
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CERIAS Tech Report 2001-09 
 

A Multi-dimensional Yao’s 
Millionaire Protocol 

 
Mikhail Atallah, Wenliang Du 

Center for Education and Research in 
Information Assurance and Security 

& 
Department of Computer Sciences, Purdue University 

West Lafayette, IN 47907 
 
 



A Multi-dimensional Yao’s Millionaire Protocol�

Mikhail J. Atallah and Wenliang Du
CERIAS and Department of Computer Sciences, Purdue University,

1315 Recitation Building, West Lafayette, IN 47907-1315

Abstract

Yao introduced the “millionaire problem”, in which two parties want to determine who is richer with-
out disclosing anything else about their wealth. This problem deals with single comparison situation;
however, in many applications, one often encounters situations where one wants to make multiple com-
parisons in an “all-or-nothing” fashion: Alice has ann-dimensional vectorA = (a 1; : : : ; an), and Bob
has anothern-dimensional vectorB = (b1; : : : ; bn). Alice wants to know whetherA dominatesB, i.e.
whetherfor all i = 1; : : : ; n, ai > bi. If 9i such thatai < bi, then both parties should learn nothing about
the other party’s information, including any partial information, such as the relationship between anya i,
bi pair, for i = 1; : : : ; n. This problem cannot be solved by just using the solution to Yao’s Millionaire
Problemn times, once for each dimension: That would inappropriately reveal the relative ordering of
individual ai; bi pairs in the case where the answer to the domination question is “no”. We propose a
novel and efficient solution to this multi-dimensional Yao’s Millionaire Problem. The communication
complexity of our scheme is linear in the number of bits needed to represent Alice’s and bob’s vectors.

1 Introduction

About two decades ago, Yao introduced the “millionaire problem” [12]: Two parties want to determine who
is richer without disclosing anything else about their wealth. Several solutions have been proposed in the
past to solve this problem, however, none of them is efficient, except the recent one proposed by Cachin,
who has gave an elegant practical solution to this problem [1].

Yao’s millionaire problem deals with just one comparison, i.e. a comparison between two numbers.
However, in many applications, one often encounters situations where one wants to make multiple com-
parisons without disclosing the result of individual comparisons, or even the statistical information about
them. Consider the following situation: Alice hasn private numbers(a1; : : : ; an), and Bob has anothern
private numbers(b1; : : : ; bn); Alice and/or Bob want to know whetherai > bi is true for alli = 1; : : : ; n.
However, except for what can be derived from the answer, nobody is allowed to know the other person’s
private numbers or the comparison result between anyai andbi, including the statistical information such
as how manyai’s are bigger (or smaller) than their correspondingbi’s, etc.

We consider the above multiple comparison problem as an extension of Yao’s Millionaire Problem (a
one-dimensional problem) to a multi-dimensional problem. If we considerA andB as vectors, the problem
is to actually decide whetherA dominatesB. Therefore, in this paper, we call this problem theprivate vector
dominance problem, or thedominance problem in short. We will useA � B to denote thatA dominatesB.

�Portions of this work were supported by Grant EIA-9903545 from the National Science Foundation, and by sponsors of the
Center for Education and Research in Information Assurance and Security.

1



The requirement of not allowing each party to know any partial information about the individual com-
parisons immediately rules out using the solution to Yao’s Millionaire Problemn times, once for each di-
mension: That would inappropriately reveal the relative ordering of individualai; bi pairs in the case where
the answer is “no”.

As we will show later, there are many applications to the dominance problem. For example, in business-
to-business bidding, a manufacturer may want to deal with a single supplier that can simultaneously satisfy
all of its n requirements (either because there is some coordination required in the production of then items
types, or simply to avoid the bureaucratic overhead of having to deal with multiple suppliers). However, if
the supplier cannot satisfy all of its requirements, the manufacturer does not want the supplier to know any
information, such as which requirement is satisfied, how many requirements are not satisfied.

The goal of this paper is to solve the above private vector dominance problem. Our solution uses
Cachin’s solution to Yao’s Millionaire Problem as a subroutine, but it does so in a very non-obvious way,
and the overall structure of our solution is novel and very different from Cachin’s.

As Cachin [1] points out, the early cryptographic solutions such as Yao’s millionaire problem [12]
have communication complexity that is exponential in the number of bits of the numbers involved, and the
later solutions using general secure multi-party computation techniques also have problems with achieving
privacy efficiently. Their advantage, of course, is that they do so without using an untrusted third party. As in
Cachin’s work [1], here we assume an untrusted third party that can misbehave on its own (for the purpose of
illegally obtaining information about Alice’s or Bob’s private vectors) but does not collude with Alice against
Bob or vice-versa. Because we are using Cachin’s scheme as a subroutine, we are also implicitly making use
of the number-theoretic assumptions made in Cachin’s paper [1] (such as the�-hiding assumption that was
also used in the private information retrieval literature [7]). The communication complexity of our scheme
is linear in the number of bits needed to represent Alice’s and Bob’s vectors.

