies

privilege

sessionlog phone

people



6

Technical Risk Type describes the kind of risk vulnerability implies. Threat Type describes the
kind of threat vulnerability has regarding the availability and functionality of the information.

    Object
Nature TYPE Method

Effect
Input

Consequence
 Technical Risk TYPE Access Type
                Privilege Type

Observe
Destroy
Modify
Creation

      Threat TYPE Availability
                 Disclose

Execution
Misrepresent
Repudiate
Integrity
Confidentiality

Figure 2. Sample types

These types group features that identify a certain vulnerability class. For example, because of
their nature, vulnerabilities that can affect heap memory through the use of memory copy routines
(represented by the “memcpy” keyword in [Krsul1]), can be classified as a buffer overflow.

Example of Nature Type

Name: Heap Buffer Overflow
Nature object: heap_data
Nature effect: replaced
Nature input: any
Nature method: memcpy

Example of Technical Risk Type

Name:               User access
Description:      Attacker is able to access a user account other than root.
Priority: 90
Consequence: Account access
Access Type: List files, read files, write files, execute files
Privilege Type: Normal

Example of a Threat Type

          Name: Denial of Service
            Observe: No
         Destroy: No

Modify: No



7

            Creation: No
            Availability: Yes
            Disclose: No
            Execution: No
            Misrepresent: Yes
            Repudiate: No
            Integrity: No
            Confidentiality: No

2.3 Structure of the user interface

Because the number of classifiers is large, the user interface needs to be designed to avoid
confusion, and must allow the saving of partial entries (increments of work).  Simply putting all
the features on one web page is a known bad idea. Instead, a method known as  “feature
grouping” was used (Table 1). Each group represents a more general and abstract concept when
compared to individual features. For example, the Exploit group contains all the features related
to how the vulnerability can be exploited on the flawed system. The grouping method effectively
creates a Hierarchical structure with groups at higher level and features at lower level. The
hierarchy is consistent with the categorized nature of the organization of information on the Web.
Therefore, both a logical organization of the vulnerability data and a highly usable interface are
made possible.

To accommodate the various activities and options for users with different privilege level (see
later), a matrix representation is used as the menu interface. Each row of the matrix corresponds
to a privilege level (normal and editor), while each column corresponds to a category of activities
(people-related or vulnerability-related). It is easy to identify a menu option by following a row
and a column up to the cross point.

3 Mechanisms

The  working environment supporting cooperative efforts for analyzing and publishing computer
vulnerabilities uses the following mechanisms:

•  Privilege system and access control
•  Vulnerability state transitions

Different people with various levels of knowledge and skill are meant to share information and



8

work together on vulnerabilities. The privilege system along with the vulnerability state control,
ensures proper cooperation among users. An editor-reviewer protocol was adopted to reflect the
interactions between privileged users and the transitions of state for vulnerabilities when they are
being processed in the system.

Figure 3. Privilege levels

3.1 Privilege system and access control

Because of the collaborative nature of the system, a visitor must register first to be approved as a
user. Users are expected to meet a minimum level of trust and knowledge for working on
vulnerabilities. The system contains two privilege levels: normal user and editor (Figure 3). The
normal user privilege means that the user can submit and edit his submitted vulnerabilities, and
review those assigned by editors. Editor privileges comprise normal user privileges plus the
privilege of processing submitted vulnerabilities. Editors can also have the option, based on their
evaluation, to grant or deny a privilege request from a visitor. The database owner has the highest
level of privilege which allows looking at the table contents, modifying their structure, and even
deleting information. A use-case diagram in Figure 3 illustrates the privilege levels.

3.2 Vulnerability state transitions

This is an 8-state process from submission to availability. They are:

1. Being Entered. A user is inputting/editing the vulnerability record before submission.
2. Submitted. The submitted vulnerability is waiting to be processed by editors.
3. Checking (Checks). An editor takes (grabs) the vulnerability for initial review.
4. Assigning (Assignment). The editor assigns the vulnerability to users for review.
5. Voting. Indicates the voting mechanism has started.
6. Rejected. The vulnerability has been rejected either by the editor or by the reviewers.
7. Available. The vulnerability has passed the review and becomes available in read-only

mode to all users.
8. Modify. The submitter can modify a rejected vulnerability for re-submission.

