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Abstract
This research paper explores a promising interface
between natural language processing (NLP) and
information assurance and security (IAS). More
specifically, it is devoted to possible applications
to, and further dedicated development of, the
accumulated considerable resources in NLP for,
IAS. The expected and partially accomplished
result is in harnessing the weird, illogical ways nat-
ural languages encode meaning, the very ways
that defy all the usual combinatorial approaches to
mathematical--and computational--complexity
and make NLP so hard, to enhance information
security. The paper is of a mixed theoretical and
empirical nature. Of the four possible venues of
applications, (i) memorizing randomly generated
passwords with the help of automatically gener-
ated funny jingles, (ii) natural language water-
marking, (iii) using the available machine
translation (MT) systems for (additional) encryp-
tion of text messages, and (iv) downgrading, or
sanitizing classified information in networks, two
venues, (i) and (iv), have been at least partially
implemented and the remaining two (ii) and (iii)
are being implemented to the proof-of-concept
level. We must make it very clear, however, that we
have done very little experimentation or evalua-
tion at this point, though we are moving quickly in
that direction. The merits of the paper, if any, are in
its venture to make considerable progress achieved
recently in NLP, especially in knowledge represen-
tation and meaning analysis, useful for IAS needs.
The NLP approach adopted here, ontological
semantics, has been developed by two of the coau-
thors; watermarking is based on the pioneering
research by another coauthor and his associates;
most of the implementation of the password mem-
orization software has been done by the fourth
coauthor. All the four of us have agonized whether
we should report this research now or wait till we
have fully implemented all or at least some of the
systems we are developing. At the end of the day,
we have reached a consensus that it is important,
even at this early stage, to review for the informa-
tion security community what NLP can do for it
and to invite feedback and further efforts and ideas
on what seems likely to become a new paradigm in
information security. To the body of the paper, we

have added two self-contained deliberately refer-
ence-free appendices on NLP and ontological
semantics, respectively, primarily for the benefit of
those IAS readers, who are interested in expanding
their understanding of those fields and further
exploring their possible fruitful interactions with
IAS.

1. Introduction: Natural Language and Code-
Breaking
Perhaps the most dramatic instance of the use of
natural language in communication security
occurred during the World War II, in which both
sides were very successful in breaking each other’s
codes and increasingly aware of it as well as
gravely apprehensive about it. At a late critical
point, on the advice of a prominent American lin-
guist Edward Sapir, two Navajo speakers, each
assigned to the US and British General Headquar-
ters, respectively, transmitted top-secret messages
to each other in their native tongue without any
encryption. The German famed code-breaking unit
could not break the “code.” This success was due
to the fact that the enemy did not even realize that
the Allies were using a natural language, let alone
the almost-extinct Navajo language (and even if
they had realized it they simply had no one who
knew that language). The German code-breaking
team was rumored then to have paid with their
lives for their failure to breach the security of this
particular natural-language-based communication
scheme. 

Obviously, many people in IAS are aware of that
episode, as probably is the other side. The element
of surprise is gone, and even if a special effort is
needed to recognize the natural language as one of
the 5,600 or so extant languages, if such an episode
recurred, the decoders would be more successful
this time around, perhaps after trying Navajo first!
The approach may still be good for shock value, in
the short run, possibly just as a one-time trial. Also,
it is hard and expensive to organize.

This episode is perhaps ancient history (and/or
folklore: other versions mention different Amerin-
dian languages--Shawnee, Choctaw-- and other
war theaters) in the rapidly developing field of



                                                       
IAS, but it served as a kind of inspiration and a
source of intuition for us at the start of our joint
effort. Our combined experience in NLP and IAS
made us believe that natural language could still
contribute an important level to information secu-
rity, perhaps as dramatic as the classic--and, very
likely, largely apocryphal--example described
above. Accordingly, we describe below some lines
of investigation that we are following, for bringing
powerful NLP techniques to bear on some impor-
tant problems in information security.

We are currently exploring four specific venues of
applying NLP to IAS: 

• Natural Language and Humor Generation for
Memorizing Random Strings (e.g., Passwords,
PINs, etc.). Let Σ be a random string
representing something that a human is
supposed to remember, e.g., a password, a
PIN, etc. How does one construct a mnemonic
that helps the human remember Σ? The ``Sing-
a-Password'' software tool built by Meunier
(1998) is a successful first step in this direction,
and uses popular melodies and tunes (suitably
modified) to help a human remember
randomly generated Σ’s. The Meunier
software focuses simply on meshing the lyrics
with music; it does not worry about where the
lyrics come from. It other words, it totally
lacks the NLP component, and we have put it
in. As a result, we have extended “Sing-a-
Password” by making it capable of generating
sentences with meaning (eventually,
humorous meaning) to help the user to
memorize randomly generated and otherwise
meaningless passwords. This immediately
gets into such NLP issues as automatic humor
generation, but with the added constraint that
the humor generated must help in
remembering the passwords. To convince the
reader of the importance of this effort, we
recall that the COPS software tool (Farmer and
Spafford 1990) has revealed a distressing
pattern of poor password choices by users
who followed the above process in the wrong
direction: they chose a password Σ because it
was easy to remember, instead of generating a
random Σ and then trying to come up with
ways of remembering it. The success of the
research we have already partially
implemented (see Section 2) could therefore
have a substantial impact on the practice of
information security. Two important
disclaimers seem to be in order here. First, this
particular direction in our NLP-IAS research
is, of course, premised in a claim that having a
randomly generated password is much
preferable to using a meaningful, memorable
and, therefore, more easily predictable user-

selected password. We are under no illusion
that randomly generated passwords solve the
problem of IAS. We do, however, believe, as
many but by no means all IAS experts do, that
it is a good first line of defense against
intrusion. It is reasonable to assume also that,
for a large number of ordinary private users,
such as the 70,000 or so students at our
universities, this will remain for a long time
their only contribution to the safety of their
computer accounts. It is also a good education
al step towards enhancing public awareness
about IAS. Second, we are fully aware that our
implementation of the software only for 8-
character single-case alphabetic-only
passwords is just the first step: limiting
randomly generated passwords to this formal
would actually narrow the combinatorial
possibilities so seriously as to actually damage
rather than increase IAS.

• NLP for Watermarking. We are developing
software capable of embedding a hidden
textual watermark in a textual message
without changing the meaning of the text at all
and the wording only slightly if necessary. To
build this application, we are researching the
interface of the theory of quadratic residues
and of specially constrained natural language
generation. Let T be a natural language text,
and let W be a string that is much shorter than
T. We wish to generate natural language text
T’ such that: 

– T’ has essentially the same meaning as T;
– T' contains W as a secret watermark, and

the presence of W would hold up in
court if revealed (e.g., W could say,
``This is the Property of X, and was li-
censed to Y on date Z''); 

– the watermark W is not readable from T'
without knowledge of the secret key that
was used to introduce W; 

– for someone who knows the secret key,
W can be obtained from T' without
knowledge of T (so there is no need to
permanently store the original, non-wa-
termarked copy of copyrighted materi-
al); 

– unless someone knows the secret key, W
is difficult to remove from T' without
drastically changing the meaning of T',
and we are working on ways to make it
even more difficult;

– the process by which W is introduced
into T to obtain T' is not secret, rather, it
is the secret key that gives the scheme its
security; 

– there is built-in resistance to collusion by
two people who have differently water-
marked versions of the same text, that is,



                                               
suppose watermarked versions of T are
sold to A and to B: if buyer A has T_A',
where W_A' is hidden using a key that is
not known to A, and buyer B has T_B'
where W_B' is hidden using a key that is
not known to B, then even if A and B
were to share all the information they
have they would not be able to either
read or delete the watermark (from ei-
ther T_A' or T_B').

