OUTSOURCING SCIENTIFIC COMPUTATIONS SECURELY™*

Mikhail J. Atallah and John R. Rice
CERIAS: Center for Education and Research in Information Assurance and Security
Purdue University, West Lafayette, IN 47907, U.S.A.

email: {mja, jrr}@cs.purdue.edu

Abstract

The outsourcing of numerical and scientific computa-
tions, as introduced in (Atallah et al., 2001) uses the
following framework: A customer needs computations
done but lacks the computational resources (computing
power, appropriate software, or programming exper-
tise) to do these locally. An external agent can do these
computations. The outsourcing is secure if it is done
without revealing to the external agent either the actual
data or the actual answer to the computations. The
idea is for the customer to do some carefully designed
local preprocessing (disguising) of the problem and/or
data before sending it to the agent, and also some lo-
cal postprocessing (unveiling) of the answer returned
to extract the true answer. In this paper we extend
this concept to the case of more than one customer,
introducing the notion of mutually secure outsourcing
where two or more parties contribute their private data
into the (disguised) common computation performed
through the external agent; the customers are to know
the result but not each other’s private data, and the
external agent should know neither the private data
nor the result. We review the framework for disguising
scientific computations and discuss their applicability,
costs, and levels of security. We also introduce tech-
niques for the disguise of programs in general, not just
those for scientific computations.

1 INTRODUCTION

In (Atallah et al., 2001) we consider many science and
engineering computational problems and present dis-
guise schemes for outsourcing the computation in such
a way that the customer’s information is hidden from
the external agent, and yet the answers returned by the
agent can be used to obtain easily the true answer. The
local computations are minimal — i.e., proportional to

*Portions of this work were supported by Grants DCR-
9202807 and EIA-9903545 from the National Science Foundation,
and by sponsors of the Center for Education and Research in In-
formation Assurance and Security.

the size of the local input (which is unavoidable). The
bulk of the computational task falls on the external
agent (which would typically be an entity with con-
siderable computing power, such as a supercomputing
center). We note that even computations that depend
on the exact relationships among the data items can be
disguised for outsourcing. Examples include ordering
a list of numbers and looking for a template in an im-
age. In this paper we consider the case when the input
data is spread among many customers who should learn
nothing about each other’s data (other than what they
can infer from the computation’s overal answer).

This framework is similar to, yet differs in significant
ways from the traditional secure multi-party compu-
tation protocols (for a good introduction to these see
Schneier, 1996, and its extensive bibliography). Some
of these differences were mentioned in (Atallah et al,
2001), which also contains a review of related work in
cryptography. Some significant differences are:

e Here we would like any superlinear computational
burden to fall on the outsourcing (external) agent.
The computations performed locally by the cus-
tomers on their private data should be propor-
tional to the size of their local data. The customers
do not keep data permanently with the outsourcing
agent; instead, a customer only uses temporarily
the agent’s superior computational resources.

e Here we would like the computational burden on
the external agent to be O(T'), where T is the time
it would take that agent to solve the problem if it
already had all of the data needed for the compu-
tation (instead of the data being scattered among
the customers).

e Whereas in cryptographic multi-party protocols
every participant knows that “this is step 7 of run
j of prococol X,” here the external agent is told
neither 7 nor j nor X; in fact an effort to obfuscate
these is preferred, e.g., by interleaving the various
steps/runs of multiple computations and/or by us-
ing more than one external agent for the various
steps of a single computation.

The security of a scheme should not depend on an
assumption that the external agent is ignorant of the
source code used by the customers for creating a dis-
guise. Rather, the security should depend on the fact
that the external agent does not know the customer’s
seeds (of the generators for the randomness).

The paper (Atallah et al, 2001) gives schemes for
secure outsourcing (just 2-party — a single customer)
of the following computations. Those marked with
an asterisk can be done in a mutually secure manner:
Quadrature, solving a linear system™, matrix inversion,
matrix multiplication®, computing convolutions*, sort-
ing, template matching in image analysis (using the
sum of pixelwise (z — y)? or |z — y| as measures of
closeness)*, and Matching string patterns*. The mutu-
ally secure versions of the above asterisk-marked prob-
lems are not all simple extensions of (Atallah et al.,
2001), but for page-limit reasons we do not include
them all in this paper. Here we use the problem of
solving a linear system to illustrate the ideas involved
(the other asterisk-marked problems will be reported
elsewhere). We also sketch here a solution for fin-
gerprint matching, review the framework for disguis-
ing scientific computations and discuss their applica-
bility/costs/security, and also introduce techniques for
the disguise of programs in general (not just those for
scientific computations).

