
CERIAS Tech Report 2001-105
Unresponsive Flow Detection and Control in Differentiated Services Networks

 by A Habib, B Bhargava
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Unresponsive Flow Detection and Control Using the Differentiated Services Framework
�

AHSAN HABIB, BHARAT BHARGAVA

Center for Education and Research in Information Assurance and Security (CERIAS) and

Department of Computer Sciences Purdue University, West Lafayette, IN 47907-1398, USA

E-mail:
�
habib, bb � @cs.purdue.edu

ABSTRACT

During periods of congestion, TCP flows back off and adjust the
sending rate. This behavior makes TCP a conservative proto-
col and helps to avoid congestion collapse. Flows, like UDP,
do not respond to congestion and keep sending packets. This
causes other TCP flows sharing the same link to back off. Un-
responsive flows waste resources by taking their shares in the up-
stream and dropping packets later when the downstream is con-
gested. We use the Differentiated Services (DiffServ) architecture
to solve this problem. With the help of core routers of DiffServ
networks, we detect congestion due to unresponsive flows and us-
ing edge routers we control/shape these flows. We describe how
core routers detect congestion and inform edge routers about it.
We design an algorithm to regulate unresponsive flows dynami-
cally. Our rate control algorithm works well in a variety of situa-
tions. The goal of this work is to ensure that TCP does not starve
due to unresponsive flows as well as to stop bandwidth waste in
the upstream path when packets are dropped in the downstream
because of unresponsive flows.

KEYWORDS
Unresponsive Flow, Differentiated Services, Quality of Ser-

vice, Traffic Conditioner, Shaping.

1 Introduction

A flow is unresponsive if it fails to decrease its sending
rate in response to congestion. During congestion, adaptive
flows like TCP back off and reduce their sending rates. This
behavior of TCP prevents congestion collapse. If all flows
act in this manner, there should not be any unfairness as
well as congestion collapse. But flows like UDP send at the
same rate even when there exists congestion along the path,
because UDP does not use any feedback mechanism and
can not respond to congestion. This behavior may cause
TCP flows to starve and introduces unfairness when various
kinds of flows coexist at the same time in the Internet.

If a packet is dropped at the downstream path, it wastes
resources already taken at the upstream. This behav-
ior causes global max-min unfairness [1]. The packets
dropped at the bottleneck link have already consumed re-
sources from non-bottleneck links earlier along the path.
The unresponsive flows cause this unfairness.

Congestion collapse can be mitigated using improved
packet scheduling or active queue management [3, 11].

�
This research is supported by the National Science Foundation CCR-

001712 and CCR-001788, CERIAS, and IBM SUR grant.

However these techniques can not solve the global max-
min unfairness problem, because congestion can be far
down along the path and the upstream queues do not know
about this. To solve both problems, we need a mechanism
to ensure that the rate at which packets are entering a net-
work domain should be the same as packets are leaving
the domain. We use the Differentiated Services (DiffServ)
architecture [2] to address this issue. The DiffServ frame-
work uses edge routers at the border of a network domain
and core routers inside the domain. Traffic conditioners at
the edges shape, mark, and if necessary drop traffic. In the
core of the DiffServ network, Per Hop Behaviors (PHBs)
are used to achieve service differentiation. The Assured
Forwarding [8] PHB uses three priorities packets per class.
Dropping highest priority packets of each class exihibits
that the network is congested [14]. This congestion drop is
sent to ingress routers to regulate unresponsive flows. The
drops due to shaping at the ingress routers is propagated to
egress routers of previous domain to regulate an unrespon-
sive flow at the upstream path. We use this framework to
control unresponsive flows and refer as Unresponsive Flow
Control (UFC) scheme. We present a number of experi-
ments to show the behavior of this framework.

The paper is structured as follows. Section 2 discusses
related work. Section 3 discusses what modifications are
needed at the core so that it can properly inform the edges
about the congestion. We design a shaping algorithm in
this section to regulate the unresponsive flows. Section 4
contains all the details of our simulation setup. Section
5 presents and discusses the measurements. We conclude
with a summary and a discussion of future work.