The solutions we sketch in Section 3 will typically
satisfy all but the last of the above requirements,
but we are optimistic we can modify our ideas to
also satisfy it; in fact we can already satisfy it if we
assume W_A' = W_B' (i.e., if the watermark makes
no mention of the buyers A or B, and just mentions
the seller). 

• MT Techniques for Information Security. The
method of encoding information in each
natural language is highly idiosyncratic, and
only customized language resources, such as
ontologies, lexicons, analyzers, and generators
allow to access the layer of meaning
underlying text. We would like to explore
how text in a natural language, possibly
encoding a secret message (such as the T'
mentioned above) can be automatically
translated, in a way controlled by a secret key,
into another natural language (resulting in
T''), and it is this translated message T'' that is
actually transmitted or made public. This
technique can be thought of as either the main
security mechanism (e.g., in case T' was
generated without using a secret key), or as an
extra layer of security “on top'' of the other
methods used. In either case, the recipient will
not be able to get T' without having the secret
key that governs the behavior of the MT
software used to create T'' from T'. We see a
way to do this starting from English, and
automatically translate into another language,
as well as the other way around.

• Downgrading, or Sanitizing Information.
Increasingly, in interagency exchanges in the
government, international coalition
communication, and exchanges among
business partners, there has been a need to
develop an intricate architecture for
combining a “high” network and a “low”
network. Authorized users, with access to the
high network, where sensitive data are stored
and exchanged, must have access to the low
network, but not the other way around. If this
is all there is to it, the communication between
the two networks is assured with the help of a
variety of switches and one-way filters: the
low-network information can propagate up
but the high-network information must not
leak down. There are enough technical and

conceptual problems with such one-way
filters, but they are multiplied manifold if
there is also a need to share some high-
network information with the low-network
users but in a way that removes all the
sensitive data. In this context already, the
essentially semantic ability to recognize a
sensitive message comes into play (see, for
instance, Nelson 1997). In this paper, we are
focusing only on sanitizing textual
information. In other words, for each classified
text T there must be generated a sanitized,
downgraded text T’, from which all sensitive
data are removed according to a certain list of
criteria. We are doing this by utilizing the NLP
resources developed by the ontological-
semantic approach (Nirenburg and Raskin
2001), which allows deep-meaning penetration
and, as a result, much enhanced sensitive
information detection and removal.

In Appendix 1, we formulate briefly, for the benefit
of the IAS community, what exactly is meant by
natural language and NLP. The terms are widely
used and equally widely abused, both inside and
outside of the fields of theoretical and computa-
tional linguistics, but especially so on the outside,
where, for instance, the myth of non-feasibility of
NLP as something which is “10-20 years down the
road” can still be encountered. A tight description
of the terms will help us to avoid any further mis-
understanding. The Appendix can be skipped by
those who are familiar with elements of formal lin-
guistics and/or NLP.

2. Natural Language and Humor Generation for 
Memorizing Random Strings

2.1  Necessity for Mnemonics for Strong 
Passwords and PINs

Many computer breakins can be traced back to a
poorly chosen password (one that is easy to guess,
to derive, to find in a dictionary, etc.). Breaking
such a weak password, then, allows an intruder
access to one account, from which the intruder
exploits system flaws and weaknesses to further
compromise the system. The extent of this problem
is truly frightening, and some innovative
approaches have been designed for dealing with it.
One approach (Farmer and Spafford 1990, Spafford
1991, 1992a,b) consists of detecting weak pass-
words and alerting system administrators and
users about them. That is, the system administrator
can run a software tool like COPS and alert the
users whose passwords are found to be vulnerable.
One problem with software tools that pinpoint
weak passwords is that, while they are useful to
system administrators, they can also be used to
attack a system (in the obvious way). More
recently, Meunier (1998) explored an approach for
generating a quality password (a long enough ran-



                                                                    
dom string, produced using quality pseudo-ran-
dom number generation), and then providing a
software tool to help the user in remembering the
password. While Meunier’s approach focused
more on mixing music with lyrics and contained
only some tentative suggestions on text generation,
we have made natural language text generation
the main point of the effort. 

There is a powerful incentive for users to choose
weak passwords (or, in other contexts, weak PIN
numbers): they have to remember it–—in fact they
are instructed not to write their choice on a piece of
paper or in a file. So they end up choosing a weak
password because it is easy for them to remember.
A tool that helps users remember random strings
therefore considerably weakens (or even removes)
the incentive to choose weak passwords. If users
had a handy and attractive software tool that helps
them remember a random string, then they would
be more likely to choose secure passwords. More
widespread use of secure passwords would go a
long way towards making it harder to illegally—
and easily—break into computer systems. The soft-
ware tool we are working on helps bring this goal
closer.

2.2  NLP Generation of Meaningful Humorous 
Texts as Mnemonic Devices

The approach we are using can be summarized as
this: for any random string Σ, to generate a mean-
ingful natural language text T that is a good mne-
monic for Σ. The requirements for T are: 

• it should be easy to extract Σ from T: there are
many ways of achieving this, including the
naive way we have adopted for the first
release of using the first letter of every word in
T; 

• T itself should be easy to remember: we
achieve this by automatically constructing
from Σ a T that has meaning, eventually of the
humorous kind, because funny things are
particularly easy to remember, and we are
using the results of pioneering research in
computational humor to achieve this goal (see
Raskin 1985, 1996; Raskin and Attardo 1994). 

As far as generating humor is concerned, our
approach here differs from existing humor-genera-
tion efforts and software (both the original LIBJOG
system in Raskin and Attardo 1994 and its spin-offs
in Binstead and Ritchie 1997, Hulstijn and Nijholt
1996) in at least four ways: 

• a factor that tends to make our problem more
difficult is the requirement that T, in addition
to being “memorable,” also corresponds to Σ. 

• another complicating factor is that our
generation has to use a little more intelligence

than, for instance, what extremely little of it is
necessary to generate a light bulb joke (Raskin
and Attardo 1994) or a cross joke (Binstead
and Ritchie 1997) from a standard template. 

• a factor that tends to make our problem easier
is that the humor generated does not have to
be particularly good; a particularly bad joke
can be easy to remember precisely because it
is so bad (not that the cited toy systems could
generate particularly good jokes either!);

• speaking of toy systems, this particular system
has a gratifyingly meaningful, non-toy goal.

