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Abstract

Ž .Groups using group decision support systems GDSS for addressing organizational problems is an evolutionary process.
An analytical model incorporating evolutionary processes exists, capturing this adaptation in the group decision-making

Ž .process. This model is based on the genetic algorithm GA and can be used to estimate GA parameter values from
experimental data. This research effort examines possible relationships between the GA crossover and mutation parameters
and the group context variables of leadership. Both the presence of and the activity level of group leaders are considered.
Particular attention is paid to model implementation for a specific instance of GDSS use. The results of this effort are
generally encouraging, hinting at the need to conduct further research in this area. q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The organizations of today face many challenges
in an increasingly complex and global business envi-
ronment. To meet these challenges, the combination
and coordination of the talents and energies of many
members of the organizations are needed. Group
meetings are the obvious outcome of the need to
meet this challenge. However, group meetings are
frequently maligned, often rightly so. According to
one estimate, senior-level managers spend from 58%
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w xto 70% of their work time in meetings 5 . Of
particular interest are group meetings supported by
computer technology. One implementation of com-
puter-supported group work for decision making is

Ž .group decision support systems GDSS . GDSS are a
specific combination of technologies aimed at im-
proving the outcomes of group meetings. The pur-
pose of GDSS is A . . . to support the exchange of
ideas, opinions, and preferences within the groupB
w x Ž .8 p. 278 . Many researchers have found that the
introduction of technology strongly impacts meeting

w xoutcomes 22 . However, the strength and direction
Ž .improved vs. diminished decision quality of this
impact is variable across studies and is poorly under-
stood. Therefore, a model that provides better in-
sights and eventually predictive capabilities would
be highly desirable to researchers and practitioners
alike.
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Within the GDSS context, group meetings to ad-
dress and solve organizational issues and problems

w xcan be considered an evolutionary process 13 . A
model for GDSS, incorporating such evolutionary

w xprocesses, was proposed by Rees and Koehler 26 .
Ž .This model utilized a genetic algorithm GA as an

analogy for the decision-making process undertaken
by the groups. The model is based on the premise
that groups using GDSS are undertaking a search

w xprocess 9,27 and exhibit search strategies similar to
those found in GA search strategies.

A group generates ideas, proposals, and solutions
to a given problem and reacts to the current slate of
proposed solutions to generate new ones. Often the
new proposals are adaptations of current ones. This
adaptive capability captures one of the basic princi-
ples of group decision making put forth by Hirokawa

w xand Johnson 13 that Agroup decision making is an
evolutionary process.B Other times proposed solu-
tions are completely unexpected and cause the group
to explore whole new areas of the problem’s deci-

w xsion space. Gavish and Kalvenes 9 call this a
trigger phenomenon.

GAs appear to operate similarly. Current solutions
provide the seeds for the next population of proposed
solutions through recombination operators. GAs also
exhibit punctuated equilibria where a seemingly sta-
ble system suddenly evolves new genetic material,
mainly through mutation operators.

Provided that a group decision process can be
adequately mimicked by a GA, there exist several
potential advantages and implications. For example,
GAs are known to have an exact expected behavior

Ž . w xdescribed by a Markov chain MC 30 . In principle,
one can compute many properties from an MC, such
as the expected first passage times from a set of
states to a target set of states and the probabilities of
various outcomes. Interpreted in a GDSS setting,
such calculations can tell us the expected time till an
optimal solution is generated, the expected time for
consensus to appear, the expected number of new
ideas, the probability of novel Aleft fieldB ideas, and
more. To the extent the GA captures the dynamics of
the actual GDSS process, these same values would
represent the groupXs performance.

Another implication is that of the Astand inB GA
incorporated into GDSS software. The Astand inB
GA can be used in parallel while the group is solving

Ž .a problem, possibly supplying and being supplied
Ž .solutions to by the group. It can be used to con-

tinue and refine a search process started by the actual
group. It could be used as a complete replacement
for the group.

The GA parameters of crossover and mutation
influence the course of the search by focusing the
search in particular regions of the search space and
by providing random AjumpsB to other regions that
possibly contain potential solutions but have not
been actively explored.

Although a priori GA parameters were not linked
to specific GDSS context variables such as leader-
ship, one may be able to relate such factors and
different environmental pressures thought to influ-
ence the process to GA parameters a posteriori.
Then, knowing how GA parameters influence vari-
ous performance measures from formal GA theory,
one could optimize these by altering the GDSS
design and usage. Even if one could not directly
optimize these performance measures, there exists a
large body of heuristic knowledge available in the
GA community for the GA to improve its search
capabilities, which could be used indirectly to set
GDSS design and usage through these GDSS–GA
parameter relations.

Hence, one question of interest is: do relation-
ships exist between GA search parameters and GDSS
context variables? Many research studies have exam-
ined the effect of GDSS variables, for example

w x w xleadership 11,16,28 , anonymity 14,15 and group
w xsize 7 on GDSS outcomes. As the GA search

parameter values have various effects on the out-
comes of GA search, it would be most useful to
determine the existence and extent of possible rela-
tionships between GA parameter values and GDSS
context variables. If these relationships do exist,
more could be learned about appropriate computer-
supported group configurations in order to achieve
desired decision outcomes.