In the rest of this section, we describe an overview of our solution followed by the review of the related
work. Section 2 formally defines the private vector dominance problem, and then explains the details of the
solution. In section 3, we give four particular applications of this new problem. We then conclude in section
4.

1.1 Overview of the Protocol

We give a very short and oversimplified description of private vector dominance protocol here; the complete
protocol can be found in Section 2. LetA = (a1; : : : ; an) andB = (b1; : : : ; bn) be Alice’s and Bob’s inputs,
respectively. Because having Alice and Bob compare their vectors directly would inappropriately disclose
the ordering information between individualai; bi pairs, instead we ask the oblivious third party, Ursula, to
compare numbers derived from Alice’s and Bob’s numbers in such a way that the comparison reveals no
information to Ursula and yet Ursula can perform certain updates that indirectly encapsulate (forA andB)
the outcome of the vector-dominance comparison. The idea is not to let Ursula know anything aboutA, B,
or the outcome of the comparison between anyai andbi with which it is helping. This implies that Ursula
does not find out such statistical aggregate results as how many of theai’s are larger than the corresponding
bi’s, etc.

This objective is achieved by sending Alice’s disguised data to Ursula, such that Ursula does not know
the actual value of any particularai, nor does she know which disguised entry corresponds toai. As we
know, using protocols for Yao’s Millionaire Problem [12, 1] enables two parties to compare their private
inputs without disclosing the private inputs to the other party; therefore, after getting Alice’s input vector,
Ursula and Bob use Cachin’s protocol [1] to compare the disguised elements of Alice’s and Bob’s input
vectors one by one; we actually use a slightly modified version of Cachin’s protocol, one where Ursula
knows the comparison’s outcome while the other party learns nothing. (Note: Our protocol can easily be

2



modified so it is symmetric in the roles of Alice and Bob, as will be explained later — the symmetric version
of it is just as efficient but is notationally more cumbersome and so we postpone discussing it for the sake of
a simpler exposition.) Because Ursula does not know which disguised entry corresponds to a particularai,
she knows nothing about the relationship betweenai andbi, nor does she know thedominance relationship
betweenA andB (whether the entries of one are all larger than the corresponding entries of the other).
Moreover, Alice’s inputs are disguised in such a way that, to Ursula, half of Alice’s disguised inputs are
bigger than Bob’s corresponding inputs, while another half of Alice’s disguised inputs are less than Bob’s
corresponding inputs, regardless of what the actual relationship between Alice’s inputs and Bob’s inputs is.
Therefore Ursula gains no information about the statistical aggregate results as how manyai’s are larger
than the correspondingbi’s.

So Ursula will know the results of the comparisons between disguised items of Alice’s and Bob’s, but
she cannot give these results to Alice and Bob because they can make sense of them to inappropriately glean
information: Instead, she has to let Alice and Bob know whetherA dominatesB, or B dominatesA, or
neither dominates the other, without Ursula herself knowing anything about the dominance relationship (or
lack thereof). This is at the heart of the result of this paper, and is achieved by having Alice and Bob each
generate a set of pairs of nonces (= random numbers), after which Alice and Bob each share a different set
of their own secret nonces with Ursula. Ursula then converts the comparisons’ outcomes to a single number
formed by thexor of a selected set of nonces from the two sets of nonces. It is this number that is finally sent
to Alice and Bob by Ursula. The idea is to judiciously construct this number in such a way that Alice and
Bob can only verify the dominance relationship betweenA andB, and nothing else (while Ursula learns
nothing).

The above was necessarily an oversimplification of the main ideas of our protocol, and only a look at
the details will reveal the subtle intricacies involved. But first, a survey of related work is given next.

1.2 Related Work

The problem we are trying to solve in this paper is actually a generalization of Yao’s Millionaire Problem
[12]. Yao’s Millionaire Problem is to compare two private scalar numbers, in other words, it is a one
dimensional version of our problem; we generalize this problem to higher dimensions, i.e., to compare two
vectors. Cachin [1] gives an efficient solution to Yao’s Millionaire Problem; before we came up with our
solution, we fruitlessly tried directly extending Cachin’s protocol to solve this problem. Naive extensions
result in a communication complexity that is exponential in the number of dimensionsn, but whether there
is another efficient way to extend Cachin’s protocol is still unknown.