Our problems allow the flexibility of using one-time-
pad-like schemes for disguise. For example, when we
disguise a number z by adding to it a random value 7,
then we do not re-use r. If we hide a vector x by adding
to it a random vector r, then we have to be careful to
use a suitable distribution for r. The random numbers
used for disguises are not stored locally and used to
“undo” the effect of the disguise on the result from the
agent. Randomness is also used to modify the nature
of the disguise algorithm itself.

Throughout this paper when we use random num-
bers, random matrices, random permutations, random
functions (e.g., polynomials, splines, etc., with random
coefficients), etc.; it is assumed that quality random
number generation is used. The parameters, types,
and seeds of these generators provide the keys to the
disguises. A single key is occasionally used to gener-
ate multiple keys which are used “independently” and
which simplify the mechanics of the disguise techniques.
This key is analogous to the key in encryption but the
techniques are different.

2 MUTUALLY SECURE OUT-
SOURCING

Mutually secure outsourcing allows several different
customers to contribute problem information to a com-
putation without revealing to anyone their part of the
information. The bulk of the computational task should
be carried out by yet another party, who is to remain
ignorant of the customers’ private data and of the com-
puted solution. The technique is described in terms of
two parties, A and B, who have information, d1 and d2,
respectively, and who want another party, C, to make a
computation to compute a result z. The technique can
easily be extended to more parties. The goal is that
A and B do not reveal the information d1 and d2 to
anyone and C does not even learn the result of z. The
procedure consists of one or more of the following basic
rounds.

Basic Round of Mutually Secure Outsourcing

1. The type and basic parameters of the computation
are determined.

2. A mutually acceptable disquise program is created
for this computation by A, B, or C.

3. A and B agree on a Master Key for this program.

4. A and B independently apply this program to d1
and d2 to produce disquised information d1 and d2
plus unveiling data vy and vs.

5. A and B exchange the unveiling data in a secure
fashion.

6. d1 and d2 are sent to C who computes z and re-
turns z to A and B.

7. A and B apply the unveiling data vi and vy and
reveal z.

As in ordinary outsourcing, one prefers a reasonably
small effort to disguise d1 and d2 and to unveil Z.

The nature and breadth of the disguises possible are
illustrated by the mutually secure outsourcing of the
solution of a linear system of equations. Assume that
A and B each have part of the information (equations
and right side). Thus the problem is to solve

M1 (bl

M2)57\ b2
where A has M1 and b1 and B has M2 and b2. The
lengths of the vectors 41 and b2 are N; and N2, respec-

tively. The disguise procedure in (Atallah et al, 2001)
is modified by partitioning as follows:

1. Choose Master Key.

2.

(a)

A creates random permutation vectors wll,
721 and 731 of length Ny each. A also creates
random vectors al, f1 and y1 of length N;
each. A then uses these to create the Ny x N;
weighted permutation matrices

Pi1(3,j) = al(d) if 711(3) = j; = 0 otherwise
Py (3, 5) = BL(7) if w21(¢) = j;= 0 otherwise
Ps1(3,j) = y1(3) if #31(¢) = j;= 0 otherwise

B creates random permutation vectors w12,
722 and 732 of length N3 each. B also creates
random vectors a2, $2 and 72 of length N5
each. B then uses these to create the No x N,
weighted permutation matrices

Pi5(4,7) = a2(3) if 712() = j;= 0 otherwise
Pys(3,j) = B2(0) if w22(¢) = j;= 0 otherwise

Pss(3,j) = v2(4) if w32(¢) = j;= 0 otherwise

. A and B agree on an index k and size K.

(a)

(b)

(a)

(b)

A creates a random matrix of order N1 by K
and then creates the matrix B1 by substitut-
ing bl as the kth column of this matrix.