Leadership has been identified as an important
contextual variable by GDSS researchers. The pres-
ence of a leader has been hypothesized to increase

w xthe consensus among groups using GDSS 11 . Stud-
ies of non-GDSS supported groups have found that
small groups with leaders are less likely of split into

w xfactions or subgroups 6 and leaders are useful in
w xorder to achieve task-oriented goals 3 . As leader-
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ship appears to have an impact on the outcomes of
GDSS use, it seems likely that leadership influences
the search process undertaken by groups using GDSS.

The goal of this research is to examine the possi-
ble link between leadership presence and participa-
tion in GDSS and the GA parameters of crossover
and mutation rates within the context of the evolu-
tionary model. Section 2 provides a look into the
study of leadership within the GDSS context and
also relevant literature pertaining to the GA parame-
ters under consideration. Section 3 highlights the
evolutionary model providing the context for the
study. Section 4 puts forth several research questions
examining the relationships among GDSS leadership
from two angles, the ApresenceB of a designated
leader and the actual interaction of the leaders with
the other group members. Methodological details are
provided in Section 5. Results are discussed in Sec-
tion 6. Sections 7 and 8 present conclusions and
future research directions, respectively.

2. Background

The following section provides a brief back-
ground on the role of leadership in GDSS. The
simple GA will also be discussed in detail in order to
provide perspective on the potential relationships
between leadership in GDSS and GA parameters.

2.1. Leadership in GDSS

Leadership has been extensively studied in the
w xsmall group literature 2 . Several studies have exam-

w xined the role of leadership in GDSS 1,11,17 . Addi-
tionally, several GDSS studies have examined the
impacts of not only the presence or absence of
leadership on GDSS group outcomes but also the
impacts of leadership style on GDSS outcomes
w x16,28 . Leadership style is very difficult to describe
or classify and certainly difficult to effectively mea-
sure, due to it’s multidimensional characteristics.
Moreover, leaders can exhibit different leadership

w xstyles at various times 2 . However, leadership style
and its appropriateness to the particular scenario
involved can leave a deep imprint on the effective-
ness of the GDSS group outcome.

Also important is the context within which GDSS
processes are examined. There are several useful
models in the literature. Several of these models are
descriptive models, including the contingency model
w x w x25 , the theory of Adaptive Structuration 24 and

w xthe input–process–output model 23 . In addition,
several analytical models have been proposed. These

w xmodels include the brainstorming model 29 and the
w xeconomic model 9 . These models are the precursors

to the evolutionary model, based on the simple GA
w xdiscussed below 26 .

2.2. GAs

GAs are derived from the principles of Darwinian
natural selection and evolution. Rather than search-
ing point by point, GAs operate in parallel, searching
by groups or populations of points or agents. Such
agents, called strings or chromosomes, conduct a
search by means of three basic operations. These
three operations are selection, crossover and muta-
tion. Selection, or reproduction, stochastically col-
lects the AfittestB members of the population accord-
ing to a pre-defined objective function for use in the
next population or generation. Crossover pairs off
the members of the new generation and exchanges
genetic material between member pairs. Finally, mu-
tation randomly alters information contained in the
population members adding diversity back into the

w xpopulation 10 .
The GA crossover and mutation operations play a

guiding role in genetic search. The crossover rate, x ,
is a AfocusingB factor in the search process. Two
selected strings are AcrossedB with probability x .
Every pair of strings that are crossed-over have been
selected according to its AfitnessB. On average, the
crossover operator combines two very good solutions
into potentially even better solutions. In a search
space with global optima, the better solutions are
likely to be proximately located. The crossover oper-
ation attempts to focus search and move even closer
to an optimal point. For this reason, the crossover
parameter is often termed the AexploitationB opera-
tor.

On the other hand, the mutation rate, m, plays a
AdiversifyingB role in genetic search. Mutation oper-
ates on each bit in the string. A given bit is mutated
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with probability m. The mutation rate is usually set
to be very low, for example, 0.1% of all bits in all of
the strings might be subject to mutation. If a particu-
lar bit is mutated the value of the bit would be
altered, from a zero to a one or vice versa. The
purpose of the mutation operation is to add either
strings that were Aselected outB of the population
back or to introduce new strings. Mutation serves to
direct the search away from local minima or max-
ima. For this reason, the mutation operator is often
termed the AexplorationB operator.

w xNix and Vose 21 developed an MC model for
the simple GA. Each state of the MC represents a
population of the GA, providing an exact representa-
tion for the expected populations of a GA over time.
This model forms the basis for the evolutionary
model for GDSS.

3. Evolutionary model for GDSS

Several research projects have examined the evo-
lutionary characteristics of systems by creating a
simulation environment where a GA is used to mimic
the behavior of some agent or group of agents. For
example, organizational evolution was modeled us-

w xing the simple GA 4 . Also, market behavior was
w xstudied through GA simulation 18 .