Figure 4. Editor-reviewer protocol



9

Upon submission of a vulnerability, an editor must take ownership of the review process. The
editor will lead and organize the collaborative efforts on a particular vulnerability. An editor-
reviewer protocol is implemented to evaluate the vulnerabilities. The result is collected using a
voting mechanism.

First, an invitation is send by the editor to reviewers selected for that vulnerability. The selection
is based on the personal judgment of the editors. Currently, the number of reviewers for a
vulnerability is three. Second, the reviewers, upon receiving the automated email invitation,
accept or decline the invitation. If a reviewer refuses to join the collaboration, the editor needs to
find a substitute. Third, the reviewers will evaluate the content of the vulnerability based on their
knowledge in the field. A vote is expected from each reviewer of the vulnerability. This vote
ranges from -3 to 3. The sum of the votes from all reviewers is the final score given by the
evaluation mechanism. The comments of the reviewers with regard to their votes will also be
recorded. If the vulnerability is judged as acceptable for evaluation, the editor will invite 3 other
users, either editors or normal users, to be the reviewers of the vulnerability. Thus the editor-
reviewer protocol is invoked, which will give a voting score for the vulnerability.

The voting score determines whether or not the vulnerability is accepted. A minimum score of 3
is necessary for a vulnerability to be accepted. A negative score leads to its rejection. A score
between 0 and 2 means that the opinions of the reviewers are either neutral or divided. In this
case, the vulnerability will be sent back to its submitter for improvement.

Acceptance or rejection of a vulnerability marks the end of the collaboration process. The
submitter of the vulnerability will be notified in both cases. However, if a vulnerability is sent
back for modification, the evaluation process will continue while the modifications are done and
will end when a decision is finally made on it. Vulnerabilities will be made available when they
are accepted.

The above description explains the way the users of the system interact. They move a
vulnerability to one state into another to ensure information quality. A submission may be
subjected to the following transitions (Fig. 5):



10

Figure 5. State transitions

Being entered � Submitted. A user submits a vulnerability. Entering data for a submission may
take time, so the submitter is allowed to save partial entries for future edition and submission. In
this stage, the state of the vulnerability is "Being entered". Once the submitter finishes the input
process, the state of the vulnerability changes to "Submitted", and the vulnerability now waits to
be processed by an editor.

Submitted � Checks. Once a user has submitted a vulnerability, it becomes listed in the menu for
editors. If an editor takes ownership of the review process, the state changes to "Checks". At this
stage, the editor studies the vulnerability, then

Checks � Rejected/Assignment. The editor studies the submitted vulnerability against minimum
requirements of understandability and completeness. The editor decides whether to reject the
vulnerability or to assign it to three users for review. While looking for reviewers, the state of the
vulnerability is "Assignment".

Assignment � Voting.  Users receive a notifying email from the system inviting them to be
reviewers.  From the moment any reviewer sends a vote, the state of the vulnerability changes to
"Voting" until all three reviewers have voted for the vulnerability.

Voting � Available/Rejected. In the "Voting" stage, the system automatically records the voting
results and comments from all the reviewers. Based on the results, the vulnerability can be made
available for publication and then the vulnerability's state changes to "Available". The editor, the
submitter and the reviewers of this vulnerability then receive a notification email from the
system, and the vulnerability is open to all users in read only mode. Otherwise, the system rejects
the vulnerability and the vulnerability's state changes to "Rejected". The editor, the submitter and
the reviewers of this vulnerability then receive a notification email with the voting results and
comments.

Rejected � Modify. A rejected submission may be deleted or modified for re-submission taking
into account the comments received from the reviewers. In the later case, the vulnerability's state
changes to "Modify". This stage is similar to "Being entered" in the sense that edition is allowed,
but it allows knowing whether a vulnerability has been modified and re-submitted.

4 Technical Aspects

4.1 Cookies

MySQL was selected as the database engine because it is free, easy to maintain, and well-
supported by web-scripting languages.  All the code is written in PHP and HTML, and only
secure connections (SSL 3.0 or TLS) are used. We created small modules that can be easily
analyzed and the comments throughout the code help understand the functionality and the
input/output values of each program.  A library of utility functions were put together as include
files.