B creates a random matrix of order N2 by K
and creates the matrix B2 by substituting 62
as the kth column of this matrix.

A computes M1
P11 B1P; .

= P yM1P;;!, and Bl =

B computes M2 =
P12B2P;; .

PsM2P;;}, and B2 =

. The linear system of equations

M1
M?2

)(5)-(3)

(S5

is outsourced to C for solution and (z1,22) is re-
turned by C.

(a)
(b)
()

A computes P2_11£1P31 to obtain z1.
B computes P2_2122P32 to obtain z2.

If desired, A and B may exchange Ps;, P51
and Pso, P33 so that each may know the entire
solution (z1, 22).

Note that the above requires O(n?) time in local com-
putations by the customers, which is the minimum
possible since the problem involves O(n?) data. The
outsourced computations, on the other hand, require
O(n®) operations and their burden is borne by the out-
sourcing agent C.

The unveiling data used in the last step are the ma-
trices Ps1, Pss, P3; and Ps;. Note that if A and B
do not need to know the entire solution (z1,22) then
they do not have to reveal any of the unveiling data to
each other. Note, however, that if A and B do decide
to share Pg1, Pas, P31 and Pss, then the security of
the disguise is weakened and one may have to use more
complex (possibly dense) matrices Py; and Pja to give
more strength to the disguise. If Py and Pj5 are dense
random matrices (for better security) then the matrix
multiplications that used to be done locally by A and
B (for disguising), and that took O(n?) local computa-
tion time, can no longer be done locally because they
would now take O(n®) time. We can achieve O(n?) lo-
cal computation time by A and B even if P11 and Po
are dense as follows. We illustrate this for A; a similar
discussion holds for B. Whenever A needs to multiply
locally two dense matrices X and Y, A instead engages,
with an outside agent C, in the secure (just 2-party —
not involving B) outsourcing method of [1] for com-
puting XY . Recall from [1] that this is done without
revealing to C’ either X, Y, or XY, and that C’ does
the O(n®) time computations while A does only O(n?)
work. It is desirable (but not required) to choose C” to
be different from C.

3 DISGUISE TECHNOLOGIES

We note that multiple disguise techniques are necessary
and identify five broad classes of disguises. Within each
class there may be several or many atomic disguises, the
technology used to create complete disguises. No sin-
gle disguise technique is sufficient for the broad range
of computations. The analogy with ordinary disguises
is appropriate: one does completely different things to
disguise an airplane hangar than one does to disguise a
person. In a personal disguise one changes their hair,
the face, the clothes, etc., using several different tech-
niques. The same is true for scientific computation.
The necessity for multiple disguises illustrates the dif-
ferent nature of disguise and encryption. Multiple dis-
guises require multiple keys and thus we present a tech-
nique to use one master key from which many sub-keys
may be generated automatically with the property that
the discovery of one sub-key does not compromise the
master key or any other sub-key.

Atomic Disguises. A disguise has three important
properties: Invertibility: After the disguise is applied
and the outsourced computation made, one must be
able to recover the result of the original computation.
Security: No one without the key of the disguise should
be able to discover either the original computation or its
result even if one has all the other information about
the disguised computation. Cost: There is a cost to
apply the disguise and a cost to invert it. The tradeoff
between cost and security is application-dependent.

The ideal disguise is invertible, highly secure and
cheap. We have found disguises for scientific computa-
tions that are invertible, quite secure and of reasonable
cost (Atallah et al, 2001). Not unexpectedly, we see
that increasing security involves increasing the cost.

Random objects. The first class of atomic disguise
techniques is to create random objects: numbers, vec-
tors, matrices, functions, parameters, etc., which are
“mixed into” the computation to disguise it. These ob-
jects are created from random numbers which, in turn,
use random number generators. It is sufficient to save
the seed and parameters of the generator.

Security can be achieved by taking a few standard
generators (uniform, normal, etc.) and combining
them, creating one time random sequences.