The above problems are all special cases of the general secure multi-party computation problem. Gen-
erally speaking, a secure multi-party computation problem deals with computing any probabilistic function
on any input, in a distributed network where each participant holds one of the inputs, ensuring independence
of the inputs, correctness of the computation, and that no more information is revealed to a participant in the
computation than can be computed from that participant’s input and output [3]. Other examples of secure
multi-party computations include: elections over the Internet, joint signatures, joint decryption, and many
others [11]. The history of the multi-party computation problem is extensive since it was introduced by Yao
[12] and extended by Goldreich, Micali, and Wigderson [8], and by many others.

As Goldreich states in [2] that the general secure multi-party computation problem is solvable in the-
ory, therefore the Private Dominance Problem can also be solvable in theory; However, using the solutions
derived by these general results for special cases of multi-party computation, are impractical; special solu-
tions should be developed for this particular type of secure multi-party computation problem for efficiency
reasons.

3



2 Problem Statement and Solution

2.1 Problem

Definition 2.1. (Vector Dominance) LetA = (a1; : : : ; an) andB = (b1; : : : ; bn); if for all i = 1; : : : ; n we
haveai > bi, then we say thatA dominatesB and denote it byA � B.

Definition 2.2. (Two-Party Private Vector Dominance Protocol) A two-party private vector dominance pro-
tocol is one in which the two parties determine whether one party’s secret vector dominates another party’s
secret vector, with the help of an oblivious third party who, while it does not collude with either one of
the two parties against the other, could nevertheless try to illegally acquire information about their secret
data. We also assume that both of the two parties are honest-but-curious, i.e. they will follow the protocol,
but like Ursula, they could nevertheless try to illegally acquire information about the other party’s secret
data. If we call the two parties Alice and Bob, and their secret vectorsA = (a1; : : : ; an) and (respectively)
B = (b1; : : : ; bn), and we call the third party Ursula, then at the end of the protocol, the following properties
must hold:

1. Alice and Bob have determined whetherA � B, B � A, or neitherA nor B dominates the other.
However, Ursula has not made such a determination.

2. No party (including the third party) has gained any knowledge aboutA andB other than the one
implied by the previous item. Note that this implies the following:

(a) In the case where neitherA � B norB � A, neither Alice nor Bob knows the relative ordering
of any individualai; bi pair (i.e., whetherai < bi or not).

(b) Ursula knows nothing aboutA, B, or the relationships between any elements ofA, B.

2.2 Protocol

We continue to use the notationA = (a1; : : : ; an) andB = (b1; : : : ; bn) to represent Alice’s and (re-
spectively) Bob’s secret vectors. We also introduce anoblivious third party, Ursula, who will not learn
any information aboutA, B, or the relationship between them, including partial ordering and dominance
information.

To make it easier to understand the protocol, we will present a rough outline of it first, omitting many
crucial details which are presented following the outline.

Outline

The protocol consists of the following stages:

� Alice disguises her vectorA and getsA0, sendsA0 to Ursula. (Because of the disguise, Ursula learns
nothing about Alice’s secretA). Bob disguisesB and getsB0 but he doesnot sendB0 to Ursula.A0

andB0 each have a lengthm that is larger thann.
Note: The protocol can easily be modified so it is symmetric in the roles of Alice and Bob, as will be
explained later. The reason we present the details of this version (rather than the symmetric one) is that
it results in a considerably less cluttered exposition both conceptually and (especially) notationally.

� Ursula and Bob use a modified version of Cachin’s protocol to compare each entry of Ursula’sA0 to
the corresponding entry of Bob’sB0; in this modified version of Cachin’s protocol, only Ursula know
the outcome of a comparison as opposed to both knowing it in the original version. Because of this
protocol, Ursula learns nothing aboutB0, and Bob learns nothing aboutA0 or the comparison results.

4



� Ursula sends to each of Alice and Bob a numberh that she computed based on theA0-to-B0 compari-
son outcomes of the previous stage. That numberh encapsulates the dominance information between
vectorsA andB in such a way that it makes no sense to Ursula and yet that can be extracted from it
by Alice and Bob.

� Alice and Bob extract the vector-dominance comparison outcome from the numberh that they re-
ceived from Ursula.

Step 1: Setup

Alice and Bob jointly generate4n random numbersR1; : : : ; R4n; they both know all of these4n random
numbers.

Step 2: Inputs Disguise

In this step, Alice constructsA0 = (2a1 + R1; : : : ; 2an + Rn; (2a1 + 1) + Rn+1; : : : ; (2an + 1) + R2n;

�2a1 + R2n+1; : : : ; �2an + R3n; �(2a1 + 1) + R3n+1; : : : ; �(2an + 1) + R4n). Bob constructsB0 =
((2b1+1)+R1; : : : ; (2bn+1)+Rn; 2b1+Rn+1; : : : ; 2bn+R2n;�(2b1+1)+R2n+1; : : : ;�(2bn+1)+R3n;

�2b1+R3n+1; : : : ;�2bn+R4n). Alice and Bob then agree upon a random permutation� of f1; 2; : : : ; 4ng,
and they use� to reorder the entries ofA0, and the entries ofB0. We will next explain the rationale for
constructingA0 andB0 in this way.

