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Abstract

In this paper we present a novel multiresolution scheme for the detection of spiculated
lesions in digital mammograms. First, a multiresolution representation of the original mam-
mogram is obtained using a linear phase nonseparable 2-D wavelet transform. A set of
features is then extracted at each resolution in the wavelet pyramid for every pixel. This
approach addresses the difficulty of predetermining the neighborhood size for feature extrac-
tion to characterize objects that may appear in different sizes. Detection is performed from
the coarsest resolution to the finest resolution using a binary tree classifier. This top-down
approach requires less computation by starting with the least amount of data and propa-
gating detection results to finer resolutions. Experimental results using the MIAS image
database have shown that this algorithm is capable of detecting spiculated lesions of very
different sizes at low false positive rates.
Index Terms: digital mammogram, spiculated lesion, multiresolution, feature analysis,
binary classification tree.
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1 Introduction

Breast cancer is the most common form of cancer in American women and the second major

cause of death after lung cancer [1]. It is a serious health problem in the United States the

incidence of which continues to rise [2]. Mammography is currently the best technique for

reliable detection of early, non-palpable, potentially curable breast cancer [3]. The mortality

rate from this disease decreased for the first time in 1995, due in part to the increasing

utilization of screening mammography [2]. However, radiologists vary in their interpretation

of mammograms. In addition, the interpretation is a repetitive task that requires much

attention to minute detail. Therefore, in the past several years there has been great interest

in the use of image processing and analysis techniques [4, 5, 6, 7, 8, 9] for automated tumor

detection in digital mammograms. The goal has been to increase diagnostic accuracy as well

as the reproducibility of mammographic interpretation.

Among breast abnormalities, spiculated masses having a stellate appearance in mammo-

grams are highly suspicious indicators of breast cancer [1]. Their central masses are usually

irregular with ill-defined borders. Their sizes vary from a few millimeters to several cen-

timeters in diameter. Computer aided diagnosis of digital mammograms generally consists

of feature extraction followed by classification [4]. For spiculated lesions, Kegelmeyer, et

al [8, 10] extracted a five-dimensional feature vector for each pixel which included the stan-

dard deviation of the edge orientation histogram (ALOE) and the output of four spatial

filters. Each feature vector was then classified using a binary decision tree. They chose

the window size for obtaining the ALOE feature to be 4 cm so that it was large enough to

encompass all of the spiculated lesions in their data. Karssemeijer and Brake [11] investi-

gated a method based on statistical analysis of a map of edge orientations. Two features

were derived from the edge orientation map that were used to classify suspicious regions. To

1



cover the range of sizes of the spicules in their data set, edge orientations were derived at

3 spatial scales and the one with the maximum absolute value was used. In general, it has

proved difficult to determine the size of the neighborhood that should be used to extract

local features of spiculated lesions. If the neighborhood is too large, small lesions may be

missed; while if the neighborhood is too small, parts of large lesions may be missed.

In this paper, we present a multiresolution scheme for the detection of spiculated lesions

in mammograms that specifically addresses this difficulty of predetermining the neighbor-

hood size for feature extraction. The system diagram is shown in Figure 1. We first obtain

a multiresolution representation of the original mammogram using a linear phase nonsepa-

rable 2-D wavelet transform. Features that are designed to differentiate spiculated lesions

from normal structures are then extracted for every pixel at each resolution. Detection is

performed from the coarsest resolution to the finest resolution using a binary tree classi-

fier. There is a fundamental difference in our method than other approaches, which is also

the novelty of our algorithm, in that we extract and classify features at multiple resolutions,

hence overcoming the difficulty of choosing a neighborhood size a priori to capture tumors of

varying sizes. Furthermore, the top-down classification we use requires less computation by

starting with the coarsest resolution image (least amount of data) and propagating detection

results to finer resolutions.

In Section 2, we describe the multiresolution decomposition method. In Section 3, we

discuss the mammographic features used to characterize spiculated lesions of different sizes at

various resolutions. The top-down classification approach is discussed in Section 4. Finally

we present experimental results and discussion in Section 5.
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2 Multiresolution Decomposition

As indicated above, the spiculated lesions we are interested in can occur in very different

sizes. Hence, it is impossible to define a priori an optimal resolution for analyzing a mammo-

gram. A multiresolution representation reorganizes image information into a set of details

appearing at different spatial resolutions, and thus provides a hierarchical framework for

image analysis [12]. Recently the wavelet transform has become a popular technique for

multiresolution representation and analysis in a wide variety of image processing applica-

tions, including computer aided diagnosis of mammograms [13, 14, 15, 16, 17].