There are many standard probability densities (uni-
form, normal, exponential, etc.), with well honed
pseudo-random number generator algorithms. Taking
three of these, say (G1, G and (3 and combining this
by

a1G1 + aGa + a3Gs

where a1 + as + ag = 1 provides a huge array of ran-
dom number generators. However, there is no point
in having the standard statistical densities, in disguise
one merely wants numbers from a certain range. Thus,
if one chooses G; as uniform on [0,a], G» as uniform
on [0,1 — a] and G3 as uniform on [0,1], then one has
a cheaply generated set of random number sequences
with 3 independent parameters. Using 6 decimal digits
for these parameters, provides 10'® distinct probabil-
ity densities, sufficient to make one time pads for any
near term application. These random numbers must
be scaled appropriately for the computation to be dis-
guised. Note that in creating this one set of random
numbers, we use 7 sub-keys, the 1 parameter a, the 3
coeflicients, and the 3 seeds of the generators.

Once one has random numbers then it is straightfor-
ward to create random vectors, matrices and discrete
objects for use in disguises. We need to be able to create
random sets of functions also. The technique to do this
is as follows. Choose a basis of 10 or 30 functions for a
high dimensional space F' of functions. Then choose a
random point in F' to obtain a random function. The
basis must be chosen with some care for this process

to be useful. The functions must have high linear in-
dependence (otherwise the inversion process might be
unstable) and their domains and ranges must be scaled
compatibly with the computation to be disguised. One
can make F' a one time random space as follows: En-
close the domain of the computation in a box (inter-
val, rectangle, box, ..., depending on the dimension).
Choose a random rectangular grid in the box with 10
lines in each dimension and assuring a minimum sep-
aration (say 3%). Create K sets of random function
values at all the grid points (including the boundaries),
one set for each basis function desired. These values
are to be in the desired range. Interpolate these val-
ues by cubic splines to create K basis functions. These
functions are smooth (they have two continuous deriva-
tives). Add to this set of K basis functions a basis for
the quadratic polynomials.

This approach can be modified to make many kinds
of one time random spaces of functions. The computa-
tional techniques for creating all these splines (or piece-
wise polynomials) are given in the book by deBoor (de-
Boor, 1978).

Symbolic Disguise with Identities. The paper
(Atallah et al, 2001) presents a lengthy set of tech-
niques to disguise symbolic expressions using mathe-
matical identities and partitions of unity. An automatic
system is described which, for example, replaces x by

23 % sec’(z) + .+ (1 — z) * sect(z)+
z xtan*(z) x cos?(z) — 2% x (1 — z) x tan?(z) * sec?(z)+
2% (1 — z) x sec’(z) — 2 x tan?(x) * sec?(z)—

2 (1 —z)*sec?(x) * tan?(z) + z * tan(z) x sin?(z).

There is a rich area of mathematical function
(Abramowitz and Stegun, 1964) which supports this
technique and arbitrarily complex (and obsfucating)
disguises can be created.

This approach can be extended to computer pro-
grams in general (one can view mathematical expres-
sions as just programs for a very specialized “mathe-
matics machine”). A program identity is a code that
computes a known, simple value, e.g., 0 or 1. Then a
program statement like: If (k = 4) then Y =Y 4+ 10
can be replaced by If (1 *k = 4 and (not false)) then
Y*1 =Y +0+4+10x*1. Next, one substitutes a 200 line
program identity for false, three different 400 line pro-
gram identities for 1, and a 300 line program identity
for 0 into this statement for 1, false, 1, 0, and 1, respec-
tively. This huge “expression” is expanded into a set of
simple program steps which are then rearranged to en-
tangle and obscure the simple statement. The resulting
1500 line program can be made intractable to simplify.
Although we cannot prove it is “hard” to simplify such
programs, evidence can be given that simplification is
computationally intractable: Given a boolean formula

in disjunctive normal form (i.e., as a “sum of prod-
ucts”) then it is NP complete to determine whether
it is a tautology (i.e., can be simplified by replacing
it with “true”) — this is simply a re-statement of the
textbook fact that satisfiability of a boolean formula in
conjunctive normal form (i.e., as a “product of sums”)
is NP complete.