Below humor generation, there lies a specific natu-
ral language generation task, for which we have
developed abundant resources in NLP, ready for
use or for well-defined tweaking if necessary (see
Section 4 below on the NLP resources available for
IAS).

2.3  Implementation so Far

For the initial stage of the implementation, we lim-
ited the problem and the output in the following
helpful ways:

• the accepted input is a random-generated
password which is only alphabetical (not
numerical and consisting of exactly eight Latin
characters, e.g., shbvwwlo;

• the generated output corresponds to one
primitive jingle tune only;

• the generated text follows the same meter;
• the generated text follows the same

grammatical template; and, of course,
• the generated text consists of 8 words

beginning, respectively, with the letters in the
random string.

The tune goes TA-ta-TA-ta-TA-ta-TA/TA-ta-TA-ta-
TA-ta-TA. Accordingly, the meter in each of the
two identical lines is 4-foot trochaic, with the 4th
foot incomplete. The grammatical template in each
identical line is Name, Verb+Past, Name+Poss,
Noun. In other words, with Wn, where 1 ≤ n ≤ 8,
corresponding, obviously, to the nth word in the
text, W1 = W3 = W5 = W7 = Name (=
Noun+Proper), W2 = W6 = V+Past, W4 = W8 =
N+Common. W1-3 and W5-7 are all bisyllabic and
trochaic, i.e., stressed on the first syllable; W4,8 are
monosyllabic. Thus, the jingle for the random
string above will be, for instance:

Sandra handled Byron’s vault.

William wasted Lana’s ore.

For all the words, the following constraint is
important: their initial sound should be immedi-
ately associated with its first letter, i.e., the non-
trivial spellings should be excluded, such as, for
instance, ph, which can be confused with f. Specifi-



                                                                              
cally for the names, the two additional constraints
are that the names should be well-known, wher-
ever possible and not ending in a sibilant (s, z, sh,
zh, ch or j) because those require an extra syllable in
the possessive form, e.g., judges. Specifically for the
verbs, the constraints require that they be unitran-
sitive, i.e., taking one and only one object, that they
take both [+Human] subjects and objects, and that
they have a regular Past form. Finally, for the
monosyllabic nouns, we prefer them concrete, not
abstract.

All the three categories are determined by the
appropriate word lists with under 10 options for
each letter. The lists are also organized in sublists
in some cases for the second phase, which we have
also partially implemented. At this stage, we want
the verbs to be somewhat opposite to each other,
e.g., the first one being “positive” and the second
one “negative,” so that the whole jingle have the
effect of somebody doing something good for
somebody else in the first line while in the second
line something bad is done. This is taken care of by
dividing the verb list into two: the good ones and
the bad ones, or the first-line verbs and the second-
line verbs. We also want the final nouns of the lines
to rhyme, and this requires, for each noun on the
main word list, 26 rhyming nouns, each beginning
with a different letter. Neither of these two tasks
has proven to be daunting, and the second-phase
version has been easily implemented on a Win-
dows machine in Visual Basic, resulting in 750
lines of code.

The most challenging part of the research is to
make the jingle humorous. This part is an imple-
mentation of a popular script-based semantic the-
ory of humor (Raskin 1985) which stipulates,
basically, that a short verbal joke is ambiguously
compatible with two different scripts and that
those scripts are opposed to each other in one of
the 20 or so prescribed way, e.g., sex/no sex. good/
bad, rich/poor, etc. This part of the research is also
coordinated with a humorous human-computer
interface project, both for entertainment and diver-
sion purposes and for the security-oriented goal of
user humor profiling (see Raskin et al. 2000,
Attardo et al. 2000). The verb opposition at the sec-
ond phase of implementation goes a long way
towards the desired humor opposition. We are
now working on a method to make the jingles fun-
nier, and part of it is involving the common nouns
in the humorous scripts.

We have also conducted a small series of purely
illustrative experiments testing the acceptance of
the generated lines by users and the extent of the
recall. 12 subjects were asked to rate 50 automati-
cally generated lines for acceptance from 1 (unac-
ceptable) to 5 (perfectly acceptable), and the

average rank was 3.26. In a different experiment, 7
uninvolved subjects were asked to remember two
lines each, and the recall was 100% after 1, 2, and 3
weeks, and it fell down to 93% (one subject forgot
one of his two lines) 6 weeks later (and 3 weeks
after the subjects had been told that there was no
need to remember the lines any longer).

3. NLP for Watermarking
Many techniques have been proposed for water-
marking multimedia documents. Many are defec-
tive in that they fall prey to attacks that erase the
watermark. The most successful operate in the fre-
quency domain, i.e., on the Fourier or Discrete
Cosine transform of an image or audio document
(see Cox et al. 1996, Cox and Miller 1996, and the
papers they reference). Of course, such methods do
not work on text unless the text is represented as a
bitmap image (with, for instance deliberately
manipulated kerning and/or spacing to hide the
watermark), but in that case the watermark can
easily be erased by using OCR (optical character
recognition) to change the representation of the
text from a bitmap to ASCII or EBCDIC. We would
like to come up with a method of watermarking
natural language text that is at least as successful
as the frequency-domain methods (such as Cox et
al. 1996 and related work) have been for image and
audio.

In one variant of the problem, where the main
interest is in hiding a secret message W in text T
that looks innocuous and unrelated to the message,
T' does not even have to be in the same language
as T (see Section 4 below). In the example that fol-
lows we assume, however, for the sake of simplic-
ity, that T' is in the same natural language as T.

One idea we want to explore is the use of the the-
ory of quadratic residues (Atallah and Wagstaff
1996). We explain below an adaptation of this
method to the problem at hand. We give a simpli-
fied (and weaker) version of the scheme we have in
mind, to illustrate the main ideas involved.

First we introduce some notation and terminology
and review basic facts that will be used later.

Let p be a secret prime at least 20 decimal digits
long. The prime p will be used to obtain T', and
only by having the prime p can one extract W from
T'.

An integer n is a quadratic residue modulo p if p
does not divide n and there exists an integer x for
which x^2 = n mod p. An integer n is a quadratic
nonresidue modulo p if p does not divide n and
there does not exist an integer x for which x^2 = n
mod p. Whether n is a quadratic residue or nonresi-
due modulo p is called the quadratic character of n



                                                                                  
modulo p. Half of the nonzero (modulo p) integers
are quadratic residues modulo p, and half are qua-
dratic nonresidues modulo p.

Using Gauss' quadratic reciprocity law, it is easy to
determine the quadratic character of n modulo p in
time O((log n)(log p)). The problem is just about as
hard as computing the greatest common divisor of
two numbers as large as n and p by using the
Euclidean algorithm.

Let the watermark message be the bit string w_0,
w_1, . . . , w_{k-1}.  Let n_0 , n_1 , . . . , n_{m-1}, be the
integers corresponding to the, e.g., ASCII represen-
tations of the words in T, i.e., n_i corresponds to the
(i-1)th word in T. (Assume for now that m is much
larger than k.)