2 Related Work

Floyd et al discuss congestion collapse from undelivered
packets in [6]. This situation arises when bandwidth is
continuously consumed by packets at the upstream that are
dropped at the downstream. Several ways to detect unre-
sponsive flows are presented. It is suggested that routers
can monitor flows to detect whether flow is responsive to
congestion or not. If a flow is not responsive to congestion,
it can be penalized by discarding packets to a higher rate at
the router. According to the authors there are some limita-
tions of these tests to identify non-“TCP-friendly flow”. It
does not help to save bandwidth at the upstream if the flow

sees the congestion at the downstream because this solu-
tion does not propagate the congestion information from
downdtream to upstream.

Seddigh et al [12] suggest that if TCP and UDP are put
into separate queues or Assured Forwarding classes, they
may coexist fairly. This discrimination between TCP and
UDP traffic may punish some well-behaved UDP flows.
The core router does not know the profile of a flow and
can not decide to allocate bandwidth to them fairly. The
problem is associated with network load, capacity, and the
reaction of different transport protocols to congestion. A
dynamic control mechanism can solve this problem.

Albuquerque et al [1] propose congestion avoidance
mechanism named Network Border Patrol. To detect con-
gestion, it measures entering rate of traffic to a domain and
the leaving rate from the domain. It detects and restricts un-
responsive traffic flows and eliminates congestion collapse.
The border routers monitor all flows, measure rates, and ex-
change this information with all edge routers periodically
and this can be expensive. Moreover, TCP is responsive so
we do not need control mechanism for TCP at the edges.

Chow et al [4] propose a framework where edge routers
periodically obtain information from the core by probing
and adjust the conditioner using the traffic dynamics. In
this scheme, core needs to maintain all the state informa-
tion. A simpler scheme can be employed where core sends
packets to edge routers only at the time of congestion.

Wu et al propose Direct Congestion Control Scheme
(DCCS)in [14]. In this scheme, they detect congestion by
observing packet drops with lowest priority to drop at the
core router. We follow the same rule in our research to
detect congestion. Our core is simpler in the sense that it
detects drops of only unresponsive flows. The main dif-
ference between our work and [14] is that we design the
shaper at the edge that controls the unresponsive flow.

Recent work by Mahajan et al [9] uses Aggregate-based
Congestion Control (ACC) to detect and control high band-
width aggregate flows. They use the history of packet drops
over a time interval and then the ACC agent matches pre-
fix of IP destination addresses to detect flows going to the
same destination address for Denial of Service(DoS) at-
tacks. The ACC agent controls the flows using a rate-
limiter and pushes status messages reporting the aggre-
gate’s arrival rate to the upstream routers. We use DiffServ
architecture to detect and propagate messages. Our goal is
to detect and control unresponsive flows but it can protect
DoS attack by using their idea of prefix matching [9].

3 Framework of Congestion Control

This section describes the modifications on the DiffServ
components are necessary to support Unresponsive Flow
Control (UFC) scheme. We need to modify core routers so
that they can inform the edge routers about the congestion.
The edge router has a traffic conditioner that may re-mark
a traffic stream or may discard or shape packets to bring
the stream into compliance with a traffic profile specified

by the network administrator [2]. We have to use a proper
shaping algorithm that can control unresponsive flows at
the time of congestion. One additional modification is to
be done at the edge; the ingress router of one domain in-
forms the egress router of the previous domain about the
congestion. Thus congestion information is propagated to
the upstream.

3.1 Modification at Core Router

Core does not store any per flow reservation information.
This makes the DiffServ architecture more scalable. We
make little modification at the core routers to inform edge
routers about the congestion.

Wu et al [14] suggest that packets dropped at the core
with lowest drop precedence, say DP0, indicates that there
is a congestion in the network. We use a similar idea to
identify the congestion. We detect congestion only for un-
responsive flows using protocol information from transport
layer. At the core, there is no way to classify packets as re-
sponsive or unresponsive. This idea of monitoring all flows
vs. unresponsive flows is debatable. But it is true that re-
sponsive flows will back off just after one time-out period.
So, the advantage of monitoring responsive flows is small
comparing to the overhead of monitoring it.

