
CERIAS Tech Report 2001-102
A Transaction Model for Improving Data Availability in Mobile Computing

 by S Madria, B Bhargava
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



Distributed and Parallel Databases, 10, 127–160, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Transaction Model to Improve Data Availability
in Mobile Computing

SANJAY KUMAR MADRIA madrias@UMR.edu
Department of Computer Science, University of Missouri-Rolla, MO, USA

BHARAT BHARGAVA bb@cs.purdue.edu
Department of Computer Sciences, Purdue University, West Lafayette, IN, USA

Recommended by: Jin Jing

Abstract. We incorporate a prewrite operation before a write operation in a mobile transaction to improve data
availability. A prewrite operation does not update the state of a data object but only makes visible the future
value that the data object will have after the final commit of the transaction. Once a transaction reads all the
values and declares all the prewrites, it can pre-commit at mobile host (MH) (computer connected to unreli-
able mobile communication network). The remaining transaction’s execution (writes on database) is shifted to
the mobile service station (MSS) (computer connected to the reliable fixed network). Writes on database con-
sume time and resources and are therefore shifted to MSS and delayed. This reduces wireless network traffic
congestion. Since the responsibility of expensive part of the transaction’s execution is shifted to the MSS, it also
reduces the computing expenses at mobile host. A pre-committed transaction’s prewrite values are made visible
both at mobile and at fixed database servers before the final commit of the transaction. Thus, it increases data avail-
ability during frequent disconnection common in mobile computing. Since a pre-committed transaction does not
abort, no undo recovery needs to be performed in our model. A mobile host needs to cache only prewrite values
of the data objects which take less memory, transmission time, energy and can be transmitted over low band-
width. We have analysed various possible schedules of running transactions concurrently both at mobile and fixed
database servers. We have discussed the concurrency control algorithm for our transaction model and proved that
the concurrent execution of our transaction processing model produces only serializable schedules. Our perfor-
mance study shows that our model increases throughput and decreases transaction-abort-ratio in comparison to
other lock based schemes. We have briefly discussed the recovery issues and implementation of our model.

Keywords: prewrite, mobile transaction, pre-commit, data availability

1. Introduction

Technological advances in cellular communications, wireless LAN and satellite services
have led to the emergence of mobile computing, also called nomadic computing [12, 26].
As the technology advancing, millions of users carry portable computer and communicator
devices that use a wireless connection to access world-wide global information network.
Wide area and wireless computing suggest that there will be more competition for shared
data since it provide users with ability to access information and services through wireless
connections that can be retained even while the user is moving. Further, mobile users will
have to share their data with others. The task of ensuring consistency of shared data be-
comes more difficult in mobile computing because of limitations of wireless communication



128 MADRIA AND BHARGAVA

channels and restrictions imposed due to mobility and portability [22]. Some of the problems
involved in supporting transaction services and distributed data management in a mobile
environment have been identified in [36]. The access to the information systems through
mobile computers will be performed with the help of mobile transactions. However, a trans-
action in this environment is different than the transactions in the centralized or distributed
databases in the following ways.

• The mobile transactions are long-lived transactions due to the mobility of both the data
and users, and due to the frequent disconnection.

• The mobile transactions might have to split their computations into sets of operations,
some of which execute on mobile host while others on MSS. A mobile transaction shares
their states and partial results with other transactions due to disconnection and mobility.

• The mobile transactions require computations and communications to be supported by
mobile service stations (MSS).

• As the mobile hosts move from one cell to another, the states of transaction, states of
accessed data objects, and the location information also move.

• The mobile transactions should support and handle concurrency, recovery, disconnection
and mutual consistency of the replicated data objects.

In general to support mobile computing, the transaction processing models should
accommodate the limitations of mobile computing such as unreliable communication, lim-
ited battery life, low band-width communication and reduced storage capacity. Mobile com-
putations should minimize transaction aborts due to disconnection. Operations on shared
data must ensure correctness of transactions executed on both stationary hosts (computer
connected to the fixed network) and mobile hosts. The blocking of a transaction’s execution
on either the stationary or mobile hosts must be minimized to reduce communication cost
and to increase concurrency. Proper support for mobile transactions must provide for local
autonomy to allow transactions to be processed and committed on the mobile host despite
temporary disconnection.

Many concurrency control protocols [4] are based on the notion of locks where a data
object in the database can be accessed only after a lock on that object has been acquired
for the duration of the read or writes. That is, a read (write) operation can be executed
only after a read (write)-lock is obtained. After acquiring the lock, the transaction executes
its operation and then may release the locks. Since read operations do not conflict, many
read transactions may share the read-lock on an object but sharing is not permitted if one
of the locks is a write-lock. The above design is more suitable for database management
systems that support short-duration transactions that read and write data objects for a short
period of time. However, in case of long-duration transactions such as in mobile computing,
the concurrency control algorithms based on above protocols suffer from performance
degradation. Due to isolation requirements, the data items held by long transactions at
mobile service station can not be released until the transaction commits. Therefore, once
the transaction acquires a write-lock at mobile service station, the other transactions at
mobile host may have to wait for very long before they get the lock. Thus, if short-duration
transactions at mobile host want to read some data items held by a long-lived transaction at



A TRANSACTION MODEL 129

mobile service station, it will end up waiting for the long-lived transaction to commit. Also,
if a transaction is considered as a basic unit of work, a significant amount of work may
be lost in case of a failure. Therefore, it is desirable to make the response of a system fast
particularly for read-only transactions. Also, the system should not delay short-duration
transactions at mobile host due to the presence of long transactions at mobile service
station.

Our objective in this paper is to discuss a mobile transaction processing model which
increases data availability at mobile and stationary hosts, and at the same time can cope
with problems discussed before. More specifically, our model supports both short and
long transactions without blocking or aborting short-transactions. Our concurrency control
protocols though use locks but it is optimistic in nature with no cascading aborts. Our
system ensures serializability and ACID properties [6] for mobile database applications.
We introduce a prewrite operation before a write operation in the transaction model. The
operations in our mobile transaction processing model are pre-read, read, prewrite, pre-
commit and commit. The semantics of these operations are explained below.

• Each mobile transaction has a prewrite operation before a write operation. A prewrite
operation makes visible (the exact or abstract) the value the data object will have after
the commit of the transaction.

• Once all the prewrites have been processed, the mobile transaction pre-commits at mobile
host. A pre-committed transaction’s results are made visible at mobile and stationary hosts
before the final commit. This minimizes the blocking of other transactions to increase
concurrency.

• The transaction continues its execution at mobile host by announcing prewrite values
and then shifts the resource consuming part of the transaction’s execution (updates of the
database on disk) to the MSS. This reduces the computing cost on the mobile host.

• A pre-committed transaction is guaranteed to commit. This feature of our model avoids
an undo or compensating transaction, which is costly in mobile computing.

• A pre-read returns a prewrite value whereas a read returns a write value.
• The transactions are serialized based on their pre-commit order. This feature of our model

saves some computing cost as transactions which can not be serialized or deadlocked are
aborted before pre-commit.

• Our model deals efficiently with the other constrained resources in mobile computing
environment such as limited bandwidth and transmission time. For example, prewrite
values are much smaller in size than the complete object and thus, they consume less
bandwidth and transmission time.

Further to the discussion of the prewrite transaction model, we discuss the concurrency
control algorithm, which control the concurrent execution of operations in our model.
We have introduced one more type of lock (prewrite-lock) other than usual read- and
write-locks. A prewrite-lock is converted to write-lock after pre-commit. Since two phase
locking is widely implemented and accepted, our transaction model is implemented over
that. However, only two phase locking is not sufficient to guarantee the correct execution
in our model. Thus, we introduce one extra condition in order to ensure correct execution



130 MADRIA AND BHARGAVA

of concurrent transactions. This extra condition ensures that a transaction can not acquire
any other lock after its lock-type is updated to another lock-type.

We discuss some interesting schedules that can occur in our transaction model. In par-
ticular, we show that a schedule with a prewrite operation is same as the schedule without
a prewrite operation in case of simple data objects (i.e., a field value in a record). We for-
mally discuss our transaction model and prove the correctness by showing that all possible
schedules are serializable using serializability- based theorems. In addition, our simulation
study shows that our concurrency control algorithm performs better in terms of throughput
and transaction-abort-ratio with respect to other locking schemes [1, 10, 32]. Briefly, we
have outlined the recovery issues and implementation of our model.

The rest of the paper is organized as follows. Section 2 outlines the mobile architecture
and review some of the existing work in mobile transaction processing models. In Sec-
tion 3, we discuss the transaction model using prewrites. Section 4 proposes a prewrite
mobile transaction model. In Section 5, we discuss concurrent operations and locking al-
gorithm. We discuss in Section 6 some serializable schedules. In Section 7, we discuss
some recovery issues, summarise and analyse parameters which can affect our model and
briefly discuss the implementation. We study the performance in Section 8. We conclude in
Section 9.

2. Mobile architecture

In mobile database computing environment (see figure 1), the network consists of station-
ary or fixed hosts, mobile support stations (MSS) connected to stationary database servers
and mobile hosts [12]. A mobile host (MH) changes its location and network connec-
tions while computations are being processed. While in motion, a mobile host retains its

Figure 1. Mobile architecture.



A TRANSACTION MODEL 131

network connections through the support of MSS with wireless connections. Each MSS
has a coordinator which receives a transactions’s operations from MH and monitor their
execution in database servers within the fixed networks. These MSSs perform the trans-
action and data management functions with the help of transaction managers (TMs) and
data managers (DMs) at database servers, respectively. Each MSS is responsible for all
the mobile hosts within a given small geographical area, known as a cell. At any given
instant, a MH communicates only with the MSS responsible for its cell. A MH may have
some server capability to perform concurrency control and logging etc. Some MHs have
very slow CPU and very little memory and thus, they act as an I/O device only. Within this
mobile computing environment, shared data are expected to be stored and controlled by a
number of database servers executing on MSS.