We choose the linear phase nonseparable 2-D perfect reconstruction wavelet transform

described in [18] to obtain a multiresolution representation [12] of the original mammogram.

This transform does not introduce phase distortions in the decomposed images. In addition,

no bias is introduced in the horizontal and vertical directions as would occur with a separable

transform. The impulse response of the analysis low pass filter is

h(n1, n2) =


0 0.125 0

0.125 0.5 0.125

0 0.125 0



The dilation matrix used to represent the subsampling lattice is

D =

 1 1

1 −1



which corresponds to the 2-D quincunx sublattice [18], as shown in Figure 2.

Let the original mammogram have the finest resolution N ×N pixels. Since D expands

the sampling lattice by
√

2 in each direction, image resolution decreases by a factor of
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1/
√

2 after each decomposition. For example, the image at the second finest resolution has

N/
√

2×N/
√

2 pixels. We will use only images of spatial resolutions (N×N), (N/2×N/2), . . ..

for feature extraction and classification.

3 Multiresolution Feature Analysis

Spiculated lesions range in size from a few millimeters to several centimeters. Usually the

larger the tumor center, the longer are the spicules or “arms” [19]. Hence a large lesion

preserves a stellate appearance at several more coarse resolutions. This can be seen in

Figure 3, in which a spiculated lesion of 1 cm in radius is shown at multiple resolutions.

Also note that an M×M region at a coarser spatial resolution N/n×N/n corresponds to

an nM×nM region in the original mammogram with spatial resolution N×N . For example,

if a set of features extracted within an 8×8 window in the original mammogram with spatial

resolution N × N differentiates spiculated lesions of size ≈ 1 mm from normal tissue, then

the same set of features extracted at the coarser resolution N/4×N/4, using the same sized

8×8 window, would be able to detect similar spiculated lesions of size ≈ 4 mm. This enables

us to choose a fairly small neighborhood for feature extraction at the finest resolution and

detect the smallest possible spiculated lesions. Larger lesions will be detected using the same

set of features extracted at a coarser resolution. This strategy circumvents the difficulty of

choosing a neighborhood size a priori to capture features of objects of varying sizes.

We extract four features from the low frequency wavelet coefficients for every pixel at

each resolution. Let (i, j) be the spatial location in the mammogram at row i and column

j; f(i, j) be the pixel brightness at (i, j); ∂Sij be some neighborhood of (i, j), and K be the

number of pixels within ∂Sij . The first two features are then defined as the following:
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• mean pixel brightness in ∂Sij :

f̄(i, j) =
1

K

∑
(m,n)∈∂Sij

f(m,n)

• standard deviation of pixel brightnesses in ∂Sij :

σf (i, j) =

√√√√ 1

K − 1

∑
(m,n)∈∂Sij

(f(m,n)− f̄(i, j))2

Let Dy(i, j) and Dx(i, j) be an estimate of the vertical and horizontal spatial derivatives

of f at (i, j), respectively. Let θ(i, j) = tan−1{Dy(i, j)/Dx(i, j)} be an estimate of the

gradient orientation at (i, j) with value ∈ (−π/2, π/2]. Also let histij be the histogram

of θ within ∂Sij using 256 bins, hence histij(n) = # of pixels in ∂Sij that have gradient

orientations ∈ (−π/2+nπ/256,−π/2+(n+1)π/256], where n = 0, 1, . . . , 255. Let hist(i, j) =

1
256

∑255
n=0 histij(n) be the average bin height of histij .

The third feature is defined as:

• standard deviation of gradient orientation histogram in ∂Sij :

σhist(i, j) =

√√√√ 1

255

255∑
n=0

(histij(n)− hist(i, j))2

Note that this feature is the same as the ALOE feature described in [8].