The core stores � source addr, destination addr, source
port, destination port, protocol, timestamp, outgo-
ing link bw � about a dropped packet. The core sends this
drop information periodically to the ingress routers when
total drops exceeds a local threshold. The first five are nec-
essary to identify a flow. The outgoing link bandwidth for
a flow at the core helps to regulate the flow dynamically.
The edge routers can be more aggressive if the core has a
thin outgoing link. The edge can store the outgoing link
information based on the core ��� . Core sends its ��� to men-
tion the outgoing link the packet is traversing through if it
has multiple of those. The modification at the core does not
impose a lot of overheads on it because it stores/sends drop
information only about unresponsive flows and only at the
time of congestion.

3.2 Modification at Edge Router

There are two types of edge routers: ingress and egress.
Same router can be configured to act as both. We present
the modification on each of them separately.

Egress Router: We distinguish two types of drops at
the edge routers. First one is a drop due to shaping at the
edge, say sdrop and the other one is a drop due to conges-
tion at the core/edge router, say cdrop. If there is a drop
due to congestion, we use more information than just pack-
ets dropped to regulate conditioner. The egress router in-
forms both drop information to the previous ingress router
separately.

Ingress Router: The modification in the ingress router
is to add/modify shaping algorithm. Ingress gets shaping
drop, sdrop, from egress node and congestion drop, cdrop,

from cores and egress routers, which are used for shaping.
For a particular flow, suppose, the bottleneck bandwidth is���

. The bandwidth of outgoing link of the flow at the edge���

. The flow has an original profile (target rate) of
���

and
adjusted profile of � � . The weighted average rate for this
flow is ���
	�� . In case of ��� ��� , the profile of the flow is
updated using following equations

� ������������ ��� ������� ����! "� � ��#
 �%$ �
&('*)�+*,
���
���.- '/) -

� � � $ �
&('102+ $ �435'6� �87 � �����9����+:���
	�� 7 � ��������� -*- '1; -
where 0=<>,?<@) , , is aggressiveness to congestion con-
trol. Higher value of , helps to converge the drop adjust-
ment faster.
In equation (2), adjusted profile is taking non-negative min-
imum value from current profile or from current average
arrival rate. The arrival rate is calculated over a time frame
using Time Sliding Window [5] algorithm.

For sdrop, the profile is adjusted using equation (3). The
� � is initialized at the beginning with

���
. If the router does

not receive any drop information during a time interval, it
increases the adjusted profile using equation (4) periodi-
cally at a certain rate � , where � is initialized to a constant
number of packets each time the router gets drop informa-
tion. In absence of any drop, the rate � is increased using
equation (5).

� � � $ �
&('60A+:� �87 � ��� ���B�C� ����! "� � �4#
 - '6D -
� � � $ �435' ��� +:� ��E � - 'GF -
�H� $ �435' ���
	��I +�; � � - '1J -

where
I

is a factor, which controls how fast the rate can be
increased in the absence of any drop feedback. This rate
should be bounded by the current average rate. This rate
adjustment algorithm follows TCPs congestion control
algorithm. The profile increment is doubled each time in
absence of any drop until it hit a threshold KML�N�OP and then
it is increased linearly.

At the edge, shaping is done based on the current average
rate and the adjusted profile using the algorithm below:

For each incoming flow

if Q�R�SUTVQ*W
/*we should drop some packets */

drop next XZY%[�\^]._a`cb"d�e*fd:g
h
packets

update average rate

/*rate is decreasing over time*/

else

do regular marking

where i�j�k l:m don4p^qreos m�t l:u!vw x `Cyz]
{|[}�~ Q��/��\aR�� ~���}o���
The algorithm ensures dropping some packets when cur-

rent rate is higher than the adjusted profile to reduce con-
gestion. The chance of dropping all � packets from a partic-
ular flow is low. Too many packets should not be dropped

Parameters Value
Packet Size 1024 Bytes

TCP implementation TCP new Reno
TCP window size 64
TSW window size 1 sec

weighted average ��� 0.002
RED parameters � $ �43M�6� ,

$ �
&A�6� , ��� L�� �
DP0 � 40,55,0.02 �
DP1 � 25,40,0.05 �
DP2 � 10,25,0.1 �
Table 1: Simulation parameters

at a time since it may deteriorate the application level qual-
ity of the flow.