The database server support basic operations such as read, write, prewrite, preread, pre-
commit, commit and abort operations. For a transaction’s execution at MSS, the MH sends
the transaction’s operations to the coordinator at MSS, which sends them to the database
servers within the fixed networks for execution. Similarly, the precommit and commit are
handled by the coordinator at MSS. A transaction’s operations may be submitted in multiple
request messages. A submission requests may be for one operation or a group of operations.
The subsequent requests are submitted once the previous steps are executed.

When a MH leaves a cell serviced by a MSS, a hand-off protocol is used to transfer
the responsibility for mobile transaction and data support to the MSS of the new cell. This
hand-off may involve establishing a new communication link. It involves the migration of
in progress transactions and database states from one MSS to another.

In mobile computing, there are several possible modes of operations. The operation mode
may be fully connected (normal connection), totally disconnected (it is not a failure of MH)
or partially connected (weak connection). Also, mobile computers may enter an energy
conservation mode, called doze state [27]. A doze state of MH does not imply the failure
of the disconnected machine.

2.1. Review of research ideas in mobile transaction processing

The mobile transaction processing is an active area of research [18, 36]. We outline some
of the existing ideas as follows.

• Semantic based transaction processing models [3, 31] have been extended for mobile
computing in [33] to increase concurrency by exploiting commutative operations. These
techniques require caching large portion of the database or maintain multiple copies
of many data items. In [33], fragmentability of data objects has been used to facilitate
semantic based transaction processing in mobile databases. The scheme fragments data
objects. Each fragmented data object has to be cached independently and manipulated
synchronously. This scheme works in the situations where the data objects can be frag-
mented like sets, aggregates, stacks and queues.

• In optimistic concurrency control based schemes [14], cached objects on mobile hosts
can be updated without any co-ordination but the updates need to be propagated and
validated at the database servers for the commitment of transactions. This scheme leads



132 MADRIA AND BHARGAVA

to aborts of mobile transactions unless the conflicts are rare. Since mobile transactions
are expected to be long-lived due to disconnection and long network delays, the conflicts
will be more in mobile computing environment.

• In pessimistic schemes, cached objects can be locked exclusively and mobile transac-
tions can be committed locally. The pessimistic schemes lead to unnecessary transac-
tion blocking since mobile hosts can not release any cached objects while it is discon-
nected. Existing caching methods attempt to cache the entire data objects or in some
case the complete file. Caching of these potentially large objects over low bandwidth
communication channels can result in wireless network congestion and high communi-
cation cost. The limited memory size of the MH allows only a small number of objects
to be cached at any given time.

• Dynamic object clustering has been proposed in mobile computing in [27, 28] using
weak-read, weak-write, strict-read and strict-write. Strict-read and strict-write have the
same semantics as normal read and write operations invoked by transactions satisfying
ACID properties [4]. A weak-read returns the value of a locally cached object written
by a strict-write or a weak-write. A weak-write operation only updates a locally cached
object, which might become permanent on cluster merging if the weak-write does not
conflict with any strict-read or strict-write operation. The weak transactions use local and
global commits. The “local commit” is same as our “pre-commit” and “global commit”
is same as our “final commit” (see Section 3). However, a weak transaction after local
commit can abort and is compensated. In our model, a pre-committed transaction does
not abort and hence, requires no undo or compensation. A weak transaction’s updates are
visible to other weak transactions whereas prewrites are visible to all transactions. [15]
presents a new transaction model using isolation-only transactions (IOT). IOTs do not
provide failure atomicity and are similar to weak transactions of [27].

• An open nested transaction model has been proposed in [8] for modelling mobile trans-
actions as a set of subtransactions. The model allows transactions to be executed on
disconnection. It supports unilateral commitment of subtransactions and compensating
transactions. However, not all the operations are compensated [8], and compensation is
costly in mobile computing.

• A kangaroo transaction (KT) model was given in [9]. It incorporates the property that
transactions in a mobile computing hop from a base station to another as the mobile unit
moves. The mobility of the transaction model is captured by the use of split transaction
[29]. A split transaction divides an on going transaction into serializable subtransactions.
Earlier created subtransaction may commit and the second subtransaction can continue
its execution. The mobile transaction is splitted when a hop occurs. The model captures
the data behaviour of the mobile transaction using global and local transactions. The
model also relies on compensating transaction in case a transaction aborts. Our model
has the option of either using nested transactions or split transactions. However, the save
point or split point of a transaction is explicitly defined by the use of pre-commit. This
feature of the model allows the split point to occur in any of the cell. Unlike KT model,
the earlier subtransaction after pre-commit can still continue its execution with the new
subtransaction since their commit orders are based on pre-commit point in our model.
Unlike KT, our model does not need any compensatory transaction.



A TRANSACTION MODEL 133

• Transaction models for mobile computing that perform updates at mobile computers have
been developed in [8, 27]. These efforts propose a new correctness criterion [8] that are
weaker than the serializability. They can cope more efficiently with the restrictions of
mobile and wireless communications. Our motivation is to increase availability and at
the same time our model should remain within the correctness as defined by the classical
serializability theory.

• In [16, 17, 19, 21], prewrite operations have been used in nested transaction environment
to increase concurrency and to avoid undo or compensated operations. The notion of
a recovery point subtransaction has been introduced. In a nested transaction tree, if a
recovery-point subtransaction executed successfully, its effects are not to be discarded.
In this paper, we exploit some of these ideas in order to increase reliability and availability
in mobile computing environment.

3. Prewrite transaction model

In this section, we present the prewrite transaction model. We start the discussion of our
model with some formal definitions. We illustrate the model with the help of examples.
We briefly compare our prewrite transaction model with the transaction model handling
multiversions of data.

Definition 1. A prewrite operation announces the value that the data object will have after
the commit of the corresponding write operation. For example, a prewrite operation can
announce the value in the following format [file-name, record number, <field-name, new
value>] for a simple database application.

Definition 2. A transaction is called pre-committed if it has announced all the prewrites
values and read all the required data objects, but the transaction has not been finally com-
mitted (updates on database are not performed).

Definition 3. A pre-read returns a prewrite value of the data object whereas a read returns
the result of a write operation. A pre-read becomes a weak-read (in case the data objects
involved are not simple) if it returns a prewrite value even though the transaction that
announced the last prewrite has been finally committed. However, this weak-read should
not to be aborted. This makes our weak-read different from the weak-read of [27]. Note
that a transaction does not explicit contain a pre-read request. It is the system that returns a
prewrite value in response, which we represent and call pre-read.

Let us consider two examples to show how a prewrite operation can be adopted to increase
availability.

Example 1. Long-duration Transaction Application. Consider a construction company
that exhibit a “model-house” (a toy-house) for the types of houses it has planned to
construct. The “model-house” is shown to prospective customers. Consider a customer
who has decided to buy a house based on pre-view of the “model-house”. We designate
“house- construction” activity as house-construction transaction and “house-buying” ac-
tivity as house-buying transaction. Since the “house-construction” and “house-buying”



134 MADRIA AND BHARGAVA

transactions are very long, the pre-view of “model-house” helps both the construction
company and the customers in initiating other related transactions simultaneously. For
example, once the customer has decided to buy a house, he may go to the bank and
initiate a loan-application transaction after the pre-view of the “model-house”. His
loan-application transaction is based on the pre-read of model-house and can commit in-
dependent of final commit of the “house-construction” transaction. The “model-house”
corresponds to “prewrite version or value” for write operation of “house-construction” trans-
action and pre-view of “model-house” corresponds to pre-read operation of loan-application
transaction.

Example 2. Data Structure Application. Consider the deletion of a record when physical
pointers are in use in dynamic data structures consisting of records. If the space for the record
were de-allocated as a part of deletion transaction, the problems may come if the transaction
were to abort. For high concurrency, the storage allocation and de-allocation transactions
need to continue once space for the record was de-allocated but before the transaction
that de-allocated the space, is committed. As a result, the space may be allocated to other
records, making it impossible for earlier transaction to re-obtain it in case it aborts. In
case a new space is allocated for the record, the old pointers may no longer be valid. This
problem can be avoided using notion of our pre-commit operation. Once the transaction
announces the logical deletion (keep a pointer to the record being deleted), it can pre-
commit. A pre-committed transaction does not abort, therefore, deallocated space can be
used by others. The physical deletion of records (corresponds to final write) will be done
after pre-commit. Thus, there is no need to acquire and keep the lock on the storage allocator
until the transaction commits.

The transaction model using prewrite operations [17, 19] has the following features:

• Each prewrite operation makes visible the value the transaction will eventually write.
Prewrites may have different semantics in different environments. For example, in case
of simple data objects, the prewrite and write values may match exactly. For database
files, the prewrites may only contain primary-key values and the new values of the fields
of records. In case of design objects, prewrites may represent a model of the design.
However, the final design released for manufacturing may differ from prewrite design of
the model to some extent. For example, the final design may have a different colour shade
than the prewrite design model. In case of a document object, the prewrite may represent
an abstract of the detail document. For many applications, these small differences do
not matter. In such an environment, the correctness criteria can be based on epsilon-
serializability [30] which allows temporary and bounded inconsistencies in copies to be
seen by queries during the period among the asynchronous updates of the various copies
of a data item.

• Once the required data objects are read or pre-read and prewrites are computed, the
transaction pre-commits. A transaction is required to read or pre-read all the required
data objects before pre-commit because once a transaction releases a lock for a prewrite
operation, it can not get a lock for read operation due to the condition of two phase
locking [4]. After a pre-commit, the prewrites are made visible to other transactions



A TRANSACTION MODEL 135

Figure 2. Two concurrent transactions.

for processing. Initially, prewrites are kept in the transaction’s private workspace at the
transaction manager level. Once the transaction pre-commits, they are posted in the
prewrite-buffer. The data objects are always physically updated on the disk by the write
operation. The prewrites are handled at the transaction manager (TM) level whereas
physical writes are handled at the data manager (DM) level.