Becauseai > bi if and only if ai+Ri > bi+Ri, one might as well compareai+Ri with bi+Ri instead
of comparingai with bi. Since Alice is going to send her disguised inputs to Ursula, she has to encrypt or
disguise her data; addingRi to ai effectively hides it from Ursula. If that is the only form of disguise that
was done, then Alice’sA0 would be(a1+R1; : : : ; an+Rn) and Bob’sB0 would be(b1+R1; : : : ; bn+Rn).
Now, although Alice and Bob could rearrange the order of the entries of such anA0 and (respectively)B0,
Alice still cannot send thisA0 to Ursula and ask Ursula to run a protocol that compares its entries to those of
Bob’sB0, because Ursula would then know for how many indicesi the comparisonai > bi was true. This
is not acceptable. Furthermore, if the mean value of these random numbers is known to Ursula, Ursula can
gain statistical information aboutai’s. The above drawbacks are addressed by the inclusion in each ofA0

andB0 of then entries of the form�ai+Rn+i and (respectively)�bi+Rn+i. Based on the fact thatai > bi
and�ai > �bi cannot be true or false at the same time (ifai 6= bi), the additionaln entries (involving the
�ai or �bi) are meant to “blind” Ursula from learning how many timesai > bi, as well as the statistical
information aboutai’s (the sum ofai’s and�ai’s for i = 1; :::; n is zero). Now, if that is the only form of
disguise that was done, Alice’sA0 would be(a1 + R1; : : : ; an + Rn;�a1 + Rn+1; : : : ;�an + R2n), and
Bob’sB0 would now be(b1 +R1; : : : ; bn +Rn;�b1 +Rn+1; : : : ;�bn +R2n). But Alice still cannot send
such anA0 for Ursula to use in a protocol comparing its entries to those of Bob’sB0, and that is because
of the equality case, i.e., for somei havingai = bi (and hencea0i = b0i). For example, ifai = bi for all
i = 1; : : : ; n, then botha0i > b0i and�a0i > �b0i are false; therefore if Ursula got2n false’s, she would know
that Alice and Bob have the exactly same vector. Similarly, ifai 6= bi for all i = 1; : : : ; n, Ursula getsn true
values andn false values; ifai = bi for only onei, Ursula getsn� 1 true values andn+1 false values, and
so on. The above shows how Ursula would derive the number of equality cases, which is not acceptable.

Notice if ai 6= bi for i = 1; : : : ; n, then the comparison results will always ben true values andn false
values. Therefore, if we can get rid of the equality case, Ursula will always getn true values andn false
values, which does not disclose any statistical information about the equality cases.

To this end, the following transformation is conducted (for convenience, we assumeai andbi for i =
1; : : : ; n are integers; however our scheme can be easily extended to the non-integer case).

5



We transform eachai to 2ai and2ai + 1; correspondingly, we transform eachbi to 2bi + 1 and2bi.
The transformation has the following good properties: ifai = bi, then2ai < 2bi + 1 and2ai + 1 > 2bi;
therefore, there will not be any equality case. However, this transformation does not affect either “>” case
or “<” case: for example, ifai > bi, then both2ai > 2bi + 1 and2ai + 1 > 2bi still hold becauseai andbi
are integers.

Observation 1. The dominance relationship between A = (a1; : : : ; an) and B = (b1; : : : ; bn) is the same
as the dominance relationship between A00 = (2a1; : : : ; 2an; 2a1 + 1; : : : ; 2an + 1) and B00 = (2b1 +
1; : : : ; 2bn + 1; 2b1; : : : ; 2bn).

By combining the above transformation with the addition of random numbers, Alice’s input and Bob’s
input respectively become the following:

A0 = (2a1 +R1; : : : ; 2an +Rn; (2a1 + 1) +Rn+1; : : : ; (2an + 1) +R2n;

� 2a1 +R2n+1; : : : ;�2an +R3n;�(2a1 + 1) +R3n+1; : : : ;�(2an + 1) +R4n) (1)

B0 = ((2b1 + 1) +R1; : : : ; (2bn + 1) +Rn; 2b1 +Rn+1; : : : ; 2bn +R2n;

� (2b1 + 1) +R2n+1; : : : ;�(2bn + 1) +R3n;�2b1 +R3n+1; : : : ;�2bn +R4n) (2)

Theorem 1. The comparison of A0 and B0 always generates 2n true values and 2n false values.

Proof. Consider the possible cases:

1. If ai > bi, then2ai + Ri > (2bi + 1) + Ri, (2ai + 1) + Rn+i > 2bi + Rn+i, �2ai + R2n+i <

�(2bi +1) +R2n+i,�(2ai + 1) +R3n+i < �2bi +R3n+i, which contributes to2 true values and2
false values.