4 Simulation Setup

We use the ns-2 simulator [10] for our experiments. For the
standard DiffServ implementation, we use software devel-
oped at Nortel Networks [13]. We use the TSW tagger me-
ter and TSW3CM marker in the edge device. It has three
drop precedences DP0, DP1 and DP2. DP0 means lower
precedence to drop and DP2 means higher. The marker
uses a Committed Information Rate (CIR), target rate, and a
Peak Information Rate (PIR). The packets are marked with
a probability based on the current rate, CIR, and PIR.

The simple topology, shown in Figure 1, has two net-
work domains. We can test both ingress and egress routers
to control congestion. The complex topology is used later
to simulate a more realistic situation. The edge devices im-
plement traffic conditioning, while the core device imple-
ments the Assured Forwarding [8] PHB using three drop
precedences. We use throughput and packet drop ratio as
metrics to evaluate performance. The parameters for the
simulation is shown in Table 1. RED [7] parameters in the
table are set to get the service differentiation among differ-
ent types of packets. We use the software implementation
of DiffServ network developed at Nortel Networks [13].
The RED parameters are taken from their work.

Initailly, we use two aggregate flows. Flow 1-3 is from
node 3�) to 3MD and Flow 2-4 is from node 3�; to 39F . The
number of flows in each aggregate is varied. Normally, we
use 10 TCP micro-flows, where a micro-flow represents a
single TCP connection, as Flow1-3 and 10 UDP micro-
flows as Flow2-4. Then we add background traffic (both
TCP and UDP type) from node 3�J to 3M� . We change the
number of flows and RTTs in different experiments. The
detail is mentioned in the corresponding experiments.

The metrics used to evaluate performance include:

1. Throughput: This denotes the average bytes received
by the receiver application over simulation time. A
higher throughput usually means better service for the
application (e.g., smaller completion time for an FTP

C1

E2
C2

E3

E1

E4

Core RouterEdge RouterHost

n1

n2

n5

n3

n6

n4

Bottleneck Link

Figure 1: All links are 10 Mbps except � F 7 39F . The
capacity of � F 7 39F is varied to simulate bottleneck link
for UDP traffic. Two aggregate flows between n1-n3 and
n2-n4 and background traffic flows between n5-n6.

flow). For the ISP, higher throughput is preferable be-
cause this means that links are well-utilized.

2. Packet Drop : We measure packets drop with the low-
est precedence to drop, DP0, to show congestion and
drops due to the shaping to show that shaping is done
at different edges based on congestion information to
improve the situation.

5 Smulation Results

We present a variety of scenarios to show that Unresponsive
Flow Control (UFC) scheme works well. First, we show if
there is no flow control, there is a chance for congestion
collapse in the Internet. Next we show that the congestion
collapse can be overcome with UFC. We impose both TCP
and UDP type background traffic. We show the effect of
RTT and number of flows on the flow control algorithm.
Finally, we present simulation with complex topology and
multiple cross traffic across the path of controlled flows.