• The transactions commit order in the execution history of serializable transactions is
decided at the time of pre-commit action. Thus, conflicts and deadlocks can be detected
early.

• A transaction is not allowed to abort after the pre-commit. The prewrite operation pro-
vides non-strict execution without cascading aborts. In figure 2, T1 and T2 are two
subtransactions where pw(x), w(x), pr(x), and r(x) are the prewrite, write, pre-read and
read operations, respectively, for the data object x. Note that T2 pre-read the value written
by T1. Also, other transactions can get write values of T1 before it commits. The trans-
action T2 commits before T1. In case T1 aborts after T2 is commited, there will not be a
cascading abort. Since our model does not need “undo recovery” from transaction aborts,
no compensating transaction is to be executed. In case the pre-committed transaction is
forced to abort due to system dependent reasons such as system crash, the transaction
restarts on system revival. To restart a failed pre-committed transaction from the last
consistent state, prewrite and write logs are saved on stable storage [21].

• Our concurrency control algorithm is to be executed in two servers: For controlling pre-
read (i.e., read of prewrite value) and prewrite operations at TM server, and read (i.e.,
read of write value) and write operations at DM server. Since prewrite values are made
publicly visible after pre-commit, the lock-type held by the prewrite operation is con-
verted to the lock-type for write operation after pre-commit provided no conflicting locks
are held by other transactions. As before, the lock acquired for a prewrite operation is not
released after pre-commit because the two phase locking [4] does not allow a transaction
to acquire a lock after the transaction has released some locks.

• Our model relaxes the isolation property as the prewrites are made visible after
pre-commit but before the final commit of the transaction. Also, durability of prewrites
are guaranteed at the pre-commit point.

• The formal prewrite transaction processing algorithm is given below in figure 3.

3.1. Multiversions verses prewrites

Multiversions of data have been used for historical purposes as well as for issues related
to the transaction management. Versions can substantially impact the level of concurrency.



136 MADRIA AND BHARGAVA

Figure 3. Prewrite transaction processing algorithm.



A TRANSACTION MODEL 137

Table 1. Operation compatibility matrix.

Pre-read Read Pre-write Write

Pre-read Yes Yes No Yes

Read Yes Yes No No

Pre-write No Yes No Yes

Write Yes No Yes No

Many multiversion concurrency control algorithms [4, 11] use bounded number of versions
for the data items to improve the performance of transaction processing. These schemes fall
into two categories called mixed and pure multiversions. The mixed multiversions [2, 6, 7,
34] have two types of transactions, i.e., the read-only transaction and update transaction.
The read only transactions read the old but consistent versions while update transactions
manipulate only “current” version via two phase locking. However, the increase in the size
and frequency of the updates limits the performance of the systems in case only “current”
versions are available for their synchronization. Also, read-only transactions always read
out-of-date data. This scheme may work well in mobile scenario if one allows only reads
to occur at mobile host and writes at mobile service stations. Moreover, reads are also al-
lowed to return out-of-date data, which however may not be accepted in many applications.
Pure multiversions schemes using two phase locking [4, 13] utilizes the versions to allow
the concurrent execution of the conflicting transactions. Since the concurrent access of the
conflicting read-write actions is allowed on different versions of a data item in unrestricted
fashion, the execution of a transaction must be validated before it can commit. In this case,
the effort in executing the transaction that fails validation is wasted. This situation is un-
desirable in mobile computing as transactions are long. Pure multiversions are optimistic
concurrency control schemes and aborts due to failed validation grows rapidly and there-
fore, performance becomes more prominent in mobile computing as the size of transaction
grows.

In our prewrite transaction model, we have two versions of a data item; prewrite and
write. However, the prewrite version does not represent the previous or old version of the
current data version (write value), but it represents either a copy of the current version
(exact) or the abstract value of the future write version. Reads in our model returns ei-
ther the current version or an abstract value of the current version, which is not an old
value. Therefore, the prewrite version or value in our model is different from the ver-
sion concept in multiversions schemes. In our model, there is no validation phase in order
to commit a transaction. Instead, we have introduced another phase which we call pre-
commit, after which a transaction does not abort (if it is forced-abort, then it restarts). The
main idea is that with the given mobile computing constraints, a transaction model has
to be balanced to cope with limited resources but at the same time enhance availability.
We also want to maintain the autonomy of the mobile host with respect to read and write
operations.

[24] presents an optimistic multiversion concurrency control mechanism where multiver-
sions are applied to the concepts of commutativity introduced by Weihl [35]. In our model,



138 MADRIA AND BHARGAVA

we show that a general commutativity exists between a pre-read and write operation in case
data object is simple.

4. Mobile transaction processing with prewrites

In this section, we see how prewrites can be adapted in the mobile transaction processing
environment to improve availability. We discuss two cases with examples.

Case 1: MH has limited server capability to do some transaction processing, logging, and to
execute pre-commits. Here we consider that mobile hosts have a high speed CPU along
with some disk storage capabilities. This enables us to place some data locally at MH and
manage some part of the transaction execution at MH. The data at MH are accessed by the
mobile applications. Lock requests on the data objects are obtained by a request to MSS
before processing.

In our mobile transaction model, a transaction begins its execution at mobile host (MH).
When a transaction arrives at MH, the transaction’s read requests are processed at MH with
the consistent cached prewrite values of the data objects. For remaining reads, for which
the MH has no consistent cached prewrite values of the data objects, the MH sends request
to the MSS. When a read-only transaction arrives at MSS, it returns the prewrite values in
response. If prewrite versions are not available at the server, the write values are returned.
In case the values returned are prewrite values at MSS, the MSS identifies each value as a
prewrite version. In case the transaction needs the version after the write, it has to initiate
a read again. Once all the requested reads are processed by MSS and received by MH, the
transaction declares all the prewrite values for the data objects at MH and pre-commits.
A pre-committed transaction’s execution is then shifted from mobile host to the stationary
database servers for the completion of its remaining execution. This moves the expensive
part of the mobile transaction execution to the static network. At the stationary host, the
transaction makes the disk updates for all the data objects for which the prewrite values
and pre-commit have been declared earlier and then it commits (see figure 4). Thus, the
prewrite values of the data objects are made visible by MSS to other MHs and MSSs before
those data objects are finally updated at the stationary host. This increases the concurrency
among parallel running transactions at various MHs and MSSs. Prewrites are stored in the
transaction’s private workspace at MH and on pre-commit, are moved to MH’s disk as well
as to the MSS. Once updates have been made at MSS, the transaction finally commits at
MSS. Note that once the transaction pre-commits, it does not abort. A transaction’s commit
is then communicated to MH. On receiving the commit acknowledgement, MH can clear
all its logs. The formal mobile transaction-processing algorithm is given in figure 5 after
the discussion on concurrent operations and locking.

Example 3. Real-time Application. Consider a newspaper reporter who is travelling in his
van equipped with a mobile computer (thus, acts as a mobile host). Suppose while travelling

Figure 4. Transaction processing in mobile computing.



A TRANSACTION MODEL 139

Figure 5. Mobile transaction processing algorithm.



140 MADRIA AND BHARGAVA

he encounters an accident site which he would like to report immediately. He does this by
initiating a reporting transaction that consists of a “headline-report” about the accident. He
sends it to the newspaper office (acts as a MSS). The newspaper office immediately displays
the headline-report on their web page as well as on electronic bulletin board. The reporter at
the first instance did not prepare and send the full report due to the following reasons. At the
time of reporting, the wireless connection might be weak, or he noticed the wireless network
congestion or his mobile computer might be running out of battery power. Headline-report
reduces the blocking of other transactions at stationary host (MSS), as it may suffice the
requirement of many other related transactions. For example, based on headline-report,
some transactions like reservation of beds in hospitals for victims, and transactions for seat
reservations in airlines for the relatives to travel to the accident site can be initiated. Also,
once the headline-report arrived at MSS, the reporting transaction’s remaining execution
is shifted to the MSS to file the complete report. There are two possibilities to complete
the report. The newspaper office (MSS) may contact some other reporter in that area to go
to the accident site physically and complete the report. The reporter with mobile computer
can also prepare the complete report at the time of disconnection (i.e., lunch time) or during
weak connections. Thus, MSS can deal effectively with the situations like failure of MH or
in case the mobile host has crossed the cell or is in doze mode. At the time of reconnection,
the complete report would be incorporated into the database. The “headline-report” can
also to be transmitted to other base stations in the fixed network so that transactions there
can also be executed without delay.

In context of our transaction model, the reporting transaction has two parts. The first part
consists of “headline-report” and the second part is the final “detailed-report”. The headline-
report corresponds to the prewrite version of our transaction model and the “detailed-report”
is the final write. Once the report reaches at MSS, it denotes the completion of pre-commit
of the reporting-transaction. Once the headline-report pre-committed, the reporter can not
contradict it. However, he can make some changes such as casualty figures etc. This is in
accordance to our notion of pre-commit. The benefits of enforcing pre-commit is that in
such real-time situations transactions rarely abort (i.e., headline-report was a hoax).

Case 2: MH has very slow CPU and small memory, thus acts as an I/O device only. Due to
weight and size restrictions, the MH may have few resources. For example, very slow CPU
and small memory. In this scenario, MH can not do any major computation and rely on static
MSS. The MSS executes the steps and sends the result to the MH. The main disadvantage
is that the transaction execution is possible only when MH is connected to the MSS. Due
to the slow communication and low bandwidth, the response time of the operations of the
transactions is more.