Let Kθ+(i, j) and Kθ−(i, j) be the number of positive and negative gradient orienta-

tions within ∂Sij , respectively; θ+(i, j) = 1
Kθ+(i,j)

∑
θ(m,n)≥0,(m,n)∈∂Sij θ(m,n) and θ−(i, j) =

1
Kθ−(i,j)

∑
θ(m,n)<0,(m,n)∈∂Sij θ(m,n) be the average positive and negative gradient orientations

within ∂Sij , respectively.
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The folded gradient orientation θ′(i, j) at (i, j) is defined as:

θ′(i, j) =



θ(i, j) + π if θ+(i, j)− θ(i, j) > π
2

and Kθ+(i, j) ≥ Kθ−(i, j)

θ(i, j)− π if θ(i, j)− θ−(i, j) > π
2

and Kθ+(i, j) < Kθ−(i, j)

θ(i, j) otherwise

And the fourth feature is then defined as:

• standard deviation of the folded gradient orientations in ∂Sij :

σθ′(i, j) =

√√√√ 1

K − 1

∑
(m,n)∈∂Sij

(θ′(m,n)− θ̄′(i, j))2

This modification of θ to θ′ in generating σθ′ is necessary for this feature not to be sensitive

to the nominal value of θ, but to the actual gradient orientation variances. As one can see

from Figure 4, the gradient orientation distance between π/2 and −π/4 is the same as that

between π/2 and π/4. For our purpose of detecting spicules, we would like to obtain similar

feature values for these two cases. However, if the θs are used directly, a much larger variance

for the former pair would result (2.8 vs 0.3); while using the folded gradient orientations θ′s,

−π/4 will be folded to 3π/4 and so we obtain the same σθ′ for both cases. This feature

is different than a similar one we presented in [14] and has proved to better characterize

spiculated lesions. More information describing the feature set can be found in [20] 1.

The features σhist and σθ′ are chosen to be especially responsive to spiculated lesions.

As illustrated in Figure 5, a spiculated lesion differs from the normal ducts and connec-

tive tissue septae of the breast that tend to radiate from the nipple to the chest wall. It

appears as an irregular tumor center surrounded by spicules that radiate in all directions.

1This reference is available at http://www.ece.purdue.edu/∼ace
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Accordingly, pixels in normal areas have rather similar gradient orientations, while pixels

near spiculated lesions tend to have gradient orientations in many directions. Therefore,

the standard deviation of gradient orientations in the neighborhood of a lesion pixel will be

larger than that in the neighborhood of a normal pixel. For the same reason, the gradient

orientation histogram will be flat near a lesion pixel, but will have a peak corresponding to

normal structure orientations near a normal pixel [8]. This result is shown in Figure 6 which

compares the gradient orientation histograms within a spiculated lesion region and within a

normal region, respectively. The mean f̄ and standard deviation σf of the pixel brightnesses

help further to differentiate lesions from normal tissue regions, because lesions usually have

higher density, or appear brighter, in mammograms.

Figure 7 shows a test pattern at multiple resolutions, which consists of an idealized spic-

ulated lesion and parallel linear markings, embedded in uncorrelated Gaussian distributed

noise with PSNR (Peak Signal to Noise Ratio) of 7db. The lesion has a radius of 128 pixels

in the original image. Figure 8, Figure 9, Figure 10, and Figure 11 show the features σθ′ ,

σhist, f̄ , and σf , respectively, for this test pattern. Each feature at different resolutions is

extracted within same sized circular neighborhoods. For this test pattern, the neighborhood

radius is 30 pixels for features σθ′ and σhist, and 20 pixels for features f̄ and σf . A larger

neighborhood size is used for features σθ′ and σhist because they respond stronger to a spic-

ulated lesion if the entire halo of spicules is included in the feature extraction window, while

features f̄ and σf respond better to the central mass of the lesion. These features are able

to differentiate a spiculated lesion from a complex background. From Figure 8 and Figure 9,

we can see that the features best discriminate the lesion from its background at resolution

(N/4×N/4) when the size of the feature extraction neighborhood matches that of the lesion.

In this case, the brightest spot in the feature image in Figure 8 (c) and the darkest spot in

the feature image in Figure 9 (c) directly overlay both the central mass and the spicules of
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the lesion.