Other Atomic Disguise Techniques. The paper
(Atallah et al., 2001) presents several other techniques
for disguising mathematical computations. These in-
clude Modification of Linear Operators: The functions
(solutions, coefficients, etc.) in these are changed by
disguises. Manipulation of Objects: Random functions
are added or multiplied as appropriate. Domain and
Dimension Modification: Domains can be extended by
enlarging the definitions of functions. The dimension of
a linear algebra problem can be increased or decreased
by the customer. The domain can be split into several
parts and then each of them disguised in a different
way. Coordinate System Changes: Random changes
can be done both for continuous problem (e.g., differ-
ential equations) or discrete ones (e.g., linear systems).
Nonstandard coordinate systems can be used as effec-
tive, low cost disguises. Data Dependent Disguises:
Have some of the random number generators depend
on original problem data instead of the usual keys.

4 MUTUALLY SECURE FIN-
GERPRINT MATCHING

Matching fingerprints is an important technology for
biometric identification and we show how this matching
can be disguised for outsourcing. Moreover, we show
how it can be done by multiple parties using mutually
secure outsourcing as done in Section 2. Fingerprint
identification has three distinct levels: Level 1: The
pattern of ridges are classified into one of a small num-
ber of types depending on the general shapes of the
patterns. For each type, some parts (features) are iden-
tified, e.g., the center of a whorl or the points where a
ridge separates into two branches. Level 2: Some sim-
ple counts are made using the point features, e.g., the
number of ridges crossing a line between two points, or
the number of ridges in a whorl. There are perhaps
4 to 20 possible values of these counts, depending on
the fingerprint type and particular point features used.
The types, plus the associated counts, generate a sys-
tem with many thousands of classifications. However,
real fingerprints are not evenly distributed among these
classes and the chances of an accidental match can be as
low as one in a thousand for the more common classes.
Level 3: Minutia are small details such as: a ridge with
a break, two ridges joined, a ridge has an “island” in

it, a bridge (short ridge) joining two ridges. There are
hundreds of minutia on a real fingerprint, many more
than enough to make fingerprints unique among all the
people in the world. A level 2 class is just a list of class
type followed by the counts in a standard order. Two
fingerprints are compared by matching these lists. The
comparison is approximate because counts sometimes
vary by one, due to effects in taking fingerprints.

Fingerprints can be disguised at Level 2 by mapping
the image domain (a rectangle) by a random, smooth
function. This preserves the classification while hiding
the actual fingerprint into another rectangle. Then the
resolution is decreased so that main ridges are clearly
visible, but the minutia are not. Alternatively, dis-
guised fingerprints can be compared by making several
two-dimensional transforms of each image and compar-
ing these. This adds greatly to the accuracy of identi-
fication when combined with the classification.

Fingerprints are compared at Level 3 by examin-
ing the minutia carefully (usually with magnification).
Each minutia is typed and located on a portion of the
image. Even a quarter of a fingerprint has about 100
minutia. Some of the minutia are innate to the per-
son and others are the result of injuries, unclear fingers
or fingerprinting devices, etc. Perhaps 20-40% of the
minutia change over time, due to temporary and pro-
cessing effects. However, this still provides ample basis
to identify someone conclusively.

The minutia are represented as a network (planar
graph) of nodes with types at each node. Subgraphs
of these graphs can be represented as strings and then
disguised. The string comparison method of (Atallah et
al., 2001) can be used to measure the similarity of the
disguised subgraphs. Note than an accidental match of
even 10% of two subgraphs is extremely unlikely and
a 50% match is considered sufficient for an absolutely
conclusive match.

The comparison of fingerprints can be outsourced
with mutual security. Thus a person can have his fin-
gerprint taken and disguised. Then it can be compared
against a set of fingerprints of known persons disguised
in the same way. The security can be enhanced by hav-
ing a device that automatically applies the disguises to
the actual fingerprints and then compares them with-
out giving any external access to the fingerprints.

5 SECURITY ANALYSIS

The nature of disguises is that they may be broken
completely (i.e., the disguise program is discovered) or,
more likely, they are broken approzimately. That is, one
has ascertained with some level of uncertainty some or
all of the objects in the original computation. There is a

probabilistic nature of breaking disguises which comes
both from the use of random numbers and from the
uncertainty about the disguise method. Of course, an
attacker could only guess at the levels of certainty about
the object information obtained. We discuss some at-
tack strategies and possible defenses against them.