In case the mobile host can not execute the transaction at MH (i.e., MH only acts as I/O), it
can submit the transaction to the MSS. The server at MSS returns all the required values and
declares all the prewrite values at the database servers in the fixed network corresponding
to the write operations. After the transaction pre-commits, the prewrite values are send to
the mobile host and at the same time, the rest of the transaction starts executing at the MSS.
Once the transaction commits finally, it reports back to MH. In this case MH only acts as
client with no processing capability.



A TRANSACTION MODEL 141

Example 4. Stock Buying-Selling Application. Consider a stock-selling transaction that
is initiated by a mobile user at MH and submitted to MSS. Suppose this transaction is
accepted at MSS for selling stock based on approximately at average price a day earlier.
The prewrite value here represents the approximate amount of money available based on
the average price of the stock a day earlier. This information is made available to the
MH before the stock-selling transaction is committed at MSS on the current price. Once
this information is received at MH, the user can initiate another stock-buying transaction
based on prewrite value of the approximate amount of money available. He can send his
“buying-order” to the corresponding MSS before he leaves that cell. Thus, he can execute
both buying and selling transactions together.

4.1. Mobile transaction model and partially replicated system

In case of partially replicated data objects, the transaction can announce the prewrite val-
ues of those data objects available in its current cell and pre-commits in the current cell.
It does not wait to announce the prewrite values of all other required data objects by
moving into different cells as it will block other transactions until it visits those cells.
However, our approach of pre-committing in the current cell in such situations can also
create some problems. For example, once a transaction is pre-committed, it can not again
announce prewrite values for the objects in other cells. This is due to the fact that once the
prewrite values are made visible at MSS by releasing some locks, it can not again acquire
locks due to the two phase locking. This problem can be resolved in the following two ways:

a. Either the transaction requests all the locks for all the required data objects and wait until
all the locks are granted. This strategy will delay the execution severely in case some
links are down.

b. The other approach to solve the problem is by using either the nested transaction [23] or
split transaction [29] as follows:

• Nested Transaction Approach: To deal with the problem stated above, we use the
nested transaction model [23]. Once a transaction has announced all the prewrite values
for the data objects available in its current cell and pre-committed, a new subtransaction
is created. The earlier subtransaction is serialized before this new subtransaction based
on pre-commit point. The earlier subtransaction’s execution can be continued at the old
MSS. The new subtransaction’s responsibility is shifted to the MSS of the new cell with
the help of hand-off protocol. Thus, both the transactions can be executed independently
and concurrently in their respective cells. The pre-commit points are the save points of the
nested transaction execution. Thus, they provide failure-tolerant execution. In case the
earlier transaction aborts in the previous cell, its own effects and the new subtransaction
are not undone. The aborted transaction can be restarted from the last pre-commit point.

• Split Transaction Approach: Another way of handling partially replicated data
objects is to split [29] the transaction as soon as the MH moves to a new cell. The
splitted transaction acts as a new transaction and therefore, can continue its processing
in the new cell.



142 MADRIA AND BHARGAVA

Prewrites help in partial replication of the data objects by creating prewrite versions of
some of the data objects in the cells it moves. That is, it can make some new servers to
support its files. For example, suppose a transaction at MH has send a “headline-report”
about the accident and moved to another cell. In the new cell, it sends the “headline-report”
to its new MSS also. The MSS can, therefore, get the headline-report before the complete
report is processed at earlier MSS. Thus, the new MSS can serve those mobile transactions
which require headline-report for further processing like reservation of beds in hospitals, in
the current cell. Thus, the transactions at the new MSS are not blocked until the completion
of earlier transaction at the previous MSS.

5. Concurrent operations

Transactions in our model are executed concurrently. To avoid concurrency anomalies,
their execution are controlled so that final result of the execution is equivalent to the result
of some serial execution of the transactions. Concurrency control algorithms are divided
into optimistic and pessimistic [4]. Pessimistic approach block transactions by deferring
the execution of some conflicting transactions whereas optimistic algorithms instead of
blocking transactions they validate their correctness at commit time. Though optimistic
algorithm seems to be useful in mobile computing environment, but more transactions are
aborted and possibly needed restart which is costly as it consumes more resources limited
in such an environment. Our concurrency control algorithm though uses locks but behave
like optimistic in the sense that read values are made available before the final commit of
transactions which updates those values.

In mobile transaction model, a pre-read operation can be executed at both MH and
MSS at the same time. A pre-read can be executed at MH (MSS) while a write can take
place at MSS (MH) concurrently. Similarly, a read at MSS can be executed concurrently
with a prewrite at MH. A prewrite operation at MH can also be executed concurrently with
another write operation at MSS since prewrites are managed at the transaction manager level
at MH whereas the writes are performed at the data manager level at MSS. The operation-
compatibility matrix of the various operations is given in Table 1. However, there are some
interesting cases as follows:

Case 1: Suppose a pre-read is currently being executed at MH and at the same time, the
transaction that has announced the prewrite values finally commits at MSS (final updates
are performed) (see figure 6(a)). In this case, the pre-read will return a prewrite value
that might be different than the last write value. For example, if the data object x is the
simple data object, the read transaction T2 can commit before T1 as the prewrite and write
values will be same. In case x is a design object, the system designate the read of T2 as
a weak-read since the final design may differ from the prewrite value. The transaction T2
can resubmit its read request later to MSS if it needs the latest complete model of the
design.

Case 2: In Table 1, observe that a read operation is compatible with a prewrite. Consider
a case where a read transaction commits at MH after the transaction that announced the
prewrite operation, has been pre-committed. The read in this situation will return an old



A TRANSACTION MODEL 143

(a)

(b)

Figure 6. (a) The situation in Case 1. (b) The situation in Case 2.

value. However, this is not a significant problem because the transaction can still be serialized
(see Section 6). For example, transaction T2 returns a write value, however it commits after
T1 has pre-committed. The transaction T2 can be serialized before T1.

5.1. Concurrency control and locking

In this section, we develop a concurrency control algorithm to control the conflicting op-
erations in our mobile transaction model. The concurrency control algorithm is executed
in two phases and handled at MSS. In the first phase, the concurrency control for con-
trolling prewrite and pre-read operations is performed at the transaction manager level
at MSS. In the second phase, the concurrency control for controlling write and read
operations (to access write values) is performed at the data manager (DM) level and
also at MSS since the data managers are accessed only while performing updates on the
databases.

We use read-lock for read, pre-read-lock for pre-read, prewrite-lock for prewrite, and
write-lock for write operations, respectively. A prewrite-lock conflicts with other pre-read-
and prewrite-locks, however, it does not conflict with read- and write-locks. A prewrite-lock
can not be released after pre-commit as the transaction has to still get a write-lock for fi-
nal updates. A prewrite-lock acquired by a pre-committed transaction is converted to a
write-lock provided no other transaction holds the conflicting locks. Once a prewrite-lock
is updated to a write-lock, the same transaction can not acquire any other lock. However,
a pre-read-lock can be acquired by others in order to access prewrite values. There will
be no a deadlock involving the transactions which are pre-committed. This is due to the
fact that prewrite- and write-locks are acquired in an ordered fashion so deadlocks will
occur only at the time of acquiring prewrite- or read-locks. Thus, a pre-committed trans-
action will not be aborted due to the deadlocks. The formal locking protocol is given in
figure 7.

Locks on the data are managed and provided by the MSS. In case of replicated objects,
the number of locks to be acquired in our algorithm depends on the particular replication
algorithm used. The two main replication algorithms used are majority consensus and



144 MADRIA AND BHARGAVA

Figure 7. The locking protocol.

read-one-write-all (ROWA) [4]. In majority consensus algorithm, locks are acquired on
majority of sites whereas read-one-write-all (ROWA) requires lock on all the sites. In
case read/write ratio is less, ROWA is preferred otherwise majority consensus will be
preferred.

6. Serializable schedules in mobile transaction model

In this section, we formalize our mobile transaction model and discuss various possible
schedules that can occur during an execution history of transactions.

A read operation executed by a transaction Ti on a data object x is denoted as ri (x),
write as wi (x), pre-read as pri (x) and prewrite as pwi (x). The pre-commit is denoted as pci ,
commit as ci and an abort as ai . When a transaction commits, its changes are applied to the
database. If it aborts before pre-commit, the changes are discarded. A transaction is correct
if it maps the database from one consistent state to another consistent state. Formally, a



A TRANSACTION MODEL 145

transaction Ti is a partial order with ordering <i where

1. Ti ⊆ { pri (x), ri (x), pwi (x), wi (x) | x is a design object} ∪ { pci , ci , ai }.
2. If ai ∈ Ti if and only if pci /∈ Ti and ci /∈ Ti .
3. if t is ci or ai then for any other operation p ∈ Ti , p <i t and if t is pci , then pci <i ci .
4. if pri (x), ri (x), pwi (x), wi (x) ∈ T then either pri (x)<i wi (x), or wi (x)<i ri (x), or

ri (x) <i wi (x), pwi (x) <i pri (x) or pwi (x) <i wi (x), or pri (x) <i ri (x).

Consider a set of transactions in T = (T1, T2, . . . , Tn) which are modelled by a structure
called a history. Formally [4], a history H over T is a partial order (	, <n) where

1. H = ⋃n
i=1 Ti ;

2. <H⊇ ⋃n
i=1 <i ; and

3. for any two conflicting operations p and q either p <H q or q <H p.

A serial history is one where for every pair of transactions Ti and Tj either all the
operations executed by Ti precede all the operations executed by Tj or vice-versa. Two
histories H and H′ are equivalent if they are defined over the same set of transactions
and if p and q conflict and p <H q then p <H q. A history is conflict serializable [4] if
it is equivalent to some serial history. To determine whether a given history is conflict
serializable, we analyze the graph derived from the history called serialization graph. The
serialization graph of H, denoted by SG(H), is a directed graph whose nodes are transactions
in T and has edges Ti → Tj if one of the Ti ’s operations precede and conflict with one
of the Tj ’ s operation. A history H is conflict serializable if and only if SG(H) is acyclic
[4]. An execution history will include lock and unlock operations. Each operation pi (x) is
preceded by a lock operation pli (x) and followed by an unlock operation puli (x). Also in
the history, pwli (x) → wli (x) implies that a prewrite-lock obtained by transaction Ti on
object x is converted to a write-lock.