4 Classification Algorithm

A sequential hierarchical decision scheme has been shown to achieve better performance

than employing a single “best” set of features in a one-step decision [21, 22]. A Binary

Classification Tree (BCT) is simple, fast, and efficient type of hierarchical classifier. Figure 12

shows a simple BCT with 3 features and 2 classes where circular nodes are binary decision

nodes and square nodes are terminal nodes with class labels assigned. When an unknown

feature vector is submitted for classification, it will first go to the root node, which is always

a binary decision node, and then take one of the two branches based on the outcome of

testing one of its features against the threshold at that binary decision node. This process

continues until the feature vector reaches one of the terminal nodes where it is assigned a

class label. This tree structured classification approach has several advantages over more

traditional nonparametric methods such as the nearest neighbor method [21]: Firstly, BCT

does automatic stepwise feature selection and complexity reduction; Secondly, BCT is robust

with respect to outliers and misclassified points in the training set; Thirdly, the final classifier

can be compactly stored; Fourthly, BCT efficiently classifies new data; And finally, BCT

provides easily understood and interpreted information regarding the predictive structure

of the data. We choose the iterative growing and pruning algorithm proposed in [22] for

our classification tree design because it not only produces trees with higher classification

accuracy, but also requires less computation than other widely used tree design algorithms,

such as CART [21].

Considering that there is redundancy in mapping the feature space by spatially adjacent

samples, only a subsampling of the training set is used to grow BCT. After the BCT is gen-

erated, we associate with each terminal node a suspicious probability which is the percentage
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of lesion pixels in the training images that falls in this terminal node. The suspicious proba-

bility is then recomputed using the entire set of training samples. This partly compensates

for the lost classification accuracy due to the fact that not all the training samples are used

to design the tree [8].

At each resolution, five features are used for classification: the four features extracted

at that resolution plus the feature σhistij extracted at the next coarser resolution. Our

experiments have shown that using features across resolutions simultaneously helps capture

spiculated lesions of varying sizes. Detection starts from the second coarsest resolution and

then goes to the next finer resolution until the original mammogram is reached. A positive

detection at a coarser resolution propagates to finer resolutions, which effectively reduces the

number of pixels to be classified. A negative result at a coarser resolution will be combined

with those at finer resolutions via a weighted sum.

We obtain a probability image from the BCT for each test mammogram, in which the

pixel values represent the probability that a pixel belongs to a spiculated lesion. A median

filter is then used to eliminate isolated positive responses, followed by a smoothing filter to

reach a consensus within neighboring pixels. Final results are obtained by thresholding the

filtered probability image.

5 Experimental Results and Discussions

We tested the proposed multiresolution detection algorithm on the MIAS database [23]

provided by the Mammographic Image Analysis Society (MIAS) in the UK. Images in the

MIAS database have 50 micron resolution. There is a total of 19 mammograms containing

spiculated lesions. The smallest lesion extends 3.6 mm in radius, while the biggest one is

nearly 10 times larger and extends to 35.0 mm. These 19 together with another 19 normal

mammograms, also taken from the MIAS database, were randomly split into two sets with
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approximately an equal number of lesions and normal mammograms in each set. Each set

was then used separately as a training set to generate two BCTs, according to a split-half

training paradigm similar to Kegelmeyer et al [8]. A BCT trained by one set was used to

classify mammograms in the other set, and vice versa. Therefore, no mammogram was used

both for training and testing.

The wavelet transform described in Section 2 was used to generate the multiresolution

representations of each mammogram. Features described in Section 3 were extracted from

images of spatial resolutions (N×N), (N/2×N/2), (N/4×N/4), and (N/8×N/8). Circular

regions were used for all feature extractions so that features behave equally in all directions.

In this experiment, the neighborhood radius for extracting features σθ′ and σhist was 60

at all resolutions, which corresponds to a radius of 3 mm, 6 mm, 12 mm, and 24 mm in

the original resolution (N × N), and coarser resolutions (N/2 × N/2), (N/4 × N/4), and

(N/8 × N/8), respectively. The neighborhood radius for extracting features f̄ and σf was

20 at all resolutions, which corresponds to a radius of 1 mm, 2 mm, 4 mm, and 8 mm in

the original resolution (N × N), and coarser resolutions (N/2 × N/2), (N/4 × N/4), and

(N/8 × N/8), respectively. Extracting features at coarser resolutions for relatively large

regions significantly reduces the amount of computation.