Statistical attacks. An attacker may attempt to
derive information about the random number gener-
ators used. A determined attacker could attempt to
check all the numbers in the outsourced computation
against all the numbers particular random generators
produce. (But note that this exhaustive match attack
does not work if the random numbers we generated are
added to the private data to disguise it — the data dis-
guises them as much as they disguise it.) One cannot
be complacent about the risk of a brute-force attack
when we see teraflops or petaflops computers coming
into use. Possible defenses against this kind of attack
include (i) using random number generators with long
(real and random) parameters; (ii) restarting the ran-
dom number generators from time to time with new
sub-keys (or change the random number generator used
from time to time); (iii) using combinations of random
number sequences; (iv) using data values to generate
seeds for random number generators and, sometimes,
replace randomly generated values by actual data val-
ues or other data dependent values.

Approximation theoretic attacks. The disguise
functions are chosen from spaces described in Section
3. Let F' be the space of these functions, u(z) be an
original function, f(z) be a disguise function so that
g(z) = u(z) + f(x) is observable by the agent. The
agent may evaluate g(z) arbitrarily and, in particular,
the agent might (if 7 were known) determine the best
approximation g*(z) to g(z) from F'. Then the differ-
ence g*(z)—g(z) equals u*(z) —u(x) where u*(x) is the
best approximation to u(z) from F'. Thus ¢*(z) — g()
is entirely due to u(x) and gives some information about
u(z). There are three defenses against this attack:

1. Choose F' to have very good approximating power
so that the size of ¢*(2) — g(x) is always small.

2. Choose F to be a one time random space as de-
scribed in Section 3. Since F' itself is then un-
known, the approximation ¢*(z) cannot be com-
puted accurately and any estimates of it must have
considerable uncertainty.

3. Approximate the function object u(z) by a high ac-
curacy, variable breakpoint piecewise polynomial.
It is known (deBoor and Rice, 1979) that this can
be done efficiently and software exists to do this
in low dimensions (deBoor, 1978). Then, one adds

disguise functions with the same breakpoints and
different values to the outsourced computation.

We conclude that if F' has good approximation power
and moderate dimension, then it is very hard to obtain
any accurate information from the disguised functions.

Symbolic code analysis. Many scientific compu-
tations involve a substantial amount of symbolic input,
either mathematical expressions or high level program-
ming language (Fortran, C, etc.) code. It is natural
to pass this code along to the agent in the outsourcing
and this can compromise the security. An expression
COS(ANGLE2 * ¢ - SHIFT) 4+ BSPLINE(A,) is very
likely to be the original function (COS - - -) plus the dis-
guise (BSPLINE - -) and they can be distinguished no
matter how much the BSPLINE function values behave
like COS as a function. The symbolic information may
be pure mathematics or machine language or anything
in between. Outsourcing machine language is usually
impractical and, in any case, provides minimal secu-
rity. Decompilers are able to reconstruct well over 90%
of the original code from machine language. There are
four general defenses against symbolic code analysis at-
tacks:

1. Neuter the name information in the code. This
means to delete all comments and to remove all
information from variable names. This is an obvi-
ous, easy but important part of the defense.

2. Approximate the basic mathematical functions.
The elementary built-in functions (sine, cosine,
logarithm, absolute value, exponentiation, . ..) of a
language are implemented by library routines sup-
plied by the compiler. There are many alterna-
tives for these routines which can be used (with
neutered names or in-line code) in place of the
standard names. One can also generate one time
elementary function approrimations for these func-
tions using a combination of a few random parame-
ters along with best piecewise polynomial, variable
breakpoint approximations. In this way all the fa-
miliar elementary mathematical operators besides
arithmetic can be eliminated from the code.