We use a pseudo-random number generator with p
as seed to generate random numbers r_0 , r_1 , . . . ,
r_{k-1} (i.e., as many as there are bits in the water-
mark message).  We repeat the following for i = 0 ,
1 , . . . , m-1:  If n_i + r_{i mod k} is a quadratic resi-
due (resp., nonresidue) modulo p and w_{i mod k} is
1 (resp., 0), then the (i-1)th word in T' is the same
as in T. Otherwise we keep modifying the remain-
ing (yet unprocessed) portion of T until the (i-1)th
word satisfies the above requirement. This modifi-
cation is simple if the (i-1)th word has many syn-
onymous words, but otherwise it could be quite
elaborate because we must not change the mean-
ing of the text. That not too many modifications are
needed follows from the observation, made earlier,
that half of the nonzero (modulo p) numbers are
quadratic residues modulo p and half are quadratic
nonresidues: this implies that there is a 2^{-t} prob-
ability that t modifications will be needed.

The above is necessarily an oversimplification of
what we have in mind, but it nevertheless gives the
flavor of the ideas involved. Its main drawback is
that the watermark can be damaged by an attack
that consists of repeatedly performing on T' a large
number of meaning-preserving modifications like
those used to obtain T' from T, in the first place
(such as replacing a word by a synonym); of course
the attacker does not know p and so each such
modification has a 50% probability of actually not
damaging the watermark bit hidden at that posi-
tion. There is no easy way around this: any mean-
ing-preserving modifications we do to obtain T'
from T can be “undone'” by an attacker who is ran-
domly applying many such transformations to T'. 

The idea we propose for foiling this kind of attack
is the following. Instead of doing many meaning-
preserving transformations to put the watermark
in the text, we make more substantial local changes
at far fewer positions, randomly determined by
using p. While these modifications are not quite

meaning-preserving, there are few enough of them
that the overall meaning of the original T should be
essentially preserved. The key idea is that an
attacker who wants to remove the watermark must
make such changes everywhere (because he does
not know where we made them), and by doing so
he would essentially destroy T'. This is precisely
our goal: to make it impossible--or at least as hard
and as prohibitively expensive as possible--to
remove the watermark from T' without essentially
destroying the meaning of T'. At this time, we do
not know how to implement this idea without
making use of the original (non-watermarked) text
T for retrieving W from T', and we are not sure that
it is even feasible--or necessary.

The whole idea is still vulnerable, however: as long
as the quadratic characters of words are used to
encode the watermark, it can still be removed by
an attacker doing systematic synonym-substitu-
tions--unlikely and costly as this kind of attack
may be to stage, it is still not enough of a deterrent.
Somewhat more resilient would be an encoding
that ties the watermark to a hidden element of the
text, such as the tree that represents the sentence
structure, rather than to the actual words in the
sentence: for example, if the watermark is in the
quadratic characters of the items in a postorder
listing of the preorder numbers (+ p, the secret
large prime number, to make these numbers large
for statistical purposes) of the above-mentioned
tree, it would resist word-substitutions and any
transformation that preserves the structure of the
tree - even if it changes the labels of the tree nodes. 

Even more resilient would be a scheme that,
instead of using the above-mentioned tree, uses
some graphical representation of meaning (this is
parallel to Palsberg’s 2000 approach to watermark-
ing the data structure and not the actual code in
software watermarking). The text-meaning repre-
sentation (TMR) of the text (see Section 4 and
Appendix 2) is, of course, the obvious candidate.
The possibility of representing the entire text to be
watermarked as its TMR and watermarking the
TMR instead seems to have a promising venue that
needs to be explored. The TMR of a sentence is a
much longer string of words containing an implicit
tree (actually, tree of trees); it is completely invisi-
ble to the attacker; a larger variety of watermark-
ing techniques may hence be deployed. It is,
however, more difficult to make replacements in
the TMR.

We are also interested in how to get rid of storing
the original (non-watermarked) text. Extending
our overall approach so that it does not require the
original text is certainly an attractive venue of
research. What it means is that we will then need
the watermarked text to “self-synchronize” by



indicating the positions at which the watermark is
placed (assuming we place the watermark in rela-
tively few places). This can be done by using a
peculiarly shaped tree (that is secret just like the
prime p) to effectively say, “Here starts another
watermark.”

A number of problems we are aware of and some,
we suppose, we are not yet will arise here. One is
that of “false positives”: if the property of a sen-
tence signalling that the next sentence contributes
to the watermark may recur elsewhere in the text
the process of prosucing the watermark, for
instance, in court, will be compromised. Generally,
speaking, linguistic entities at and above the level
of words (e.g., sentences) have an extremely low
probabilities, so the occurrence of a false positive
there is highly unlikely. The possibility should be
somewhat more alarming, however, with regard to
syntactic trees because their inventory, while still
technically infinite, consists of a small number (<
20) of standard node junctures that recur throught
the trees. The semantic trees in the TMRs (see also
Appendix 2) do regain their uniqueness and
extremely low probabilities of recurring, especially
in the same text.

Yet another problem is excerpting: will the water-
mark hold if a part of the text is excerpted? We
address this problem by inserting the watermark
in a very small number of sentences throughout
the text and repeating it as many times as the
length of the sentence allows, making sure that the
probability of a hostile action removing all the
multiple occurrences of every bit of the watermark
string be extremely low.

From the NLP perspective, these watermarking
techniques will involve mostly rather a simple nat-
ural-language generator of pretty short utterances
based either on a substitution of a word by its syn-
onym or, in rare cases, of a phrase by a synony-
mous phrase. One unusual and almost completely
unexplored aspect of it is this partial generation of
a substitute word or phrase not on the semantic
basis but rather on the basis of the necessary qua-
dratic residue or non-residue value. Here, the sys-
tem will generally have several choices to make
among words which will contribute the same way
to the code, and this makes the problem very feasi-
ble (again, see Section 4 on the NLP resources). A
desirable side effect is that partial natural language
generation, in which we are making rapid progress
within this research will contribute to many non-
IAS-related NLP tasks.

4. Machine Translation (MT) Techniques for 
Information Security
To capture the difficulty of breaking a natural lan-
guage based scheme, we would like to take advan-

tage of the serious progress in meaning-based
machine translation achieved by the ontological-
semantic approach, where a powerful system of
language resources has been created by two of the
coauthors and their associates to enable Level 3
(top level, with full meaning access) MT for a
growing number of natural languages (Nirenburg
and Raskin 1987, 1996, 1998; Onyshkevych and
Nirenburg 1995; Mahesh 1996, Viegas and Raskin
1998). These resources include: 

• semi-automatically acquired ontology, both
general and domain-specific, for over 60,000
nodes and properties; 

• semi-automatically acquired lexicons for a
growing number of natural languages
(already over a dozen at this writing) for over
40,000 word senses; 

• an analyzer which translates a text in a natural
language into an text-meaning representation
(TMR, a language-independent interlingua
which represents the meaning of the text); 

• a generator which translates a statement in
TMR into a text in a given natural language. 

In MT, the analyzer goes first and the generator fol-
lows. In IAS, the order is reversed. Otherwise, the
processes are identical, and the same resources are
usable for both purposes.