Accordingly, three-level classifications were performed for each mammogram, starting

from resolution (N/4×N/4) and going to (N ×N). At each resolution, the corresponding

five dimensional feature vector, including the four features extracted at that resolution and

σhist extracted at the next coarser resolution, was classified through the BCT trained by the

other half test set. The output is a probability image, in which the pixel values represent

the probability of belonging to spiculated lesions. We then used a median filter of radius 5

to eliminate isolated positive responses, followed by a smoothing filter to reach a consensus

within neighboring pixels. Because we are looking for larger lesions at coarser resolutions
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and smaller ones at finer resolutions, the radii used for smoothing filters were chosen to be 18

mm, 6 mm, and 2 mm at resolutions (N/4×N/4), (N/2×N/2), and (N ×N), respectively.

The detection result was obtained by thresholding the smoothed probability image. Using a

small threshold is more likely to detect true lesions, but also to generate more false positive

responses. Using a large threshold gives fewer false positive responses, but may miss more

true lesions. Hence variation of thresholds gives different diagnostic accuracy which can be

quantified using FROC (“Free response Receiver Operating Characteristic”) analysis [24],

where the true positive fraction (TPF) is plotted as a function of the average number of

false positives (FP) per image. FROC analysis [24] is well suited for the assessment of

computer aided diagnosis of mammograms because it is applicable to situations that involve

any number of reported locations and any number of actual lesions in each image.

If there is a positive detection at a coarser resolution, no feature extraction and detection

are needed at the corresponding pixel locations at all finer resolutions. This approach effec-

tively reduces the number of pixels to be classified. Smaller probabilities that give negative

responses are propagated to finer resolutions by weighted sum. Figure 13 shows a spiculated

lesion of size 6.6 mm detected at the finest original resolution; Figure 14 shows a spiculated

lesion of size 12.4 mm detected at the second coarsest resolution; and Figure 15 shows a

spiculated lesion of size 35.0 mm detected at the coarsest resolution.

The coarse to fine detection scheme speeds up computation in two ways. First, positive re-

sponses at lower resolutions effectively reduces computation at higher resolutions. Secondly,

most of the computation is saved by allowing feature extraction within small windows. For

example, we only need a 40 × 40 pixel window for feature extraction in 2 mm, 4 mm, and

8 mm neighborhoods in a 50µ mammogram, because we extract features at different resolu-

tions. If we extracted features in the original image in three spatial scales so as to examine

different sizes of possible spiculated lesions, similar to Karssemeijer and Brake [11], the 2
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mm, 4 mm, and 8 mm neighborhoods would correspond to 40× 40, 80× 80, and 160× 160

pixel window sizes, respectively, which would cost at least 600% more computation.

To evaluate the computer diagnosis results, we adopted the criteria in [8]: a computer

finding is considered as a true positive detection if its area is overlapped by at least 50% of a

true lesion as indicated by an expert radiologist; a computer finding that does not so overlap

a true lesion is considered as false positive; and a true lesion that is not overlapped by any

computer finding is considered as false negative. By these criteria, the diagnostic accuracy

performance of our algorithm on the MIAS database quantified using FROC curve is shown

in Figure 16. We achieved 84.2% true positive detection at less than 1 false positive per image

and 100% true positive detection at 2.2 false positive per image. The spiculated lesion that

was missed first when the detection threshold was increased, or the sensitivity decreased,

is shown in Figure 17. This lesion lacks visible spicules at all directions. Karssemeijer and

Brake [11] reported comparable results on the MIAS database — around 90% true positive

detection at 1 false positive per image and 100% true positive detection at more than 4 false

positive per image. The presented multiresolution algorithm for the detection of spiculated

lesions in digital mammograms is capable of detecting spiculated lesions of very different

sizes at low false positive rates.
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Figure 1: Diagram of system for multiresolution spiculated lesion detection, illustrated here
for only two resolutions — fine (left) and coarse (right).
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Figure 2: Two dimensional quincunx sublattice, used to create successive generations of
lower resolution images for analysis.
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(a)