5.1 Congestion Collapse

First, we show the congestion collapse due to unresponsive
flows. In Figure 1, there is an aggregate TCP flow with 10
micro-flows from host 3�) to 3MD and a UDP aggregate flow
with 10 micro-flows from host 3�; - 39F . Both flows have the
same profile or target rate (J Mbps). Figure 2 shows how
TCP and UDP flows behave with respect to changing the
bottleneck bandwidth (

���
) from) 7 J Mbps. The X-axis

shows the
���

and Y-axis shows the throughput achieved by
both flows. Figure 2(a) shows that TCP flow gets its share
of J Mbps all the time because it does not go through the
congested link. When the bottleneck bandwidth is) Mbps,
F Mbps bandwidth is wasted by UDP flows in the absence
of the flow control. But if we use UFC scheme, it controls
the UDP flow rate and makes the extra bandwidth avail-
able for TCP flow. Figure 2(b) shows that TCP flow get �
Mbps when

���
is) Mbps. UFC prevents the network from

congestion collapse due to undelivered packets. It can not

0
1
2
3
4
5
6
7
8
9

10

1 1.5 2 2.5 3 3.5 4 4.5 5

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Bottleneck (E4-n4) Bandwidth in Mbps

TCP
UDP
Total

(a) No Flow Control

0
1
2
3
4
5
6
7
8
9

10

1 1.5 2 2.5 3 3.5 4 4.5 5

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Bottleneck (E4-n4) Bandwidth in Mbps

TCP
UDP
Total

(b) With Flow Control

Figure 2: a. Without flow control and TCP gets only J
Mbps when bottleneck bandwidth is) Mbps. b. With Flow
control and now TCP gets � Mbps. Both flows have the
same profile.

0
1
2
3
4
5
6
7
8
9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Rate Fraction

TCP
UDP
Total

(a) No Flow Control

0
1
2
3
4
5
6
7
8
9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Rate Fraction

TCP
UDP
Total

(b) With Flow Control

Figure 3: UDP sending rate is varied using rate fraction,� P . UDP sends as high as ;|0 Mbps (
� P =4), bottleneck

(� F 7 39F) bandwidth is) Mbps.

achieve 100% link utilization. This can be achieved with
proper tuning of parameters described in UFC algorithms.

To show how effectively flow control scheme works, we
show the data in Figure 3. In this experiment, both TCP and
UDP have the same profile but the sending rate of UDP is
varied. We define a rate fraction,

� P � �����	��
�� O L � ������ P�
���� . For
example,

� P � 0�� J means that the flow is sending at a
rate J�0�� of its own profile and

� P � F means the flow is
sending at a rate four times of its own profile. The X-axis
shows the rate fraction,

� P , of UDP and the Y-axis shows
the bandwidth achieved by both flows. When UDP’s send-
ing rate is zero, TCP gets the whole)�0 Mbps. If sending
rate of UDP is very low and no packet is dropped, there is
no shaping (shaping drop is zero) at the edge. Figure 3(a)
shows that when sending rate is high enough to drop packet
at the bottleneck link (

���
=) Mbps), there is a congestion

collapse in the network. TCP gets only J Mbps and the to-
tal is � Mbps. But with UFC scheme, Figure 3(b), the high
sending rate of UDP does not affect the TCP flow to get
extra bandwidth. The sending rate of UDP is increased as
high as 4 times of its profile. The profile is J Mbps, i.e.
UDP is sending at a rate of ;|0 Mbps and still there is no

0

1

2

3

4

5

6

7

0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

TCP
UDP

Figure 4: Cumulative receiving rate at the destination.
There is no sharp drop during transmission.

congestion collapse with UFC scheme.
Figure 4 shows the cumulative packets received success-

fully at the destination side. It shows that the curve is linear,
which means the receiver gets packets at a constant rate.
There is no large number of drop in the middle of the net-
work, which may affect the application performance. The
application level quality of UDP flows will deteriorate if
there is a sharp drop of huge number of packets in the mid-
dle of a network.

We use a similar algorithm as TCP’s congestion control
to adjust the rate of an unresponsive flow. When there is
a drop, the profile of a flow is adjusted temporarily and
shaping is done based on the current average rate of a flow,
number of active flows, and the adjusted profile. In the
absence of any drop, the profile of the flow is increased
periodically by adding a constant. The constant value is
doubled (exponential increase) in each time interval until it
hits a threshold, provided that there is no drop event (does
not get any drop feedback from any core or edge routers).
Then the adjusted profile is increased linearly. In Figure 5,
the CBR is sending at a rate that is three times of its profile,� P � D . The packet drop rate is increased and decreased
based on traffic changes (shaping information propagates
with time and the rate is controlled accordingly). The TCP
flow has only initial drop and then it does not see much
drop. There is no drop with the background traffic because
it does not see any bottleneck on its way. It takes a short
period of time at the beginning to make the drop rate stable.