Now consider the following case histories to explain the various situations that might
occur during concurrent execution of transactions.

Case 1: In this case we consider simple data objects and see that a history with a prewrite
is same as the history without a prewrite. Consider the following history H:

pwl1(x)pw1(x)rl2(x)r2(x)rul2(x)c2pc1(pwli (x)

→ wl1(x))prl3(x)pr3(x) prul3(x)c3w1(x)wul1(x)c1

The serialization graph of the above history will have an edge T1 → T3 due to con-
flicting operations pw1(x) and pr3(x) and an another edge T2 → T1 due to conflicting
operations r2(x) (denotes the reading of the initial write value of x) and w1(x). Therefore,
the above history is conflict serializable in the order T2 → T1 → T3. It is equal to a serial
schedule T2T1T3. However, the above history is not strict since T3 reads the value from
T1 but commits before T1. Note that according to our algorithm, a transaction T1 can not
abort after its pre-commit operation is executed. In case of its failure after pre-commit, the
transaction T1 will restart from the failure point. Therefore, it will not introduce cascading



146 MADRIA AND BHARGAVA

aborts [4]. Hence, it is safe to allow non-strict executions in our algorithm. We observe
that the above history has commutative operations pw1(x) and r2(x). That is, pw1(x)r2(x)

is same r2(x)pw1(x). This is because a read returns the value from the write-buffer and
therefore, a read before or after a prewrite will return the same value. We note that pre-read
and write operations are also commutative in case the data objects involved are simple. In
this case, a pre-read after a prewrite or a read after its associated final write will return
the same value. However, in case of design objects, after the write, a pre-read may not be
same as read since a write value (final value) may differ from its prewrite value (working
copy). After taking into account these commutative operations, the above history will be
equivalent to:

rl2(x)r2(x)rul2(x)c2pwl1(x)pw1(x)pc1(pwl1(x)

→ wl1(x))prl3(x)pr3(x) prul3(x)c3w1(x)wul1(x)c1

This history provides a serial history T2T1T3. If we remove the prewrite operations from
the above history, it will be a serial history consisting of only read and write operations.
Thus, we have shown that in the case of simple data objects, any history with prewrites will
be equivalent to a history without prewrites. That is, any system which permits pre-read,
read, prewrite and write is same as the system with read and write operations in the sense
that reads in both the systems will return the same value. However, the system with prewrites
permits more concurrency than the system with normal read and writes.

Consider another history H’:

pwl1(x)pw1(x)rl2(x)r2(x)rul2(x)c2pc1(pwl1(x)

→ wl1(x))pwl3(x)pw3(x)pc3w1(x) wul1(x)c1(pwl3(x)

→ wl3(x))w3(x)wul3(x)c3

The serialization graph of the above history has an edge T1 → T3 due to conflicting
prewrite and write operations. The graph also has an edge T2 → T1 due to coflicting read
and write operations. Therefore, the above history is conflict serializable in the order T2 →
T1 → T3. Observe that the ordering T1 → T3 for two prewrite and write operations are
same. This is required so that the prewrites and writes of two different transactions are
performed in the same relative order. Also, the transaction T3 sets the prewrite-lock after
T1 has converted its prewrite-lock to write-lock. Since two write-locks conflict, and also T1

completes its prewrite before T3’s prewrite, therefore, T3 has to wait until T1 completes its
final write.

Case 2: In this case we see that once a transaction’s prewrite-lock is updated to the write-
lock, it can not acquire any other lock. Consider the following history:

pwl1(x)pw1(x)pc1(pwl1(x)

→ wl1(x))prl2(x)pr2(x)pwl2(y)pw2(y)pc2 (pwl2(y)

→ wl2(y))w2(y)prul2(x)wul2(x)c2w1(x)rl1(y)r1(y)rul1(y)wul1(x)c1



A TRANSACTION MODEL 147

The above history is not conflict serializable though it satisfies our locking protocols and
two phase locking. The schedule has a cycle since T1 precedes T2 on x and T2 precedes T1

on y. Additional restrictions must be introduced to disallow such an execution. Therefore, if
a transaction’s prewrite-lock is updated to a write-lock then the transaction can not acquire
any other lock on any data object.

When this rule is introduced in the above history, T1 can not acquire the lock on the data
object y, therefore, there will not be a cycle.

Case 3: In this case, we see that a prewrite-lock can not be updated to a write-lock if some
other transaction is holding a conflicting lock. Consider a partial history: rl1(x)r1(x)pwl1(x)

pw1(x)rl2(x)r2(x)pc1(pwl1(x) → wl1(x))

The above history is not allowed as T2 holds a read-lock on x and conflicts with the write-
lock acquired by T1 after pre-commit. Thus, the prewrite-lock is updated to write-lock only
if there is no conflicting lock (see write-lock rules in figure 7).

Consider another partial history:

pwl1(x)pw1(x)pc1(pwl1(x) → wl1(x))plw2(x)pw2(x)w1(x)pc2(pwl2(x) → w2(x))

The above history is not allowed as T1 and T2 now hold conflicting locks. However, if
wul1(x) appears before pc2 then the history is allowed.

Case 4: In this case, we see that a transaction, which returns an old value, can be serialized
in the history. Consider another history:

rl1(x)r1(x)pwl1(x)pw1(x)rl2(x)r2(x)pc1rul2(x)c2(pwl1(x) → wl1(x))

The above history is allowed. T returns an old-value since T1 has been pre-committed
before T2 commits. However, this history can be serialized if we move operations of T2

before T1.
Note that our serializabile history satisfies the Q-class [25] of serializable history.

6.1. Proof of correctness

In this section, we formally prove the correctness of our algorithm and the locking protocols.
We prove that the schedule produced by our locking protocols is conflict serializable. Our
approach is based on the standard way of proving correctness of transaction processing
algorithms.

Here, we state some properties based on our locking protocol as follows:

Property 1. If o is an operation then ol(x) < o(x) < ou(x).

From two phase locking rule, we have the following property:

Property 2. If pi (x) and qi (y) are two operations under Ti then pli (x) < quli (y), i.e.,
for all lock operations li ∈ Ti and un-lock operations uli ∈ Ti , li < uli .



148 MADRIA AND BHARGAVA

From the lock-upgrading rule, we have the following property :

Property 3. If (pwli (x) → wli (x)) ∈ Ti then

1. for any operation oli ∈ Ti , oli (x) <i (pwli (x) → wli (x)). That is, once a prewrite-lock
is converted to a write-lock, no other operation can lock any data object.

2. for any operation puli ∈ Ti , (pwli (x) → wli (x)) < puli (x). That is, a prewrite-lock is
converted to a write-lock before any lock is released.

Property 4. If pi (x) and q j (x) are two conflicting operations then either

1. puli (x) <H ql j (x). If pi (x) is a prewrite operation then (pwli (x) → wli (x)) <H ql j (x).
If pi (x) is read operation then puli (x) <H (pwl j (x) → wl j (x)). or

2. qul j (x) <H pli (x). If q j (x) is a prewrite operation then (pwl j (x) → wl j (x)) <H pli (x).
If q j (x) is a read then qul j (x) <H (pwli (x) → wli (x)).

Property 5. If pci and ci are pre-commit and commit then pci <i ci in Ti and for any
pc j , if pci < pc j then ci < c j . However, if the transaction Tj is a read-only transaction
and pci < pr j then ci < c j or c j < ci .

Property 6. If pci ∈ Ti then no ai ∈ Ti .

Property 7. If pwi (x), wi (x) ∈ Ti and pw j (x), w j (x) ∈ Tj and if Ti → Tj then

1. if pwli (x) < pwl j (x) then wli (x) < wl j (x).
2. If wli (x) < pwl j (x) then pwl j (x) < wi (x) < wl j (x) or wli (x) < pw j (x) < w j (x).

We now prove that any history that satisfies the above properties has an acyclic serializa-
tion graph. for a history H, SG(H) has a node for each transaction and an edge Ti → Tj if
Ti has an operation pi that conflicts with an operation q j ∈ Tj .

Lemma 1. If T1 → T2 in SG(H) then there exists an unlock operation pul1 ∈ T1 or a lock
convert operation (pwl1 → wl1) ∈ T1 such that for all lock operations ql2 ∈ T2 or a lock
convert operation (pwl2 → wl2) ∈ T2, pul1(x) < ql2(x) or (pwl1(x) → wl1(x)) < ql2(x)

or pul1(x) < (pwl2(x) → wl2(x)).

Proof: Since T1 → T2, there must exist conflicting operations p1(x) and q2(x) such that
p1(x) < q2(x). By Property 1, we have the following

(a) If p1(x) is a read or pre-read operation then pl1(x) < p1(x) < pul1(x). If p1(x) is a
prewrite operation then (pwl1(x) < p1(x) < (pwl1(x) → wl1(x)). Otherwise, if p is a
write operation then (pwl1(x) → wl1(x)) < p1(x) < pul1(x).



A TRANSACTION MODEL 149

(b) If q2(x) is a read or pre-read operation then ql2(x) < q2(x) < qul2(x). If q2(x) is a
prewrite operation then (pwl2(x) < q2(x) < (pwl2(x) → wl2(x)). Otherwise, if q2(x)

is a write operation then (pwl2(x) → wl2(x)) < q2(x) < qul2(x).

By property 4, we have the following

1. pul1(x) < ql2(x) or (pwl1(x) → wl1(x)) < ql2(x) or pul1(x) < (pwl2(x) → wl2(x)).
2. qul2(x) < pl1(x) or (pwl2(x) → wl2(x)) < pl1(x) or qul2(x) < (pwl1(x) → wl1(x)).