To combine an additional MT layer with another
scheme (perhaps the one described in the previous
section), we are developing a compact package of
the above resources, trimmed and simplified for
the purpose, to be distributed to the system users.
In a new and original twist from normal NLP anal-
ysis and generation, we are exploring a specially
biased MT, distorted by a secret key, which adds
another protective layer. The MT layer will be
impenetrable without an exact copy of the key
(and, of course, MT software), due to the idiosyn-
cratic rules of each of the participating languages. 

At present, we have the following capabilities:

• we have Level 2 MT systems for a number of
uncommonly known languages along with a
semi-automatic system for rapid
developments of such systems for other low-
density (i.e., not widely used) natural
languages, and we can ensure Web access to
such systems;

• we can automatically translate the text T of a
message in English that needs to be
transmitted into text T’ in a low-density
language before encrypting it in any other
way; we can complicate it further by
translating T’ into T” in yet another low-
density language, and so on; and we can vary
those languages within our inventory from
one transmission to another;



• we can automatically translate messages in a
deliberately distorted way while still
preserving the appearance of a meaningful
text; the distortion may range from the
primitive substitution of (selected) words with
antonyms to much more sophisticated
manipulations on the lexicon;

• we can cause even more complex distortions
of texts, still keeping them meaningful and
cohesive, by manipulating the ontological
nodes evoked by the words in T, and only
access to the specific ontology will help figure
out what T is;

• we can also manipulate the analyzer and
generator for the same purpose.

The main thrust of this venue in our research is to
evaluate the effectiveness, economy, and reliability
of these capabilities for IAS, in other words, how
simple the system will be for the authorized users
to deploy and how hard it will be for the adversar-
ies to break the code. This approach comes the
closest to the Navajo antecedent but it takes that
ancient method to the contemporary computa-
tional-linguistic level by using combinations of the
best NLP resources available.

5. Downgrading, or Sanitizing Information

5.1  Downgrading vs. Declassification

We are applying state-of-the-art methods of onto-
logical semantics to the problem of sanitizing clas-
sified and sensitive documents as per pre-defined
specifications, ranging from banning the use of a
specific term to more complex, contextual restric-
tions. The problem is essentially the same as that of
declassification of classified government docu-
ments, a task required by the Executive Order
12958, Classified National Security Information,
and pretty much swept under the rug so far by the
government agency because of the presumed non-
implementability. The rules of downgrading are
complex and the human implementation of the
procedure prohibitively costly and slow. The need
to automate the procedure is obvious but simple,
keyword-plus-Boolean-logic-based approaches
result in an unacceptable level of accuracy. 

We are developing a much more accurate method
of automatic downgrading based on the ontologi-
cal semantic resources accumulated at the Purdue
NLP Lab and at CRL for a number of DoD-funded
projects in machine translation, information extrac-
tion and retrieval, summarization, and other
related tasks. The method allows the system to
accommodate complex contextual rules of down-
grading (or declassification) from the human man-
uals and to model the activity of a competent
human declassifier at many times the speed and
with no compromise in accuracy.

EO12958, signed by President Clinton on April 17,
1995, and obligating all government agencies to
declassify documents older than 1976 by April
2000, requires that all government documents be
declassified and made available to the public
unless they continue to contain sensitive informa-
tion, in which case parts of the documents should
be deleted or blanched or the entire documents
barred from declassification. The various affected
departments, facing the necessity to declassify vir-
tually billions of pages, have developed pretty
complex sets of rules for human declassifiers (the
DOE book of rules, for instance, is reported to con-
tain over 700 different, often overlapping instruc-
tions). The work has been going very slowly, with
each document requiring weeks of processing,
checking, and double checking, and the depart-
ments are agencies are falling behind in the imple-
mentation of the Act.

A computational solution of the backlog is simple
in those rare cases when the declassification rule
states that no document with a certain word occur-
ring in it (or two words occurring together) can be
declassified at this stage. Ingenious techniques
have been proposed for pretty complex Boolean
algebra formulae of keywords to capture the “con-
textual” use of the significant words. The level of
accuracy reached in such systems (see, for instance,
ULTRASTRUCTURE developed by George Wash-
ington University’s Declassification Productivity
Research Center or SRI International’s Keyword
Spotting methodology) remains unacceptably and
apparently unimprovably low.

It is clear, at this point, that the Executive Order
will not be implemented on time or at all. The
problem of downgrading, while essentially the
same, is seen by the government agencies and
industrial entities as not an act of coercion but
rather an absolute necessity, which it is. The pur-
pose is not to serve the anonymous public out of
some good intentions but rather to get very impor-
tant work done. It is downgrading, therefore, and
not declassification, that our research specifically
addresses and targets. We do hope, however, that
our success in downgrading will change the agen-
cies’ attitude to declassification as well.

5.2  The Ontological Approach: An Example

We assume that the example in this section is rea-
sonably self-explanatory. We do, however, provide
a short sketch of ontological semantics, with fur-
ther references, in Appendix 2.

Let us consider then a hypothetical example,
whose purpose is to illustrate a typical downgrad-
ing instruction and how the proposed system will
handle it. Let us assume that the system is



instructed to allow mentions of nuclear subma-
rines but not their specific deployment, reactor
capacity, or mode of refuelling. 

Focusing just on the first of these for the moment,
instructing the computer to look for nuclear subma-
rine and deploy in the text will fail the instruction in
many different situations, e.g., when both occur in
the text but not in the same sentence or adjacent
sentences, and deploy does not pertain to the vessel.
At the same time, the classified information may
be given without using any form of deploy but
rather with such words as location, is, or even sim-
ply at. It is very hard to anticipate all the syn-
onymic substitutions and paraphrases as well as
permitted uses with just keyword combinations.

One would think that simple syntactic parsing will
solve at least the question of whether deploy per-
tains to nuclear submarine in a sentence, But,
besides the fact that syntactic parsing needs then to
be used globally and rather expensively, it will
misinterpret such a simple sentence as Nuclear sub-
marines will be deployed nearby to support ground
forces in case of military emergencies.

What we propose is the limited use of meaning-
based text analysis developed at the CRL for
machine translation, information retrieval and
extraction, summarization, intelligent Web
searches, and other related NLP tasks (see Section
4 above). In our experience, information retrieval
requires only a partial use of these resources and
processes for two different reasons: first, the sys-
tem is only interested in a few expression or con-
cepts; second, no generation is necessary

In our hypothetical example involving the occur-
rence of nuclear submarine in three narrowly
defined context, this is how the system utilizes the
resources. When the analyzer spots nuclear subma-
rine or just submarine in a sentence, it immediately
evokes the appropriate lexical entry, which, in
turn, produces the corresponding ontological con-
cept, which will look, in much simplified form, as
follows:

submarine
(isa warship)
(theme-of build, commission,

decommission, deploy,
destroy, attack)

(instrument-of attack, support, transport,
threaten)

(manned-by naval crew)
(propel-mode surface, sub-surface)
(engine-type nuclear-engine)
(range N < x < M)
(speed K < y < L)
(current-location body-of-water and/or

geographic point and/or
coordinates and/or rela
tive, time-range)

(prior-location body-of-water and/or
geographic point and/or
coordinates and/or rela
tive, time-range)

(next-location body-of-water and/or
geographic point and/or
coordinates and/or rela
tive, time-range)

(current-mission Z)

Most of the slot fillers (as well as some of the slot
names) are ontological concepts as well. In MT, the
analyzer attempts to utilize the syntactic structure
of the sentence and the lexical items in it to fill all
the slots it can. In the proposed system, it is inter-
ested only in the filler for the location slots and
perhaps, more narrowly, only the current location
(as well in the TYPE-OF-ENGINE slot if its filler is
NUCLEAR-ENGINE - this will be established immedi-
ately if the triggering string is nuclear submarine; if
it is just submarine the analyzer will look around
for nuclear or equivalents). If the slot is empty, the
red flag will not come up and the text will be
passed down unmodified--unless any one of the
other two restricting contexts is present.