2. Similarly,ai < bi also contributes to2 true values and2 false values.

3. If ai = bi, 2ai + Ri < (2bi + 1) + Ri, (2ai + 1) + Rn+i > 2bi + Rn+i, �2ai + R2n+i >

�(2bi + 1) + R2n+i, �(2ai + 1) + R3n+i < �2bi + R3n+i, which also contributes to2 true values
and2 false values.

Therefore, at the end of the comparison, regardless of whatA andB are, there will always be half (2n)
true values and halffalse values in the results.

The above theorem indicates that the protocol discloses no statistical information about the relationship
betweenai andbi, including both inequality and equality relationships.

After gettingA0 andB0, Alice and Bob reorderA0 andB0 using the same random permutation�, thus
getting a newA0 = (a0�(1); : : : ; a

0

�(4n)) and (respectively) a newB0 = (b0�(1); : : : ; b
0

�(4n)). In what follows,
to avoid unnecessarily cluttering the exposition with the�(�) notation, we assume that� is the identity
permutation (so that�(i) = i); this is done purely for notational convenience and does not entail any loss of
generality.

Step 3: Nonce pairs preparation

Alice and Bob each prepares4n pairs of nonces((q1; q01); : : : ; (q4n; q
0

4n)) and (respectively)((p1; p01); : : : ;
(p4n; p

0

4n)). They both keep these pairs secret from each other.
The order of these nonce pairs should correspond to the order of the numbers inA0 andB0, i.e., for

i = 1; : : : ; n, (qi; q0i) corresponds to2ai +Ri, (qn+i; q
0

n+i) corresponds to(2ai +1)+Rn+i, (q2n+i; q
0

2n+i)
corresponds to�2ai +R2n+i, (q3n+i; q

0

3n+i) corresponds to�(2ai + 1) +R3n+i.

6



Alice computes�+ = q1�� � �� q2n �q
0

2n+1�� � � � q04n, and�� = q01�� � � � q02n �q2n+1�� � � � q4n.
Alice then sends, as a commitment to�+ and��, a one-way hash of each of them to Bob. Intuitively,�+
represents the fact thatA0 dominatesB0, and�� represents the fact thatB0 dominatesA0.

Bob computes�+ = p1� � � �� p2n� p02n+1� � � �� p04n, and�� = p01� � � �� p02n� p2n+1� � � �� p4n.
Bob then sends Alice, as a commitment to�+ and��, a one-way hash of each of them to Alice. Intuitively,
�+ represents the fact thatB0 dominatesA0, and�� represents the fact thatA0 dominatesB0.

Step 4: Evaluation

First, Alice sends herA0 = (a01; : : : ; a
0

4n) and her nonce pairs((q1; q01); : : : ; (q4n; q
0

4n)) to Ursula; Bob also
sends his nonce pairs((p1; p01); : : : ; (p4n; p

0

4n)) to Ursula, but he keepsB0 = (b01; : : : ; b
0

4n) to himself.
Next, after Ursula initializesh to 0, she and Bob use a modified version of Cachin’s protocol for Yao’s

Millionaire Problem [1] to comparea0i andb0i, for eachi = 1; : : : ; 4n; the modification to Cachin’s protocol
that is used makes it such that only Ursula knows the outcome of whethera0i > b0i, as opposed to both
knowing the outcome (this can be easily done by skipping the step of “sendinghB to B” in the description
of Cachin’s protocol as given in [1]). Ursula updatesh based on the outcome of this comparison: Ifa0i > b0i,
she doesh = h� qi � p0i, otherwise she doesh = h� q0i � pi.
(Note that if, in the above, we did not use a modified version of Cachin’s protocol, then Bob would inappro-
priately know the outcome of a comparison between ana0i and ab0i, i.e., betweenai andbi.)

After the above is done for all4n pairsa0i; b
0

i, Ursula sends the finalh to both Alice and Bob.

Step 5: Result Extraction

Alice sends Bob her�+ and��, and Bob sends Alice his�+ and��, and they each verify that what they
received matches the commitments received in Step 3.

Alice and Bob then each computes an “A-dominates” numberh1 = �+ � �� and a “B-dominates”
numberh2 = �� � �+.

Finally, each of Alice and Bob comparesh with h1 and withh2. If h = h1, thenA dominatesB; if
h = h2, thenB dominatesA; otherwise, neither one dominates the other.