(b) (c) (d)

Figure 3: Multiresolution representation of a spiculated lesion (a) spiculated lesion as in the
original mammogram of resolution N ×N . (b) in the coarser resolution N/2×N/2. (c) in
the coarser resolution N/4×N/4. (d) in the coarsest resolution N/8×N/8
.
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π/4π/2

−π/4 folds to 3
π/4

Figure 4: Folding edge orientation makes the feature σθ′ insensitive to the nominal value of
θ, but sensitive to the actual edge orientation variances.
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Figure 5: (a) Directions of spicules of a spiculated lesion differ from the directions of normal
linear markings in a mammogram; (b) standard deviation of gradient orientation histogram
differentiates the area near a spiculated lesion from normal.
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Figure 6: (a) A spiculated lesion region. (b) A normal region. (c) Gradient orientation
histograms of (a) and (b)
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(a)

(b) (c)

Figure 7: Multiresolution representation of a test pattern consisting of an idealized spiculated
lesion and normal structures embedded in uncorrelated Gaussian distributed noise. The
lesion has a radius of 128 pixels in the original image: (a) original N ×N image. (b) coarser
resolution N/2×N/2. (c) coarsest resolution N/4×N/4.
.
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(a)

60 pixels

(b) (c) (d)

Figure 8: Feature σθ′ obtained in circular neighborhoods of radius 30 pixels at all resolutions
for the test pattern shown in Figure 7. Here large values (bright pixels) indicate spiculated
regions as explained in Figure 5. (a) original N×N image. (b) coarser resolution N/2×N/2.
(c) coarsest resolution N/4×N/4. (d) a circular neighborhood of size 30 pixels in radius.
.
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(a)

60 pixels

(b) (c) (d)

Figure 9: Feature σhist obtained in circular neighborhoods of radius 30 pixels at all resolutions
for the test pattern shown in Figure 7. Here small values (dark pixels) indicate spiculated
regions as explained in Figure 5. (a) original N×N image. (b) coarser resolution N/2×N/2.
(c) coarsest resolution N/4×N/4. (d) a circular neighborhood of size 30 pixels in radius.
.
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(a)

40 pixels

(b) (c) (d)

Figure 10: Feature f̄ obtained in circular neighborhoods of radius 20 pixels at all resolutions
for the test pattern shown in Figure 7: (a) original N × N image. (b) coarser resolution
N/2×N/2. (c) coarsest resolution N/4×N/4. (d) a circular neighborhood of size 20 pixels
in radius.
.
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(a)

40 pixels

(b) (c) (d)

Figure 11: Feature σf obtained in circular neighborhoods of radius 20 pixels at all resolutions
for the test pattern shown in Figure 7. Note that feature values get smaller (darker) in the
background area at coarser resolutions because of the smoothing effect of the lowpass filtering
step in obtaining coarser resolution images. (a) original N ×N image. (b) coarser resolution
N/2×N/2. (c) coarsest resolution N/4×N/4. (d) a circular neighborhood of size 20 pixels
in radius.
.
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F2 < 2.3

F1 < 0.7 F3 < 4.5

C2C1 C2F1 < 6.2

C2 C1

Three Features --- F1, F2, F3

Two Classes --- C1, C2

Figure 12: A simple binary classification tree with 3 features and 2 classes. The circular
nodes are binary decision nodes and the square nodes are terminal nodes with class labels
assigned
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(a) (b)

Figure 13: A spiculated lesion of size 6.6 mm detected at the finest resolution (a) mam-
mogram with automatic detection. (b) mammogram with tumor as determined by expert
radiologists.
.
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(a) (b)

Figure 14: A spiculated lesion of size 12.4 mm detected at the second coarsest resolution
(a) mammogram with automatic detection. (b) mammogram with tumor as determined by
expert radiologists.
.
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(a) (b)

Figure 15: A spiculated lesion of size 35.0 mm detected at the coarsest resolution (a) mam-
mogram with automatic detection. (b) mammogram with tumor as determined by expert
radiologists.
.
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Figure 16: FROC curve for detection of spiculated lesions in the MIAS database

Figure 17: The first missed spiculated lesion when the detection sensitivity is decreased. It
lacks visible spicules at all directions.
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