The system cannot access the other two contexts
from the SUBMARINE concept alone but it can from
the concept of NUCLEAR-ENGINE used as the filler
for TYPE-OF-ENGINE property slot. The property
slots for NUCLEAR-ENGINE will include reactor-
capacity and refuel-mode, and the analyzer suc-
ceeds in filling either of these slots, the sentence
(or, depending on the downgrading instructions,
the entire document) will be barred from the
downgraded version.

This general approach is then further refined in
conjunction with the exact nature of each set of the
current and future human-to-human instructions
for downgrading, or sanitizing sensitive informa-
tion in a mixed network. This adjustment is imple-
mented for each system with the help of a Web-
accessed semi-automatic system for knowledge
engineering, similar to the environment we have
developed for the rapid deployment of MT sys-
tems for low-density natural languages (see Sec-
tion 4 above and Nirenburg and Raskin 1998).

This approach has turned out to be highly effective
in accurate knowledge representation of even the
most arcane simulated human-to-human instruc-
tions on declassification, resulting in high accuracy
in automatic declassification and downgrading in
our preliminary runs. It is clear, however, that the
real efficacy of the ontological semantic approach
to automatic sanitizing of text will have to be mea-



sured more carefully in full-fledged testing and
evaluation procedures, and we are working on
subjecting the system to several such procedures,
common to IAS, at the earliest stage of completion.

It is noteworthy here also that other, non-NLP-
related emerging paradigms in IAS are beginning
to develop a need for ontologies, for instance, for a
consistent and meaningful formal representation
and classification of attacks and responses (see
Templeton and Levitt, this volume). Such para-
digms can gain from the substantial body of
knowledge on the acquisition, mathematical prop-
erties, and effective interchange of ontologies (see,
for instance, Nirenburg and Raskin 2001, Ch. 3.3).

6. Conclusion
We have discussed just four possible venues for
utilizing the available NLP expertise and resources
for IAS. While all these directions were addressed
in the exploratory mode, the techniques of simpli-
fied NLP text generation have already been
adapted for and implemented for the development
of mnemonic devices for strong, random-gener-
ated system-access passwords; the innovative and
promising techniques of severely constrained NLP
text generation are being developed for water-
marking; and the techniques of ontological seman-
tics are being applied to and modified for
downgrading sensitive textual information in
mixed networks. We fully expect other applica-
tions of NLP for IAS to develop in the process of
cooperation between these two areas and to con-
tribute to innovative twists in enhancing computer
information assurance and security.
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Appendix 1: Natural Language and NLP
‘Natural language’ is the term used to denote all
human languages that have evolved in the course
of human history and been used monolingually to
serve fully the needs of the communities that
employ them. There are around 5,600 extant natu-
ral languages, e.g., live languages and dead lan-
guages, for which there are records and/or
descriptions 

Natural language is the basis of all human activity
and, therefore, an important component of many
fields of study. The main discipline, however,
which studies natural language as a universal
human faculty and the most observable function of
the human mind is linguistics. One of the most
ancient academic disciplines, dating back several
millennia and associated closely, in antiquity, with
the study of foreign languages and preservation of
dying languages and sacred texts in them, linguis-
tics finally won its independence from such related
fields as philosophy, theology, and philology early
in the 19th century by developing a particular his-
torical domain that was of little interest to other
fields, viz., the study of language families and,
later in the century, reconstruction of ancestor lan-
guages, such as proto-Indo-European, with the
help of a well-defined methodology based on a
systematic comparison of germane words in
descendant languages.

This emphasis on precise methodologies served
linguistics well in the 20th century when a momen-
tum for an algorithmic, mathematicalized study of
language developed in the 1920s, with the advent
of structuralism and the subsequent emphasis on
synchronic description of language, largely at the
expense of its historical exploration. The American
branch of structural linguistics, Leonard Bloom-
field’s descriptive linguistics, became most influen-
tial in the 1940-1950s after introducing a near-
algorithmic procedure for a field description of an
unknown language, starting with the collection of
a corpus and continuing with the recursive appli-
cation of the segmentation and distribution proce-
dures from the lower to higher levels of language
structure.

These levels define the central subdisciplines of
linguistics. Phonetics and phonology study the



sound of language: the former empirically so and
the latter theoretically. Morphology studies such
parts of the words as the root, prefix, suffix, and
infix, as well as the words themselves and their
groupings into parts of speech, such as nouns,
verbs, prepositions, etc. Syntax is concerned with
the complex organization of words into phrases,
clauses, and sentences. Semantics deals with the
meaning in natural language; pragmatics with
meaning in context. 

The mathematicalization, or more accurately, for-
malization of linguistics was institutionalized by
Noam Chomsky in the late 1950s, whose twofold
contribution included the development of the the-
ory of formal grammars as a branch of mathemati-
cal logic and of transformational generative
grammar as an implementation of a formal gram-
mar. A finite set of several types of grammatical
rules is postulated as the syntax of a language, and
the syntactic structure of each sentence in the lan-
guage is a formal derivation resulting from a con-
secutive application of a subset of these rules to the
initial symbol S (sentence). 

The primary function of natural language is com-
munication among humans. There are several dif-
ferent modes of human-human communication. It
is customary, after Paul Grice’s influential work in
the 1950-70s, to think of the fact-conveying, bona-
fide mode of communication as primary. In this
mode, the speaker and hearer are committed to the
literal truth of what is said. A slight and necessary
extension of the mode allows such non-literal
devices as metaphors and implicatures as long as
the speaker makes it clear to the hearer how the
utterance is to be understood. This mode is based
on complete linguistic cooperation—and trust—
between the speaker and hearer. Other, non-bona-
fide modes of communication, such as humor,
play-acting, advertising, propaganda, and lying,
have their own principles of cooperation but none
of the modes implies a commitment to the truth of
what is being said.

All of these modes have to contend with two
essential characteristics of natural language that
complicate human-human communication,
namely, underspecification, sometimes rather mis-
leadingly referred to as ‘vagueness,’ and ambigu-
ity. Underspecification of reality by language
means simply that no utterance is capable of con-
taining all the details of the situation it attends to
describe. Thus, when the speaker says, “John was
late for the calculus class this morning,” those
hearers who know who John is and what calculus
class is meant will have a feeling of complete
understanding. The sentence, however, leaves an
infinite number of questions unanswered, and
humans intuitively use presuppositions (prior

knowledge) and inferences (subsequent, derived
knowledge) to answer these questions in their own
minds. 