From (2), and using (a) and (b), we get q2(x) < qul2(x) < pl1(x) < p1(x) which
contradicts that p1(x) < q2(x).

Again, if q2 is a prewrite operation then we get, either q2(x) < (pwl2(x) → wl2(x)) <

pl1(x) < p1(x) which again contradicts that p1(x) < q2(x) or If q2 is a write operation then
we get (pwl2(x) → wl2(x)) < q2(x) < qul2(x) < pl1(x) < p1(x) which again contradicts
that p1(x) < q2(x). ✷

Lemma 2. Let T1 → T2 → · · · → Tn be a path in SG(H) where n > 1. Then for
data objects x and y and some operations p1(x) and qn(y) in H, pu1(x) < qln(y) or
(pwl1(x) → wl1(x)) < qln(y) or pul1(x) < (pwl)n(y) → wln(y)).

Proof: By mathematical induction, for n = 2, it follows from Lemma 1. Assume that the
lemma holds for some k ≥ 2. we will prove that it holds for n = k + 1. By the induction
hypothesis, the path T1 → T2 → · · · → Tk implies that there exist data items x and z and
operations p1(x) and ok(z) in H such that pul1(x) < olk(z) or (pwl1(x) → wl1(x)) < olk(z)
or pul1(x) < (pwlk(z) → wlk(z)). By Tk → Tk+1, and by Lemma 1, there exists a data
item y and conflicting operations o′

k(y) and qk+1(y) in H such that o′ulk(y) < qlk+1(y)

or (pwlk(y) → wlk(y)) < qlk+1(y) or pul1(y) < (pwlk(y) → wlk(y)). By Property 2,
we have olk(z) < o′ulk(y). By Property 3, we have olk(z) < (pwlk(y) → wlk(y)) or
(pwlk(z) → wlk(z)) < pulk(y). On combining the above, we get

1. pul1(x) < olk(z) < o′ulk(y) < qlk+1(y). This implies that pul1(x) < qlk+1(y) as
desired.

2. (pwl1(x) → wl1(x)) < ol)k(z) < (pwlk(y) → wlk(y) < qlk+1(y). This implies that
(pwl1(x) → wl1(x)) < qlk+1(y) as desired.

3. pul1(x) < (pwlk(z) → wlk(z)) < pulk(y) < (pwlk(y) → wlk(y)) < qlk+1(y). This
implies that pul1(x) < qlk+1(y). ✷

Theorem 1. Every history H obtained by the locking protocols given before is serializable.

Proof: Suppose by the way of contradiction that SG(H) has a cycle T1 → T2 → · · · →
Tn → T1 where n > 1. By Lemma 2, for some data objects x and y and some operations
p1(x) and q1(y) in H, pul1(x) < ql1(y) or (pwl1(x) → wl1(x)) < ql1(y). But this contra-
dicts Property 2. Thus, SG(H) has no cycle and so by the serializability theorem [25], H is
serializable. ✷



150 MADRIA AND BHARGAVA

7. Discussion

In this section, first we discuss overview of our recovery model. Next, we briefly present
some intuitive analysis of our model and mainly investigate the parameters, which can affect
the mobile transaction processing with respect to our model (we have simulated some of
these parameters in Section 8 where we report the performance results of our model). Next,
we briefly give some details of implementation environment of our model.

7.1. Recovery model

When executing transactions in mobile computing, it is necessary to maintain logs to enable
recovery after a system crash. A MH is highly vulnerable to failures due to the loss or theft of
equipment, memory loss, etc. In order to recover from such failures, it is necessary to store
data objects and their logs at the mobile service stations (MSS) rather than on mobile host. A
MH in our model transfers a transaction’s execution to the MSS by moving all the prewrite
values and the log records. A separate pre-commit log is maintained for each transaction.
Each log record contains the description of the prewrite values. These are appended to the
pre-commit record of a transaction. Thus, for every pre-committed transaction, the pre-
commit log records for that transaction are stored on the disk as well as in the system log
at MSS.

In case a MH moves to a different cell, it can also append a record indicating its next
possible destination. When the user arrives at the new cell, he can continue the post pre-
commit operations. Once a transaction’s execution is successfully shifted (along with all
prewrite logs and pre-commit log) to the MSS, a MH may delete all the log records and
keep only prewrite values in main memory for further processing. This way it can gradually
discard entries in prewrite logs. To build highly reliable systems, these logs can also be
replicated in various cells (MSS) by moving MH. At MSS, prewrite-logs, pre-commit log
record, the write logs and final commit log record are stored. If a pre-committed transaction
fails at the stationary host, the transaction can be restarted from the point of failure. In case
of a system crash, the prewrite logs can be used to build the system’s state as it existed at the
time of pre-commit. Write logs can help to bring the system to the state as it existed at the
time of failure with the help of recovery algorithms ([16, 21]). Since the locks are managed
by MSS, the locks are maintained at MSS. The transaction table for active transactions are
kept at MSS. However, in case the transaction starts its execution at MH then a part of
the transaction table is also maintained at MH until the transaction’s execution is shifted
to the MSS. Dirty-data object table is kept at MSS. This table contains information about
those objects whose final values are inconsistent with the stable database on the disk. This
also keeps information about those data objects whose prewrite values announced by the
pre-committed transactions have not been updated in the database before system crash. In
Table 2, we give the type of log records and the tables stored at MH and MSS. Some of
these logs are moved to MSS from MH during the shift of a transaction’s execution.

In case of a system crash, only the redo of those prewrite and write values will be
performed whose effects are not there on stable storage. There is no need for undo pass of the
recovery algorithm as data objects are updated only after the transaction is pre-committed.



A TRANSACTION MODEL 151

Table 2. Log records at MH and MSS.

Log records stored at MH Log records stored at MSS

Prewrite logs Write log

Pre-commit log Commit log

‘Destination’ move log Lock. dirty object and transaction tables

For more details of no undo/redo recovery algorithm, refer to [21] where a nested transaction
recover model is described.

7.2. Evaluation of prewrite operations

How prewrite mobile transaction model help in dealing with constrained resources and
frequent disconnections or weak connections. In mobile computing, to save the energy
and to deal with unpredictable failure of mobile host, transactions should be migrated to
non-mobile computer in case no further interaction is needed with MH. In case the mobile
host transfers the remaining transaction’s execution after pre-commit to the stationary host
(MSS), it submits all the prewrite values and write operations to the stationary host. The
transaction at the stationary host updates prewrite data objects and commits. For example,
consider a broker who is travelling. While travelling, he would like to place an order for
stock purchase. He initiates a buy transaction by submitting the price and the quantity of the
stock. He places the order without checking his account balance, as he has to pay only after
three working days of purchase. He also knows that the payment of his earlier sold stock
will arrive during this period. This arrival of “payment” represents a final commit of his
earlier transaction. Thus, selling and buying transactions are running concurrently. Since
the transaction is very long, placing the order helps in pre-committing the transaction at
the MH and remaining execution (buying of stock and payment etc.) is shifted to the MSS.
This works well even if the MH is disconnected or it is in doze state.

Do prewrites help in caching data during weak-connections? A mobile host can cache
only the prewrite values of the data objects for later processing. For example, a “bed-
reservation” transaction at mobile host in Section 3 needs only the “headline-report” to
found about the number of people injured. It does not need the full story. Moreover, the
consistency of prewrite and write values can also be tolerated depending on applications.
Thus, it is not required that cached prewrite values at MH and write values at MSS need to
be consistent all the time. If the ratio (size of prewrite-value/size of write-value) becomes
smaller then it can be transmitted over low band-width with less power consumption and low-
cost. Headline-report, for example, will use less memory and battery power and therefore,
can be transmitted over low bandwidth. Similarly, a model of an “engineering design”
can be transmitted faster over low bandwidth rather than the complete design. Consider
that if the size of the complete design is 10 Mb and the size of model design is 2 Mb
and the bandwidth is 1 Mbps (Infrared, see Table 3). In this case, the network delay on
average in case of transmission of complete design from MH to the MSS will be 10 seconds



152 MADRIA AND BHARGAVA

Table 3. Simulation parameters.

System parameters Description Value

DB-size Average size of the database 500

Num-MH Number of MHs Simulation parameter

Num-MSS Number of MSSs 2

Trans-size Average number of objects per 6 objects
transaction

Pre-value-size Average size of pre-write 1/40 of write value
values

Max-size Maximum number of objects 10 objects
per transaction

Min-size Minimum number of objects 2 objects
per transaction

Local-object-MH Ratio of objects found in cache 0.4
at MH

CPU-time Time taken by CPU per request 12 msec

I/O time Time taken by I/O per request 30 msec
both at MSS and MH

Num-transactions-MSS Transactions at each MSS Simulation parameter

Wireless-bandwidth Data transfer rate from MH to 0.5 Mbps
MSS

Write-prob Probability that object read will Simulation parameter
be written also

Trans-delay Inter-arrival delay time 500 msecs

Prewrite-to-write Delay in write 0.2 msecs

whereas the delay will be 2 seconds in case of transmission of model design. This will
decrease the communication cost. Prewrites can be cached during weak connections over
low bandwidth due to their small size. This will minimise future network use by MH and
improve throughput. Furthermore, sending access requests from the mobile host to the MSS
may be expensive due to the limited up link bandwidth and it also uses considerable amount
of portable battery power. Thus, by maintaining prewrites at MH can alleviate this problem.

If the user is to be charged based on per time unit of connection time, the sending or
receiving prewrite values will incur less cost than the write values. Similarly, if the user
is charged per message basis depending on the length of the message, it will cost less to
send or receive prewrite model of the design rather than the final design. Since transmitting
data consumes more battery power [12], the sending of the model design will be more cost-
effective than sending the completed design. Next, if the read/write ratio becomes greater
then prewrite will be more useful in mobile computing environment.