Alice (A’ ) Bob (B’ )

2a1+R1

2a2+R2

−2a1+R5

(2a2+1)+R4

−(2a1+1)+R7

(2a1+1)+R3

−2a2+R6

q1 q1’

q2’q2

q3 q3’

q4 q4’

q5 q5’

q6 q6’

q7’q7

q8 q8’

p1 p1’

p2 p2’

p3 p3’

p4 p4’

p5 p5’

p6 p6’

p7 p7’

p8 p8’

: B dominates A: A dominates B

(2b1+1)+R1

(2b2+1)+R2

2b1+R3

2b2+R4

−(2b1+1)+R5

−(2b2+1)+R6

−2b1+R7

−2b2+R8−(2a2+1)+R8

Figure 1: Example

7



Figure 1 is an example with n = 2 and �(1; 2; 3; 4; 5; 6; 7; 8) = (5; 2; 8; 1; 3; 7; 6; 4). The nonces marked
by the solid lines are those that will be selected by Ursula if A � B; h1 is constructed by xor’ ing all of
these and only these solid-line nonces. The nonces marked by the dotted lines are those that will be selected
by Ursula if B � A; h2 is constructed by xor’ ing all of these and only these dotted-line nonces. If neither
A dominates B nor B dominates A, then Ursula will end up choosing some of the nonces marked by the
solid lines and some of the nonces marked by the dotted lines, which causes h 6= h1 and h 6= h2.

In certain cases, we are only interested in whether A dominates B, and we do not want either party know
whether B dominates A; in some other cases, only Alice (or Bob) is allowed to know the dominance result.
The above protocol can be easily modified to accommodate these requirements. For example, if we only
allow the both parties to learn whether A dominates B, we can change the above protocol such that h1 is
computable by both parties and h2 is not.

Theorem 2. The above protocol correctly determines whether (and which) one of A;B dominates the other.

Proof. It clearly suffices to prove the following three sub-claims.
Sub-claim 1: If there exists ai = bi, then with overwhelming probability h 6= �+ � ��, and h 6= �� � �+.
Sub-claim 2: If for all i = 1; : : : ; n we have ai 6= bi then with overwhelming probability the case of A � B

is detected by checking whether h = �+ � ��.
Sub-claim 3: If for all i = 1; : : : ; n we have ai 6= bi then with overwhelming probability the case of B � A

is detected by checking whether h = �� � �+.
Proof of Sub-claim 1:

If there exists ai = bi, we will have 2ai + Ri < (2bi + 1) + Ri and (2ai + 1) + Rn+i > 2bi + Rn+i.
Therefore, corresponding to these two comparisons, Ursula will select q0i, pi, qn+i and p0n+i to compute h.
However, the corresponding selection by �+’s for these two comparisons is qi and qn+i; the corresponding
choice by ��’s for these two comparisons is p0i and p0n+i. Because with overwhelming probability q0i �
qn+i � pi � p0n+i 6= qi � qn+i � p0i � p0n+i, we have h 6= �+ � ��. Although it is theoretically possible
for equality to “coincidentally” occur as a chance occurrence of the xor’ ing of the wrong set of nonces;
choosing each nonce to be large enough easily decreases the probability of such an occurrence to almost
zero (more on this later).

Similarly, we can prove h 6= �� � �+.
Proof of Sub-claim 2: First, we have �+ = q1 � � � � � q2n �q

0

2n+1 � � � � � q04n, and �� = p01 � � � � � p02n
�p2n+1 � � � � � p4n. According to the protocol, if A � B, we have h = q1 � p01 � � � � �q2n � p02n
�q02n+1 � p2n+1 � � � � � q04n � p4n, therefore h = �+ � ��.

Now let us consider the other direction. Suppose h = �+���, therefore h = q1� p01�� � � �q2n� p02n
�q02n+1 � p2n+1 � � � � � q04n � p4n. Because h is constructed from q1; : : : ; q4n, q01; : : : ; q

0

4n, p1; : : : ; p4n,
and p01; : : : ; p

0

4n, with overwhelming probability, h must be constructed exactly by (q1; p
0

1), : : : (q2n; p
0

2n),
(q02n+1; p2n+1), : : : (q04n; p4n), which means ai > bi and �ai < �bi for i = 1; : : : ; n, indicating that A
dominates B. As in Sub-claim 1, here too it is theoretically possible to fail because of a chance occurrence
of the xor’ ing of the wrong set of nonces: The next sub-section shows how easily the probability of this can
be brought to almost zero by using suitably long nonces.
Proof of Sub-claim 3: Similar to the proof of Sub-claim 2.