A well-known potential problem of web-based systems is the submission of html code in input
fields, that would later subvert the system during a subsequent attempt to display the data to other
users.  In addition, quotes might be used to affect SQL statements.  In order to prevent the



11

introduction of incorrect or dangerous data into the database, all input was run through
“sanitization” routines.  This guarantees that no improper operations will be performed once the
data is stored onto the database, and that the functionality of the system will not be affected by
values being read from the tables.  For example, special html characters are eliminated or
replaced by its corresponding "printable" representation before being sent to the database for
storage (e.g., a </TABLE> string entered into an input field would be interpreted as the closing
tag of a table if some special characters were not substituted properly).

HTML being stateless, the credentials of users are verified at the beginning of every script.  A
cookie stores a large number (nonce) that is used once only (used nonces are remembered and
marked as invalid upon logging out of the system) and acts as a key into a table that stores all
session information.  No information is stored on clients, because it could not be trusted. A utility
routine helps determine the privilege of a user so that he can only do what she is entitled to.
Multiple items are displayed dynamically on the screen depending of this privilege that grants
read-only, add-only, or total-access to a vulnerability. Code review sessions were held to verify
the quality of the program.

5 Conclusions and applications

As designed, the cooperative vulnerability database can be used within or across companies or
groups.  It provides unique capabilities for remote cooperation and quality assurance.  The
framework may be duplicated and installed as needed, with different participants.  Remote access
to installations of the cooperative vulnerability database would greatly help community efforts
such as the CVE.

The database could easily be adapted for other purposes because the source is available and
because its capabilities are extended by simply adding a new script.  For instance, it could be
integrated into an incident response system.  Another possibility is using it to control the
disclosure of vulnerability information. Typically, users need to be informed of possible flaws
present in the software they use and vendors should be contacted whenever a vulnerability is
found so that they can produce a patch for the software they produce. Releasing vulnerability
information too early would give attackers the chance to study the vulnerability and exploit it
before the vendor actually makes the corresponding fix available. The cooperative database could
be used by a trusted 3rd party to control the disclosure of the information and prove that vendors
were notified in time.

6 Bibliographic references

[Buck1] D. Buck, D. Stucki. "Design early considered harmful: graduated exposure to complexity
and structure based on levels of cognitive development". Proceedings of the thirty-first
SIGCSE technical symposium on Computer Science education, 2000, Pages 75 - 79.

[CSI/FBI] "Issues and Trends: 2000 CSI/FBI Computer Crime and Security Survey".
Computer Security Institute, San Francisco (http://www.gocsi.com/)

[Krsul1] I. Krul. "Software Vulnerability Analysis", PhD Thesis. Department of Computer
Sciences, Purdue University. COAST TR 98-09, 1998.



12

[Krsul2] I. Krsul, E. Spafford, M. Tripunitara. "Computer Vulnerability Analysis". Department of
Computer Sciences, Purdue University. COAST TR 98-07, 1998.

[Landwehr1] C. Landwehr, A. Bull, J. McDermott, W. Choi. "A taxonomy of computer program
security flaws". ACM Comput. Surv. 26, 3 (Sep. 1994), Pages 211 - 254.

[Meadows1] C. Meadows. "An outline of a taxonomy of computer security research and
development". Proceedings on the 1992-1993 ACM SIGSAC on New security paradigms
workshop, 1993, Pages 33 - 35.

[Meunier1] P. Meunier, E. Spafford. "Final Report of the 2nd Workshop on Research with Security
Vulnerability Databases". CERIAS, Department of Computer Sciences, Purdue
University. TR 99-06, 1999.

[Meunier2] P. Meunier. « The Incident Response Database ». https://www.cerias.purdue.edu/irdb.
CERIAS-Purdue University, 2000.

[Oman1] P. Oman, C. Cook. "A taxonomy for programming style". Proceedings of the 1990 ACM
annual conference on Cooperation, 1990, Pages244 - 250.

[Song1] G. Song, S. Mandujano, P. Meunier. "CERIAS Classic Vulnerability Database User
Manual". CERIAS, Purdue University. CERIAS TR 2000-17, 2000.


	CERIAS Tech Report 2002.pdf
	L. Ma, S. Mandujano, G. Song, P. Meunier