Underspecification is accepted by native speakers
(and hearers) as a fact of life and is rarely com-
mented upon or much researched. (It cannot, how-
ever, be accepted by the computer.) Ambiguity is a
different matter: much of what native speakers do
with language is a pretty sophisticated and almost
entirely unconscious procedure of disambiguation.
The fact is that just about every word in a natural
language has multiple meaning, many syntactic
structures can be analyzed in two or more ways,
and as an obvious result of that, sentences, which
are made up of words put together by syntactic
structures, tend to be at least potentially many
ways ambiguous. Thus, the much-analyzed sen-
tence The man hit the colorful ball is believed to be 4-
way ambiguous; the specially concocted of hack-
neyed semantic examples The paralyzed bachelor hit
the colorful ball is 25-way ambiguous.

Native speakers negotiate this potentially disas-
trous situation skillfully by using sentences in dis-
ambiguating contexts and by providing to the
hearers the extra information needed to under-
stand each sentence in the intended meaning. Sure
enough, this sometimes falls through and misun-
derstandings occur, but because these are unac-
ceptable to speakers, every effort is made, in the
process of Gricean cooperation, to prevent ambigu-
ity from affecting comprehension. The problem of
ambiguity, along with the matching problem of
underspecification looms much more seriously in
NLP.

Much, if not already most human productive activ-
ity is conducted now with the help of computers.
Human-computer interaction and the human-fac-
tors aspect of computer development and use
have, therefore, achieved paramount importance.
NLP is the application of linguistics to the study of
these phenomena through its application. NLP
designs and implements automatic systems that,
typically, take text in a natural language as input,
process it according to the predefined tasks, and
then generate output, which may be in the same or
another natural language or in some other stipu-
lated format, such as, for instance, a database
report or a chart.

Historically, the first task, for which NLP was used
in the early 1950s, was machine translation (MT)
between pairs of such best-known and –described
languages as English and Russian or English and
French. While realizing the impossibility of simple
word-for-word translation and devising an inge-
nious system of overcoming this difficulty syntacti-
cally, MT soon ran into the “semantic barrier”: it



became clear to the MT pioneers that no high-qual-
ity fully automatic translation was possible with-
out building the understanding of the text into the
system, and this was not considered feasible at the
time—to some extent, because of ambiguity and
underspecification. As a result, MT degraded to
human-assisted post-editor based systems, some
of which were found to be practically useful
enough to last for decades, and even to machine-
aided translation systems, in which humans per-
formed all the intellectual tasks and computers
performed simple but time-consuming tasks, such
as dictionary look-ups. This temporary collapse of
MT as a naive ambitious goal of replacing a huge
army of expensive human translators and inter-
preters with machines gave both MT and NLP a
bad name in other fields in the 1960-70s, which
persisted longer than it should have in spite of the
crucial changes in NLP and crucially contributed
to the myth of the non-feasibility of NLP that we
mentioned in Section 1.

In the mid-1980s, however, MT started making a
spectacular comeback as a knowledge-based,
meaning-oriented application. This was due partly
to progress in general AI and partly to the increas-
ing role of computational semantics, which has
moved from the fledgling efforts of its pioneers in
the 1970s to the breakthrough developments of the
early 1990s in handling ambiguity and underspeci-
fication and on to its currently dominant position
in NLP. Contrary to the prevalent NLP ideology of
the late 1960s-late 1980s, when an enormous
amount of talent, effort, and funds were invested
in avoiding computational semantics, usually
through increasingly detailed syntactic parsing,
the current state of the art easily assumes the
necessity for the computer to understand the
meaning of the text it processes. This makes it pos-
sible to diversify NLP applications to intelligent
information retrieval and Web searches, automatic
abstracting, summarization, etc. In computational
semantics, input text is converted into its meaning
representation at the required level of granularity,
the system manipulates these representations
according to the prescribed task and then converts
them into natural language text or any other for-
mat. It is the meaning-based ontological-semantic
approach that we apply to AIS in our research.

NLP can be seen, in security terms, as the effort of
decoding the meaning of a text from its surface
form, something that the German team failed to
achieve with Navajo texts in World War II. What
the team lacked was the knowledge of the lan-
guage and not, unlike in “ordinary codes,” some
sophisticated combinatorics of a reasonably high
order of mathematical complexity. There is, of
course, a key to this code but it amounts to the
entire structure of the language from its phonologi-

cal level up to the pragmatical level of meaning in
context, and an NLP system can be only successful
if it is based on all this knowledge, which is rather
hard to describe and present formally. But these
difficulties, which NLP has had to contend with for
decades, become an advantage in AIS if the lan-
guage structure is used to encode, to encrypt the
transmitted message. This is the updated and
upgraded intuition, much expanded from the
Navajo incident and reinforced with NLP, that
underlies all of our venues of NLP/AIS research.

Appendix 2. A Sketch of Ontological Semantics
Ontological semantics is an approach to NLP
which uses a constructed world model, or ontol-
ogy, as the central resource for extracting and rep-
resenting meaning of natural language texts as
well as synthesizing natural language texts based
on representations of their meaning. The architec-
ture of a prototypical application of ontological
semantics comprises, at the most coarse-grain level
of description, 

• a set of static knowledge sources, namely, a 
single language-independent ontology and a 
lexicon connecting the ontology with a natural 
language (one such lexicon is needed for each 
language in an application), so that each 
lexical entry is explicitly anchored in the 
ontology, pointing to a node in it or a property 
of a node;

• knowledge representation languages for 
specifying meaning structures, ontologies and 
lexicons; and 

• a set of processing modules, namely, a 
semantic analyzer and a semantic text 
generator.

In ontological semantics, the module that produces
specifications of input for a text generator is the
semantic analyzer. This means that ontological
semantics directly supports such applications as
machine translation of natural languages. How-
ever, the approach in principle supports other
applications, such as information extraction, text
summarization, support of networks of human
and software agents, etc. An additional reasoning
module that a) manipulates meaning representa-
tions produced by the analyzer; and b) uses other
methods of producing meaning representations fit
to be inputs to semantic generation can be added
to the basic architecture. The static knowledge
sources in ontological semantics are capable of
serving the knowledge needs of such a module.

Any large, practical, multilingual computational-
linguistic application, such as machine translation,
requires many knowledge and processing modules
integrated in a single architecture and control envi-



ronment. For maximum output quality, such com-
prehensive systems must have knowledge about
speech situations, goal-directed communicative
actions, rules of semantic and pragmatic inference
over symbolic representations of discourse mean-
ings and knowledge of syntactic, morphological
and phonological/graphological properties of par-
ticular languages. Heuristic methods, extensive
descriptive work on building world models, lexi-
cons and grammars as well as a sound computa-
tional architecture are crucial to the success of this
overall paradigm. Ontological semantics is respon-
sible for a subset of these capabilities. The
approach is also based on the important assump-
tion that it is possible to integrate processing mod-
ules based on unconnected theories through
matching their input and output structure formats.