All of the above experiments are repeated with back-
ground traffic between host 3�J and 3M� of Figure 1. We
use both TCP and UDP type of background traffic. We get
the same outcome as mentioned above. Some results with
background traffic is presented in the next sub section.

5.2 Effect of RTT and Multiple Flows

We show how stable is the flow control algorithm. We use
aggregate TCP flows from 3�) to 3MD , UDP flows from 3�;
to 39F , TCP as well as UDP flow are used as background
traffic from node 3�J to 3M� of Figure 1. The RTT is varied
by changing the link delay. The link delay for the path
of TCP is kept fixed while it is varied for both CBR and

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

D
ro

ps
/S

ec

Time (s)

TCP
3x CBR

background CBR

Figure 5: Drop rate of packets for different flows.

0

1

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

B
a
n
d
w

id
th

 (
M

b
p
s)

RTTs

TCP 1 (no control)
TCP 1 (w control)

3x CBR (no control)
3x CBR (w control)

(a) Effect of RTTs

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200

B
a
n
d
w

id
th

 (
M

b
p
s)

Flows

TCP (no control)
TCP (w control)

3x CBR (no control)
3x CBR (w control)

(b) Changing number of Flow

Figure 6: RTTs and number of micro-flows per aggregate
flow is varied for both TCP and UDP. Flow control works
fine with varing RTT and with higher flow aggregation.

background traffics. First, we keep the number of flows
fixed to 10 micro flows per aggregate flow and later we fix
the RTT and vary the flows from 5-200.

Figure 6 (a) and (b) show the throughput achieved by
TCP and CBR flows for varying RTT and varying flows re-
spectively. Background traffic is not shown here. The flow
control algorithm works nicely for different RTTs. The out-
put does not change significantly. Figure 6(b) is more in-
teresting because the bandwidth achievement changes with
the number of active flows. When there is a lot of flows,
TCP gets a good share even without having any flow con-
trol. It is because when many flows are present in a system,
some flows starve and go for long time-out where as others
still can get service. High volume of traffic makes it pos-
sible to increase the overall gain by the TCP flows. One
interesting point we observed is that, the flow control al-
gorithm needs a close approximation of active flows (see
algorithm at the end of Section 3. If there are 200 active
flows in the system, the algorithm works fine even if the
approximation is 100 but fails to gain good performance
if the approximation is 10. It is also true in the reverse
manner, that is if there are 10 flows in the system and if the
approximation is 200 then the performance of unresponsive
flows deteriorate.

n4

n5

E6C3

E4

10ms 20ms10ms 20ms
5ms

10ms

C2

E3

5ms

C4

10ms

E5
n6

n7

n8

E7

E2

n1

E1

40ms

C1

10ms

n3

n2

Core RouterEdge RouterHost

n9

n10

Figure 7: Complex topology with CBR cross traffic among
n3-n4, n5-n6 and n7-n10.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

B
a
n

d
w

id
th

(M
b

p
s)

Time (s)

F1 (TCP)
F2 (UDP)

Cr1
Cr2
Cr3

(a) No Flow Control

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

B
a
n

d
w

id
th

 (
M

b
p

s)

Time (s)

F1 (TCP)
F2 (UDP)

Cr1
Cr2
Cr3

(b) With Flow Control

Figure 8: Dynamic adjustment of F2 flow works fine in
presence of cross traffic. TCP flow (F1) gets more band-
width with flow control scheme.