Do prewrites avoid undo cost in case of transaction aborts? Our model does not need to
handle aborts by using before-image or compensation. A pre-committed transaction does not
abort. In case a pre-committed transaction is forced to abort due to system dependent reasons



A TRANSACTION MODEL 153

such as crash, the transaction will be restarted. For example, an accident-report transaction
discussed in Section 4 need not abort in the case of a failure. In various proposed mobile
transaction models, an abort is handled by a compensating transaction. This is costly in
mobile computing, as it needs extra resources and thus, increases computing cost. In our
model, since a transaction’s execution is shifted to the MSS after pre-commit, the restart
cost will be born by the MSS.

Do prewrites help in continuing the execution without blocking the transactions and
data objects in case of frequent disconnection? In case the mobile host is disconnected
or moved to a different cell, further processing at MH can still continue using prewrites. It
need not wait for the commit of earlier transaction at the stationary host. At the same time,
using prewrite values, other transactions at stationary host can continue their execution in
case of a disconnection from MH. Since the prewrites are available at MH, it does not
require to cache the values again. Thus, in our model, the partial execution of transaction
at the mobile host and the completion of the transaction after pre-commit at the stationary
host increases availability with reduced execution cost.

Does delay in writing the database helps in reducing network congestion? In our mobile
transaction model, final updates to be performed at MSS are delayed. This action has some
advantages in mobile computing. Since write operations are time and resource consuming,
they are transferred to MSS for updates on the database. Delayed writes reduce network
traffic congestion generally caused by frequent online updates and can speed up the read
requests. The weak-connections in a network can force a mobile host to wait for long in
case it would like to update database at MSS. Delayed writes also reduce the work-load on
servers since the transactions updates are synchronised at the time of pre-commit.

Do prewrites simplify the work of hand-off protocol? Prewrites reduce the work of hand-
off protocol as a pre-committed transaction’s execution does not require migration to the
new MSS in case MH moves to the new cell. The transaction can still continue at the old
MSS due to the fact that the transaction needs no more interactions with MH. If a transaction
has not pre-committed and moved to the new cell, it can still continue its processing in the
new cell and can pre-commit there.

7.3. Implementation overview

Mobile computing must operate in an environment where network connectivity, power
and contextual information should vary. Currently we are building our mobile transaction
processing system at RAID lab at Purdue University. Raid lab has 5 SUN 3/50s and four Sun
Sparcstations-1s. All of them have local disks and are connected by a 10 Mb/s Ethernet.
First our goal is to build our transaction processing system within existing client-server
distributed system called Raid. Next, our goal is to build a software emulator over the Raid
[5]. The emulator is designed to provide approximate emulation of wireless network using
the standard hardware and software. The basic approach is to intercept the packets travelling
between client and server and to introduce a delay, provide a disconnection and variable



154 MADRIA AND BHARGAVA

bandwidth etc. The network emulator supports dynamic updates in the configuration file so
that quality of service of a network can be set to zero to emulate disconnection.

Raid is a robust and adaptable distributed system for transaction processing. The client
server architecture of Raid provides modularity and extensibility, which we need to support
mobile computing environment. Raid system interacts with underlying data via read/write
requests and init-transaction and commit-transaction. We have modified the types of op-
erations by including pre-read and prewrite operations and also included a pre-commit
semantics to support our transaction model. A front end invoked by the user at the client
side (one of the terminal connected to Raid depicts as Mobile Host) to process SQL++
queries. The SQL++ query processor parses the SQL++ language query received from the
user into a sequence of pre-read, read, prewrite and write relation tuple requests submits
these requests to the Raid server (one of the terminal which now depicts as Mobile Service
Station). We assume that a copy of the data object (a relational table ) is there at MH. Query
processor generates a transaction consisting of operations on tuples of the table and submits
them to transaction manager at mobile host. TM at the mobile host supervises the states
of mobile transactions going on and communicates with the mobile transaction manager
agent at MSS. At the MSS side, a mobile transaction manger agent services a particular
mobile host by receiving all the operations. It acts for transaction management that a mobile
transaction manager has requested. It returns to the mobile transaction manger at MH the
requested lock for pre-write operation. On receiving the lock, the TM at MH announces the
prewrite values of the tuples of the table at the private workspace in TM and also writes
the log records at its local disk and also send them to Raid server (MSS). The mobile ser-
vice station (Raid server) consists of four parts, the Replication Controller, the Concurrency
Controller, Atomicity Controller and Data Access Manager. The replication controller man-
ages multiple copies of the data items to provide system reliability and mutual consistency
of the data. The concurrency controller ensures serializability. The atomicity controller is
responsible for ensuring that transactiona are committed or aborted across MH and MSS.
The data access manager provides access to the database at MSS (Raid server) and ensures
that updates are posted atomically to stable storage. Once the mobile transaction manager
agent informs the MH commit of the transaction, MH cleans its log and updates the table.
In case the table is not present at the MH, the raid server simply send those tuples which
involves in the prewrite operations along with the lock.

A layered communication package in RAID provides a clean location independent in-
terface between the servers. However, in mobile computing environment the queries are
location dependent and location data plays an important role. In the emulator, we currently
looking into the methods of emulating locations change. Also, we would like to incorporate
in the emulator the hand-off protocol.

8. Performance

In this section, we develop a simulation model and compare our model with that of two
phase-locking algorithm [4] and Optimistic locking protocols [1, 32] and wait-depth-limited
scheme [10]. Since our model is lock-based, we consider only lock-based concurrency
control algorithms. We assume close system for our simulation where we always keep



A TRANSACTION MODEL 155

certain fixed number of active transactions in the system. The simulation model has the
following components: mobile host transaction manager (MHTM), mobile service station
transaction Manager (MSSTM), mobile host data manager (MHDM), mobile service station
data manager (MSSDM), mobile service station lock manager (MSSLM). MHTM generates
and manages the transactions initiated at MH where as similar role is played by its counter
part MSSTM at server side. We assume that messages send by sender have always been
received by receiver. Both MHTM and MSSTM generate transactions which controls the
multi-programming level in the system. We assume multiple MHs in the cell and 2 MSS.
Multiple CPU servers are used to perform transaction executions both at MH and MSS.
When a transaction needs to be executed, a free server is assigned from global queue in FCFS
discipline. Each MH and MSS also has I/O servers and there is a queue associated with I/O
servers. Each DM also has a number of disk servers. When a transactions needs service,
it can randomly choose a disk a waits in I/O queue. The service is again FCFS. In case of
transaction execution at MH, the I/O wait time is negligible as only one transaction at a time
is executed. The CPU and disks are allocated at each MH and MSS. Each consists of one
CPU, and each MH consists of 1 disk where as MSS consists of 2 disks. Major simulation
parameters are shown in Table 3. The primary performance metrics is throughput rate; the
number of transactions that commit per second. Second parameter we study is transaction-
abort-ratio; the average number of transactions that have to be aborted per total transactions.
The lower transaction-abort-ratio means enhanced concurrency.

The meaning of each model parameter for simulation is as follows. The size of the
database assumed is DB-size data objects. We assume that each data object is equivalent
to a page. Num-MH is the number of mobile hosts, which effectively controls the multi-
programming level (MPL). Thus, it is a simulation parameter. Num-MSS is the number
of mobile service stations. We assume there are two MSS in the system. Therefore, the
total number of sites in the system is num-MH+2. Num-transactions-MSS is the number of
transactions running at a time in MSS. It is a simulation parameter. Thus, the total number
of transactions in the system at a time is num-MH + Num-transactions-MSS since each
MH executes one transaction at a time. Trans-size is the average number of data objects
requested by the transaction. Pre-value-size is the size of prewrite-data object in comparison
to the write-data object. The max-size and min-size are the maximum and minimum number
of objects per transaction. Write-prob is the probability that an object read by a transaction
will also be written by the same transaction. It is also a simulation parameter. Local-object-
MH is the ratio of objects found in cache at MH. That is, if a transaction writes m data
objects and n (<m) objects are available at MH then local-object-MH is n/m. CPU-time
and I/O time are the time taken to carry out CPU and I/O requests respectively. These are
taken into consideration when an object is accessed. To force-write a log record requires
CPU-time and I/O time. Also, to write each data object to the disk requires both CPU-time
and I/O-time. Trans-delay is transmission delay from MH to MSS. The local-object-MH is
fixed for each transaction. Whenever, a lock requests wait, deadlock is detected. However,
we neglect the deadlock overheads since they are negligible as compared to overall cost.
Aborted transaction is resubmitted after a delay and makes same data access. The length of
delay is equal to the average response time, which is used in the most transaction processing
studies.



156 MADRIA AND BHARGAVA

Figure 8. (a). Throughput v/s MPL (b). Throughput v/s MPL.

8.1. Interpretation of results

In our experiments, we investigate the performance of our concurrency control algorithm
with two phase locking (2PL), wait-depth locking (WDL) and optimistic locking algorithm
(OL). In the first experiment (see figure 8(a)), the write-prob is set to 1

2 . That is, half of the
total transactions submitted are always read and write data items. Also, in this experiment
we assume that transaction arrives at MH and is executed only at MSS. In this case, we
observe that throughput increases rapidly for our prewrite transaction model with increased
MPL in comparison with other schemes. The reason is that prewrite-locks are released
earlier, so read-only transactions do not wait for the write transactions to release the locks.
Also, transactions commit can be decided at pre-commit time. Moreover, read actions can
read the value written before the commit of transactions as write-locks are released before
final commit. In second experiment (see figure 8(b)), we lower the write-prob to 1/4. That
is, only 25% of total transactions perform both read and write operations. In other words,
the read-only transactions are increased by 50% than last experiment. In this case we assume
that transactions are also executed at MHs. We observe that now throughput increases more



A TRANSACTION MODEL 157

Figure 9. (a). Transaction-Abort-ratio v/s MPL (b). Transaction-Abort-ratio v/s MPL.

rapidly as compared to other algorithms. The reason being, the read-only transactions can
read prewrite values at MH and can commit. Thus, our algorithm performs much better in
terms of read-only transactions. Also, prewrite values take less time to travel from MSS to
MH than write values as in case of other schemes.