2.3 Making the protocol symmetric

The above protocol can easily be modified so it is symmetric in the roles of Alice and Bob, in the following
way. Instead of Alice sending to Ursula all of her A0 and Bob sending Ursula none of his B0, Alice and Bob
agree on a subset I of f1; : : : ; 4ng. Then Alice sends Ursula I together with the entries of A0 whose indices

8



are in I , i.e., fa0i : i 2 Ig. What Bob sends Ursula are, of course, the entries of B0 whose indices are not
in I . It is important that Alice receives i with each a0i or b0i that she receives, so she knows the position they
occupied in A0 or (respectively) B0. The rest of the protocol is easily modified accordingly: Whereas the
a0i values received by Ursula are treated by the rest of the new protocol in the same way as in the original
protocol we described earlier, for the b0i values received by Ursula the new protocol effectively reverses
the roles that Alice and Bob played in the original protocol. There are other (tedious and notationally
cumbersome) changes that are needed to the detailed description of the protocol, but they are not particularly
enlightening and so we omit their details.

2.4 Communication Complexity Analysis

Reducing the communication complexity is a major concern in many secure multi-party computation proto-
cols [5, 6, 7, 4], so it is important to discuss the communication complexity of our protocol.

As we pointed out in the proof of the Claim of the previous sub-section, the length of each nonce should
be large enough to reduce the probability of coincidental equality to close to zero. We will next analyze how
many bits long each nonce should be.

In the following, we will assume that the length of each nonce is L bits, and that the acceptable proba-
bility of the above-mentioned “coincidental failure” is of the form 1

2t . The possibility that a xor’ ing of the
wrong set of nonces “coincidentally” gives the right value (like h1 or h2) is 1

2L
. Therefore, we need to have

1
2L

< 1
2t , i.e., L > t. This indicates that L is a constant independent to the size of the inputs.

Minor implementation note: Although Alice and Bob can send directly the 8n nonce pairs to Ursula
without violating our communication complexity claims, in practice it may suffice for each of them to
choose a random seed and generate their nonce pairs using their seed. They only need to send their seeds to
Ursula, who can generate the same nonce pairs as Alice’s and Bob’s.

According to [1], the communication complexity of Cachin’s protocol is O(`), where ` is the number of
bits of each input number. Therefore, if all input numbers are in [0; 2`], the communication cost for using
Cachin’s protocol O(n) times is O(`n).

Therefore, the total communication cost (including sending nonces, �+, ��, �+, ��, h, A0, and the
O(n) round of using Cachin’s protocol) is O(`n), i.e., it is linear in the number of bits needed to represent
Alice’s and Bob’s input vectors.

3 Applications

In many applications, one encounters situations that are of an “all-or-nothing” nature. A common category
is like this: Alice wants to know if she satisfies a set of Bob’s requirements; however, she is not supposed
to know either how many requirements she satisfies or which requirements she satisfies, much less the
requirements themselves. All she can know is yes or no answer.

In this section, we will describe some specific examples and how the multi-dimensional Yao’s millionaire
protocol proposed in this paper could be used in solving these problems.

Multi-commodity Private Bidding and Auctions

Bidding often involves multiple items in an “all-or-nothing” fashion: You are not interested in getting the
rental car in isolation of the airline fare, cruise line, hotel room, etc. In business-to-business bidding, a
manufacturer may want to deal with a single supplier that can simultaneously satisfy all of its n requirements
(either because there is some coordination required in the production of the n items types, or simply to avoid
the bureaucratic overhead of having to deal with multiple suppliers).

9



This problem can be described as the following: Alice wants to buy n items (numbered 1 to n) from
Bob but only if the cost of the ith item is less than ai for all i 2 f1; : : : ; ng, while Bob is willing to sell to
A but only for more than (respectively) b1; : : : ; bn; that is, if for some item i we do not have ai > bi then no
other item j will be bought even if it does satisfy aj > bj . The protocol should not reveal to Alice or Bob
anything other than whether they have a deal.

The problem is exactly a dominance problem: Alice and Bob each have a vector of dimensionality n, and
the goal of the protocol is for Alice and Bob to determine whether Alice’s vector dominates Bob’s vector, i.e.,
whether ai > bi for all i 2 f1; : : : ; ng. Therefore, the problem can be solved using the multi-dimensional
Yao’s Millionaire protocol we proposed.

Privacy-Preserving Geometric Computations

Point-Location problem [10] is the problem of deciding if a point is in a range, usually represented by a
polygon. Point-Location problem is a very common problem in geometric computations, and it has a lot of
applications.

Now consider this problem: Bob has a secret polygon, and Alice has a secret point; Alice wants to know
if this point is inside Bob’s polygon or outside the polygon. Neither Alice nor Bob is willing to disclose
any partial information about their secrets to the other party. Therefore, Alice should know only a yes or no
answer; if the answer is no, Bob and Alice should learn nothing else.

The above problem has a potential real application: for example, country A decides to bomb a location x
in some other country, so it informs its alliance countries, who are afraid that the location is within their areas
of interest: for example, those countries might have secret businesses, secret military bases, or secret agents
in that area. Obviously, A does not want to disclose the location information to any country if the location
is not within that country’s areas of interest, nor does any country want to disclose its areas of interest to the
country A. How could A and its friend countries figure out whether x is within those locations? and in the
case that x is not within those locations, no information should be disclosed?