Historically, ontological semantics has been devel-
oped by two of the coauthors and their associates
in several completed NLP projects at Colgate Uni-
versity, Purdue University, Carnegie Mellon Uni-
versity, and New Mexico State University in 1982-
1995. It has also been used in the current Expedi-
tion/Boas, MINDS, Savona, and TIDES projects at
CRL (http://crl.nmsu.edu/). The goals of the prac-
tical semantic theory for NLP are somewhat com-
patible with and intersect the claimed goals of
some other approaches to purely theoretical com-
positional semantics. There are also important dif-
ferences along at least the following two
dimensions: a) the domain of the theory (e.g., lexi-
cal and compositional semantics, syntax, morphol-
ogy, pragmatics, reasoning); and b) the degree to
which the theory has been actually developed
through language description and computer sys-
tem construction. Ontological semantics is also
indebted to the various approaches to processing
meaning in artificial intelligence, among them con-
ceptual dependency, preference semantics, proce-
dural semantics and related approaches. 

Our theoretical work in semantics is devoted to
developing not so much a general semantic theory
but rather a semantic theory for natural language
processing. Therefore, issues of text meaning rep-
resentation, semantic (and pragmatic) processing
and the nature of background knowledge required
for this processing are among the central topics of
our effort. A number of differences exist between
the mandates of general semantic theory and
semantic theory for NLP. In what follows we sug-
gest a number of points of such difference. 

While it is agreed that both general and NLP-
related theories must be formal, the nature of the
formalisms can be quite different because different
types of reasoning must be supported. A general
linguistic theory must ensure a complete and equal
grain-size coverage of every phenomenon in the

language; an NLP-related theory analyzes only as
much as is needed for the purposes of a particular
application. The ultimate criterion of validity for a
general linguistic theory is explanatory adequacy;
for an NLP-related theory it is the success of the
intended application. A general linguistic theory
can avoid complete descriptions of phenomena
once a general principle or method has been estab-
lished. A small number of clarification examples
will suffice. In NLP the entire set of phenomena
present in the sublanguage of an application must
be covered exhaustively. A general linguistic the-
ory has to be concerned about the boundary
between linguistic and encyclopedic knowledge.
This distinction is spurious in NLP-oriented
semantic theories because in order to make seman-
tic (and pragmatic) decisions a system must have
access equally to both types of data.

While a general linguistic theory can be method-
driven, that is, seek ways of applying a description
technique developed for one phenomenon in the
description of additional phenomena (this reflects
the predominant view that generalization is the
main methodology in building linguistic theories),
an NLP-related theory should be task-driven—
which means that adequacy and efficiency of
description takes precedence over generalization.

As any semantic theory for natural language pro-
cessing, ontological semantics must account for the
processes of generating and manipulating text
meaning. An accepted general method of doing
this is to describe the meanings of words and, sep-
arately, specify the rules for combining word
meanings into meanings of sentences and, further,
texts. Hence the division of semantics into lexical
(word) semantics and compositional (sentence)
semantics. Semantics for NLP must also address
issues connected with the meaning-related activi-
ties in both natural language understanding and
generation by a computer. While the semantic pro-
cessing in these two tasks is different in nature—
for instance, understanding centrally involves res-
olution of ambiguity while generation deals with
resolution of synonymy for lexical selection—the
knowledge bases, knowledge representation
approaches and the underlying system architec-
ture and control structures for analysis and genera-
tion can be, to a realistic degree, shared.

In ontological semantics, the text-meaning repre-
sentation (TMR) is derived through:

• establishing the lexical meanings of individual 
words and phrases comprising the text; 

• disambiguating these meanings;
• combining these meanings into a semantic 

dependency structure covering 
– the propositional-semantic content, in-



cluding causal, temporal and other rela-
tions among individual statements;

– the attitudes of the speaker to the propo-
sitional content; and 

– the parameters of the speech situation;
• filling any gaps in the structure based on the 

knowledge instantiated in the structure as 
well as on ontological knowledge.

The final result of the process of text understand-
ing may include some information not overtly
present in the source text. For instance, it may
include results of reasoning by the consumer,
aimed at filling in elements required in the repre-
sentation but not directly obtainable from the
source text. It may also involve reconstructing the
agenda of rhetorical goals and plans of the pro-
ducer active at the time of text production and con-
necting its elements to chunks of meaning
representation. 

Early AI-related natural language understanding
approaches were criticized for not paying attention
to the halting condition of meaning representation.
They were open to criticism because they did not
make a very clear distinction between the informa-
tion relayed in the text and information retrieved
from the understander’s background knowledge
about the entities mentioned in the text. This criti-
cism is only valid when the program must apply
all possible inferences to the results of the initial
representation of text meaning and not when a
clear objective is present, such as resolution of
ambiguity relative to a given set of static knowl-
edge sources, beyond which no more processing is
required.

It follows that the meaning is, on this view, a com-
bination of the information directly conveyed in
the NL input; the (agent-dependent and context-
dependent) ellipsis-removing (lacuna filling) infor-
mation which makes the input self-sufficient for
the computer program to process; and pointers to
any background information which the system
expects might be brought to bear on the under-
standing of the current discourse, the formation of
a record (a “memory”) of the discourse in the dis-
course participants’ episodic memory or genera-
tion of further discourse turns. 

Additionally, text understanding in this approach
includes detecting and representing a text compo-
nent as an element of a script/plan or determining
which of the producer goals are furthered by the
utterance of this text component. We stop the anal-
ysis process when, relative to a given ontology, we
can find no more producer goals/plans which can
be furthered by uttering the sentence. But first we
extract the propositional meaning of an utterance

using our knowledge about selectional restrictions
and collocations among lexical units. If some
semantic constraints are violated, we turn on
metonymy, metaphor and other ``unexpected''
input treatment means. After the propositional
meaning is obtained, we actually proceed to deter-
mine the role of this utterance in script/plan/goal
processing. In doing so, we extract speech act
information, covert attitude meanings, and eventu-
ally irony, lying, etc.

There is a tempting belief among applied computa-
tional semanticists that in a practical application,
such as MT, the halting condition on representing
the meaning of an input text can, in many cases, be
less involved than the general one. The reason for
this belief is the observation that when a target lan-
guage text is generated from such a limited repre-
sentation, one can in many cases expect the
consumer to understand it by completing the
understanding process given only partial informa-
tion. Unfortunately, since without human involve-
ment there is no way of knowing whether the
complete understanding is, in fact, recoverable by
humans, it is, in the general case, impossible to
posit a shallower (and hence more attainable) lev-
els of understanding. To stretch the point some
more, humans can indeed correctly guess the
meaning of many ungrammatical, fragmentary
and otherwise irregular texts. This, however, does
not mean that an automatic analyzer, without spe-
cially designed extensions, will be capable of
assigning meanings to such fragments—their
semantic complexity is of the same order as that of
“regular” text.
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