5.3 Simulation with Cross Traffic

We use more complex topology with multiple domains and
with cross traffic to test our framework. The topology
is shown in Figure 7. There are several aggregate flows
present in this case such as TCP flow between 3�) 7 3 � ,
UDP flow between 3�; 7 3 � , 3MD 7 39F , 3�J 7 3M� , and
3�� 7 3�)�0 . We label the flows �) between 3�) 7 3 � , �H;
between 3�; 7 3 � and � ��) , � �|; and � � D flows between
3MD 7 39F , 3�J 7 3M� , and 3�� 7 3�)�0 respectively. These � �|�
are used as cross traffic. We set the start and the finish time
of these � � s flows differently to change the overall traffic
situation over the path for the flows �) and �H; . There are
10 micro flows per aggregate in this setup. Flows �) and
�H; have same profile of target rate J Mbps and all cross
traffic are sending at a rate of ; Mbps.

Figure 8 shows the bandwidth achievement of all aggre-
gate flows mentioned above with and without flow control.
The cross traffic achieves the same target in both scheme.
This cross traffic does not suffer because the flows do not
send more than their profile and they do not see any bot-
tleneck on their way. If there is no flow control, �) (TCP)
can not even get its target J Mbps, With flow control mech-
anism, �) gets more than the target. It is because after con-
trolling the UDP flow, TCP gets some unused bandwidth.

6 Conclusions and Future Work

We proposed and evaluated a simple way to detect and reg-
ulate unresponsive flows to prevent congestion collapse due
to undelivered packets. Our scheme requires little modifi-
cation at the core and does not introduce a lot of overhead.
The modification at the edges (ingress and egress) is not
major. The implementation is simple and the deployment
will be easy. In our scheme, core/egress routers sends con-
trol packets only at the time of congestion. For this rea-
son, this scheme will not introduce a lot of control packets
into the network. We plan to implement our algorithm in
Linux and setup a test-bed to obtain experimental results
to complement and validate the simulation results of our
framework as a future work.

Acknowledgements

The authors would like to thank Sonia Fahmy and Mo-
hamed Hefeeda for their valuable suggestions.

References
[1] C. Albuquerque, B. Vickers, and T. Suda. Network Border

Patrol. IEEE INFOCOM 2000, 2000.
[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss. An architecture for Differentiated Services. RFC
2475, December 1998.

[3] B. Braden and et al. Recommendations on queue manage-
ment and congestion avoidance in the internet. RFC 2309,
April 1998.

[4] H. Chow and Leon-Garcia A. A feedback control exten-
sion to differentiated services. Internet Draft, draft-chow-
diffserv-fbctrl-00.pdf, March 1999.

[5] D.D. Clark and W. Fang. Explicit allocation of best effort
packet delivery service. IEEE/ACM Transactions on Net-
working, 6, 4:362–374, 1998.

[6] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the Internet. IEEE/ACM Transactions on
Networking, August 1999.

[7] S. Floyd and V. Jacobson. Random Early Detection gate-
ways for congestion avoidance. IEEE/ACM Transactions
on Networking, 1, 4:397–413, 1993.

[8] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. As-
sured Forwarding PHB group. RFC 2597, June, 1999.

[9] M Mahajan and et al. Controlling high bandwidth aggre-
gates in the network. Technical Report, ACIRI, Feb 2001.

[10] S. McCane and S. Floyd. Network simulator ns-2.
http://www.isi.edu/nsnam/ns/, 1997.

[11] T. Ott, T. Lakshman, and L. Wong. SRED: Stabilized RED.
In Proceedinds of the IEEE INFOCOM, March 1999.

[12] N. Seddigh, B. Nandy, and P. Pieda. Study of TCP and UDP
interaction for the AF PHB. Internet Draft, 1999.

[13] F. Shallwani, J. Ethridge, P. Pieda, and
M. Baines. Diff-Serv implementation for ns.
http://www7.nortel.com:8080/CTL/#software, 2000.

[14] H. Wu, K. Long, S. Cheng, and J. Ma. A Direct Congestion
Control Scheme for Non-responsive Flow Control in Diff-
Serv IP Networks. Internet Draft, draft-wuht-diffserv-dccs-
00.txt, August 2000.