3. Apply symbolic transformations and use of iden-
tities and expansions of unity. Changes of coor-
dinates are very effective at disguise but can be
expensive to implement. Consider the potential
complications in changing coordinates in code with
hundreds or thousands of lines. The other trans-
formations are individually of moderate security
value, but they can be used in almost unlimited
combinations so that the combinatorial effects pro-
vide high security. For example, we transform the

simple differential equation

Y’ + x xcos(x)y + (2% +log(z))y = 1 + 2*
into
y"[zOl * 202(z) — z03]

+ y'[z04 % z/(z05cos(z + 1) + cos z x z06(z) tan(z + 1)]*
[z07 —sin’z — zOS(z) sin® z + 207 sin2(z + 1)]

+ y[z01 * (z * z09(z))2 — z10(z 4+ log z) + z11 cos z log 1}2]*
[z12 % 213(z) + zl4 tanz + (z15sinz + z16cos z + z17)]
= sinz—|—118*(1—|—z2)*z09(z)+z19(z)+z10*z2 coSs .

It certainly would take a considerable effort to re-
cover the simple equation from this, and this dis-
guise uses rather elementary techniques. A more
secure disguise could use hundreds of lines.

4. Use reverse communication. This is a standard
technique (Rice, 1993) to avoid passing source code
into computations and can be used to hide parts
of the original computation.

We conclude that symbolic disguises can be made as
secure as one wants at the cost of increasing the com-
plexity of the computation.

6 COST ANALYSIS

There are four components of the cost of disguise.

Computational cost for the customer. All of
the disguise techniques proposed here and in (Atallah
et al., 2001) are affordable in the sense that the compu-
tation required of the customer is proportional to the
size of the problem data. The computational cost of
disguise tends to be lower than the cost of encryption.
The principal cost of the customer is, in fact, not com-
putational, but in dealing with the complex technology
of making good disguises. A high level problem solving
environment is needed to minimize this cost so an av-
erage scientist or engineer can quickly create disguises
that provide complete security. For standard problems
everything can be automatic.

Computational cost for the agent. The disguise
techniques could substantially increase the computa-
tional cost for the agent. The effects are problem de-
pendent and in the cases examined so far, disguise has
a small effect on the agent’s computational cost. None
of these disguise techniques change the basic type of
the computation.

Network costs. Disguises can increase network
traffic by increasing (1) the number of data objects to
be transmitted, and (2) the bulk of the data objects. A
review of the disguises proposed so far shows that the
number of objects is rarely changed much. However,

the bulk of the individual objects might change signifi-
cantly. Coordinate changes and the use of identities can
change functions from expressions with 5-10 characters
to ones with many dozens of characters. This increase
is unlikely to be important in most applications; the
size of the symbolic data is very small compared to the
size of the computation. Disguise techniques for inte-
gers can increase their length by a bit or two which
could increase their effective length from 1 byte to 2
bytes. This might double the network costs for some
types of data intensive applications.

Cost summary. (1) Customer costs for disguise
are reasonable and linear in the size of the computa-
tion data. The principal cost is in the “intellectual”
effort needed to make good disguises. (2) Agent costs
have a minimal increase unless the customer changes
the problem structure. The control of problem struc-
ture increases the intellectual effort of the customer.
There might be especially simple computations where
good disguise requires changing the problem structure.
(3) Network cost increases vary from none to modest,
rarely will this cost be doubled.

References

Abramowitz, M., and Stegun, L.A. (1964) Handbook of
Mathematical Functions. Appl. Math. Series 55, Nat.
Bur. Stnds., U.S. Govt. Printing Office.

Atallah, M.J., Pantazopoulos, K.N., Rice, J.R. and Spaf-
ford, E.H. (2001) Secure outsourcing of scientific com-
putations. In Adwances in Computers, Vol. XX (Z.
Zelkowitz, ed.), Academic Press, 56 pages, 2001, to
appear.

Collberg, C., Thomborson, C., and Low, D. (1988) A taz-
onomy of obfuscating transformations. Tech. Rpt.
148, Department Computer Science, University of
Auckland.

deBoor, C., and Rice, J.R. (1979) An adaptive algorithm
for multivariate approximation giving optimal conver-
gence rates. J. Approx. Theory, 25, pp. 337-359.

deBoor, C. (1978) A Practical Guide to Splines. SIAM
Publications.

Rice, J.R. (1993) Numerical Methods, Software, and Anal-
ysis. Second Edition, Academic Press, Section 7.6.D.

Schneier, B. (1996), Applied Cryptography: Protocols, Al-
gorithms, and Source Code in C, Second Edition, John
Wiley & Sons, Inc..