In the third experiment (figure 9(a) and (b)), we have observed that transaction-abort-ratio
(total aborts divided by the number of submitted transactions) decreases more rapidly for
our model than others. The reason is that after pre-commit, transactions in our model do not
abort and therefore, those transactions who read prewrite values, are guaranteed to commit.
Similarly, write transactions are ordered with respect to pre-commit order, thus, they do
not involve in deadlocks and hence, aborts are avoided. Thus, deadlocks in our model are
only possible before transactions hold write-locks. We have done experiments by keeping
the level of write-prob as 1

4 and 3
4 . The transaction-abort-ratio increases with increase in

write-prob. That is, the transaction-abort-ratio with more number of write transactions rises,
as expected. This is more in case of WDL and OL protocols due to more number of conflicts
in case of write operations and thus, more abortions.



158 MADRIA AND BHARGAVA

Thus, our protocol outperforms all the three other protocols in terms of throughput and
transaction-abort-ratio.

9. Conclusions

In this paper, we have presented a new mobile transaction model using prewrites to in-
crease availability in mobile computing environment. Prewrite values help in increasing
availability as the transactions can be executed during disconnections both at MH and MSS
without blocking. The model allows a transaction’s execution to shift from the MH to
MSS for database updates. Thus, reduces the computing expenses. The model needs no
“undo” actions or execution of compensating transaction in case of transaction aborts. We
have discussed algorithms for our transaction processing model and the locking protocols.
We have proved that our mobile transaction model produces only serializable schedules.
We performed simulation studies and have found that our model increases throughput in
comparison with other models. Also, our model has higher commit probability; that is low
transaction-abort ratio, thus further enhance concurrency. For future work, we would like
to discuss a detail crash recovery algorithm for mobile transaction model.

Currently, we are implementing our transaction model at RAID lab, Department of Com-
puter Science at Purdue University, West Lafayette. We are creating a wireless network
emulator by dynamically breaking the link, providing variable bandwidth, etc. to emulate
the wireless environment. We plan a series of real experiments with our model and to
compare it with other existing transaction models for mobile computing.

Acknowledgments

This research is partly supported by a grant from NSF under 9805693-EIA and CCR-
9901712.

References

1. D. Agrawal, A.El. Abbadi, and A.E. Lang, “The performance of protocols based on locks with ordered
sharing,” IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 5, pp. 805–818, 1994.

2. D. Agrawal and S. Sengupta, “Modular synchronization in multiversion databases: Version control and con-
currency control,” in ACM Proceedings of SIGMOD, ACM Press: New York, 1989, pp. 408–417.

3. N. Barghouti and G. Kaiser, “Concurrency control in advanced database applications,” ACM Computing
Surveys, vol. 23, no. 3, pp. 269–317, 1991.

4. P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database Systems,
Addison-Wesley Publishing Co., USA, 1987.

5. B. Bhargava and J. Riedl, “A model for adaptable systems for transaction processing,” IEEE Transaction on
Knowledge and Data Engineering, vol. 1, no. 4, pp. 433–449, 1989.

6. P. Bober and C.J. Michael, “On mixing queries and transactions via multiversion locking,” Computer Science
Department, University of Wisconsin-Madison, Technical Report, Nov., 1991.

7. A. Chan, S. Fox, W. Lin, A. Nori, and D. Ries, “The implementation of an integrated concurrency control and
recovery scheme,” in ACM Proceedings of SIGMOD, ACM Press, New York, 1982, pp. 184–191.

8. P.K. Chrysanthis, “Transaction processing in a mobile computing environment,” in Proceedings of IEEE
Workshop on Advances in Parallel and Distributed Systems, 1993, pp. 77–82.



A TRANSACTION MODEL 159

9. M.H. Eich and A. Helal, “A mobile transaction model that captures both data and movement behaviour,”
ACM/Baltzer Journal on Special Topics on Mobile Networks and Applications, vol. 2, no. 2, pp. 149–162,
1997.

10. P.A. Franaszek, J.T. Robinson, and A. Thomasian, “Concurrency control for high contention environments,”
ACM Transactions on Database Systems, vol. 17, no. 2, pp. 304–345, 1992.

11. S. Goel, B. Bhargava, and S.K. Madria, “An adaptable constrained locking protocol for high data contention
environments,” in Proceedings of IEEE for 6th Intl. Conference on Database Systems for Advanced Applica-
tions (DASFAA,99), Taiwan, 1999.

12. T. Imielinksi and B.R. Badrinath, “Wireless mobile computing: Challenges in data management,” Communi-
cations of ACM, vol. 37, no. 10, pp. 18–28, 1994.

13. R. Kataoka, T. Satoh, and U. Inoue, “A multiversion concurrency control algorithm for concurrent execution
of partial update and bulk retrieval transactions,” in Proceedings 10th Intl. Phoenix Conference on Computers
and Communications, IEEE Computer Society Press: New Jersey, 1991, pp. 130–136.

14. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda file system,” ACM Transactions on
Computer Systems, vol. 10, no. 1, pp. 3–25, 1992.

15. Q. Lu and M. Satyanaraynan, “Improving data consistency in mobile computing using isolation-only trans-
actions,” in Proceedings of the Fifth Workshop on Hot Topics in Operating Systems, Washington, 1995.

16. S.K. Madria, “Concurrency control and recovery algorithms in nested transaction environment and their proofs
of correctness,” Ph.D. Thesis, Department of Mathematics, Indian Institute of Technology, Delhi, 1995.

17. S.K. Madria, “A prewrite transaction model,” in the Proceedings of 3rd International Baltic Workshop on
Database and Information Systems, Riga, Latvia, 1998.

18. S.K. Madria, “Transaction models for mobile computing,” in Proceedings of 6th IEEE Singapore International
Conference on Network, World Scientific, Singapore, 1998.

19. S.K. Madria and B. Bhargava, “System defined prewrites to increase concurrency in databases,” in Proceedings
of the First East-Europian Symposium on Advances in Databases and Information Systems, ADBIS’97
(sponsored by ACM-SIGMOD), St.-Petersburg (Russia), Sept. 97, pp. 18–22.

20. S.K. Madria and B. Bhargava, “A transaction model for mobile computing,” in IEEE CS Proceedings of
International Database Engineering and Application Symposium (IDEAS’98), Cardiff, U.K., 1998.

21. S.K. Madria, S.N. Maheshwari, B. Chandra, and B. Bhargava, “Crash recovery algorithm in an open and safe
nested transaction model,” in Proceedings of 8th International Conference on Database and Expert System
Applications (DEXA’97), France, Sept.97, Lecture Notes in Computer Science, vol. 1308, Springer Verlag,
France.

22. S.K. Madria and M. Mohania, “A study on mobile data and transaction management,” Research Report CIS-
98-007, Advanced Computing Research Centre, School of Computer and Information Science, University of
South Australia, Adelaide, Australia, June, 1998.

23. J.E.B. Moss, “Nested transactions: An approach to reliable distributed computing,” Ph.D. Thesis, also,
Technical Report MIT/LCS/TR-260 MIT Laboratory for Computer Science, Cambridge, MA., April,
1981.

24. T. Nakajima, “Commutativity based concurrency control for multiversion objects,” in Proceedings of the
International Workshop on Distributed Object Management, 1992, pp. 101–119.

25. C.H. Papadimitriou, “The serializability of concurrent database updates,” Journal of ACM, vol. 26, no. 4,
pp. 631–653, 1979.

26. E. Pitoura and B. Bhargava, “Dealing with mobility: Issues and research challenges,” Technical Report TR-
93-070, Department of Computer Sciences, Purdue University, IN, 1993.

27. E. Pitoura and B. Bhargava, “Building information systems for mobile environments,” in Proceedings of 3rd
International Conference on Information and Knowledge Management, 1994, pp. 371–378.

28. E. Pitoura and B. Bhargava, “Maintaining consistency of data in mobile computing environments,” in Pro-
ceedings of 15th International Conference on Distributed Computing Systems, June, 1995. Extended version
to appear in IEEE TKDE, 2000.

29. C. Pu, G. Kaiser, and Hutchinson, “Split-transactions for open-ended activities,” in Proceedings of the 14th
VLDB Conference, 1988.

30. C. Pu and A. Leff, “Replica control in distributed systems: An asynchronous approach,” in Proceedings of the
ACM SIGMOD, 1991, pp. 377–386.



160 MADRIA AND BHARGAVA

31. K. Ramamritham and P.K. Chrysanthis, “A taxonomy of correctness criterion in database applications,” Journal
of Very Large Databases, vol. 5, no. 1, pp. 85–97, 1996.

32. K. Salem, H. GarciaMolina, and J. Shands, “Altruistic locking,” ACM Transactions on Database Systems,
vol. 19, no. 1, pp. 117–165, 1994.

33. G.D. Walborn and P.K. Chrysanthis, “Supporting semantics-based transaction processing in mobile database
applications,” in Proceedings of 14th IEEE Symposium on Reliable Distributed Systems, 1995, pp. 31–40.

34. W.E. Weihl, “Distributed version management for read-only actions,” IEEE Transactions Software Engineer-
ing, vol. 13, no. 1, pp. 55–64, 1987.

35. W.E. Weihl, “Commutativity-based concurrency control for abstract data types,” IEEE Transactions on Com-
puters, vol. 37, no. 12, pp. 1488–1505, 1988.

36. S.K. Madria, M. Mohania, S. Bhowmick, and B. Bhargava, “A survey on mobile data and transaction
management issues,” under revision in Information Science Journal.