By combining the geometric computation knowledge [10] and the method of secure evaluation of poly-
nomial function [9], this problem can be reduced to the dominance problem, i.e. after the transformation,
Alice gets a n-dimensional vector A = (a1; : : : ; an), and Bob gets a n-dimensional vector B = (b1; : : : ; bn);
the problem of knowing whether Alice’s point is inside Bob’s polygon is equivalent to knowing whether A
dominates B. Because of space limits, we omit the reduction steps.

Privacy-Preserving Negotiation

Bob wants to buy a product P , and he has a few requirements on this product, but because these requirements
are usually business secret, he does not want to disclose these requirements. Alice, on the other hand, has a
new product that she wants to sell to Bob; however the parameters (or features) of this new product are also
business secret, and if Bob does not buy the product, Alice will not disclose those parameters to Bob. How
could Alice and Bob decide whether they have a match without disclosing their secrets to the other party?

We can represent Bob’s requirement using a range, say (xi; yi) for the ith feature (i = 1; : : : ; n). We
also represent the parameters of the Alice’s product as (p1; : : : ; pn). The task is to find if both pi > xi and
pi < yi are true for all i = 1; : : : ; n. If the result is no, both parties learn nothing else except this answer
itself.

The problem can be easily transformed to a dominance problem: to decide whether (p1;�p1; : : : ; pn;�pn)
dominates (x1;�y1; : : : ; xn;�yn). Our multi-dimensional Yao’s Millionaire protocol will solve the prob-
lem.

10



Ancestor-Descendent Relationship in a Tree

Alice and Bob both know a tree, Alice knows a node A, and Bob knows a node B. Alice and Bob want to
know whether A and B have an ancestor-descendent relationship. If they do not have a such relationship,
nobody should learn the other party’s node or the relative location of the other party’s node, such as A is at
the left side of B etc.

This problem can also be reduced to the dominance problem: Let us use (xpre; xpost) to represent a node
in the tree, where xpre is the pre-order number of the node, and xpost is the post-order number of the node.
Node A = (a1; a2) is an ancestor of node B = (b1; b2) if both a1 < b1 and a2 > b2 are true. Therefore
finding the ancestor-descendent of node A and B is equivalent to finding whether (�a1; a2) dominates
(�b1; b2).

4 Conclusion

In this paper, we have defined a problem that generalizes the well known one-dimensional Yao’s Millionaire
problem to the multi-dimensional Yao’s Millionaire problem. We have proposed a solution to this problem
that is secure in the sense that both party either know that one dominates the other or know nothing about the
other party’s input; our solution is also efficient in the sense that its communication complexity is linear in
the size of (= numbers of bits representation) the inputs. An interesting open problem is whether the same
communication complexity can be achieved without the use of the oblivious (and untrusted) third party. This
would represent an improvement on Yao’s original solution [12], something which has eluded researchers
so far even in the one-dimensional case (at least without the introduction of an untrusted third party).

References

[1] C. Cachin. Efficient private bidding and auctions with an oblivious third party. In Proceedings of the 6th ACM
conference on Computer and communications security, pages 120–127, Singapore, November 1-4 1999.

[2] O. Goldreich. Secure multi-party computation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded/public html/foc.html, 1998.

[3] S. Goldwasser. Multi-party computations: Past and present. In Proceedings of the sixteenth annual ACM sym-
posium on Principles of distributed computing, Santa Barbara, CA USA, August 21-24 1997.

[4] Y. Gertner, S. Goldwasser and T. Malkin. A random server model for private information retrieval. In 2nd
International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM ’98),
1998.

[5] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information retrieval. In Proceedings of IEEE
Symposium on Foundations of Computer Science, Milwaukee, WI USA, October 23-25 1995.

[6] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private information
retrieval. In Proceedings of the 38th annual IEEE computer society conference on Foundation of Computer
Science, Miami Beach, Florida USA, October 20-22 1997.

[7] C. Cachin, S. Micali and M. Stadler. Computationally private information retrieval with polylogarithmic com-
munication. Advances in Cryptology: EUROCRYPT ’99, Lecture Notes in Computer Science, 1592:402–414,
1999.

[8] O. Goldreich, S. Micali and A. Wigderson. How to play any mental game. In Proceedings of the 19th annual
ACM symposium on Theory of computing, pages 218–229, 1987.

[9] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation (extended abstract). In Proceedings of the
31th ACM Symposium on Theory of Computing, pages 245–254, Atanta, GA, USA, May 1-4 1999.

11



[10] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.

[11] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons, Inc.,
1996.

[12] A. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, 1982.

12


	CERIAS Tech Report 2002.pdf
	Mikhail Atallah, Wenliang Du