The evolutionary model for group problem solv-
ing, when supported by GDSS, can be modeled by a
simple GA, utilizing selection, crossover and muta-

w xtion 26 . The essence of the model is to capture the
adaptive search process undertaken by each group as
it uses the GDSS for decision-making. The mechan-
ics of the model are discussed below.

The group’s collection of the proposed ideas or
solutions is represented by a population of strings;
each string in the population at time step t represents
a current proposed solution at time t. The sizes of
these populations are variable and are a function of
the interaction between group members. The fitness
of proposed ideas can be determined through the use
of incentive schemes or through the results of any
polling of voting procedures which may be a func-
tion of the particular GDSS software used. Selection,
crossover and mutation operate as described above.
As the generations evolve, the GA finds either the

Žbest or at least a very good solution with high

.probability . GDSS supported groups can be viewed
as generating solutions using a mechanism that can
be modeled in this way.

The purpose of the selection operator is to iden-
tify better or AfitterB solutions in accordance with the
fitness function and insert these strings into the next
generation. Ensuring the Asurvival of the fittestB is
the role of the selection operator. The specific imple-
mentation of selection may vary from application to

Ž .application and from task to task . However, rank
selection appears to be a generally robust selection
operation. Rank selection, considered a non-paramet-
ric procedure, sorts the strings in the population
according to fitness value. Copies of individual
strings are inserted into the next generation accord-
ing to a function of the original ranking. Essentially,
the higher-ranked the idea, the more likely it will
influence subsequent generations.

The crossover and mutation operators are imple-
mented as follows: for crossover, two strings are

Ž .mated with probability x the crossover rate . Uni-
form crossover appears to be a fairly good imple-
mentation choice for the evolutionary model for

w xGDSS 26 . Uniform crossover works by moving
bit-wise down the pair of strings, exchanging bits
with probability x . The appeal of uniform crossover
is the ability to exchange a variable number of
information segments between the string pairs, which
is a more dynamic approach than either single-point

w xor multi-point crossover 10 . Uniform mutation is
w xthe implementation of the mutation operator 26 .

Under uniform mutation, mutation is applied with a
Žfixed, pre-determined probability to each gene each

.bit in every solution string. The mutation rate is
kept very low, usually between 0.001 and 0.5 to
prevent the search from diversifying too rapidly.

One of the attractive features of using a GA for
the analysis of computer-supported group decision-
making is a body of formal, mathematical theory has
been developed to describe the expected behavior of
the simple GA. By modeling groups using GDSS for
particular tasks as a GA, this theory provides numer-
ous insights into the group decision-making process.
Variables and different environmental pressures
thought to influence the process could be related to
GA parameters and then factors such as the expected
behavior of the system could be determined or opti-
mized.
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This model differs from the previous examples of
using a GA to study systems in that rather than

w xsimulate the groups used in Barkhi’s study 1 , the
historical data was used to find a best-fit GA. The
MC model used was derived from the model pro-

w xposed by Vose 30 that gives transition probabilities
to determine a likelihood function for the probabili-
ties of each group’s particular path through the solu-
tion space. The maximum likelihood estimates
Ž .MLEs for these paths were calculated over all

Ž . Žpossible values of mutation 0, 0.5 and crossover 0,
.1.0 with 3-digit precision. Therefore, a best-fit mu-

tation and crossover rate for each group was esti-
mated, given the assumption that each group acted
like a simple GA.

4. Research questions

The idea that groups using GDSS behave simi-
larly to those using GA was discussed extensively by

w xRees and Koehler 26 . Therefore, the research ques-
tions posed in this section assume a simple GA
model as the basis of group dynamics. The questions
posed in this section try to explore the possible
relationship between the GA parameters x and m,
and two dimensions GDSS context variables of lead-
ership presence and style.

In this research, we use the same conceptual base
w xof leadership as used previously 17,1 , that of leader

influence and group cohesion. Groups with a desig-
nated leader will tend to produce solutions deemed
as potentially acceptable to the leader. Therefore,
less exploration of alternative solutions will likely

w xtake place. Hiltz et al. 11 hypothesized that the
presence of a leader increases the consensus among
groups using GDSS. Studies of non-GDSS supported
groups have found that small groups with leaders are

w xless likely of split into factions or subgroups 6 and
that leaders are useful in order to achieve task-ori-

w xented goals 3 . Conversely, democratic groups
Ž .groups without a leader will tend to explore the
solution space more actively since it might seem
easier to convince another manager of an alternative
solution than a superior. This gives us,

Ž .Hypothesis 1 H1a . Autocratic groups will propose
less explorative solutions than democratic groups as

measured by the maximum likelihood of each group’s
mutation rate.

We test H1a by comparing the best-fit mutation rate
m between the autocratic groups and democratic
groups. We believe m will be smaller for autocratic
groups than for democratic groups because the auto-
cratic groups are less likely to actively explore vari-
ous regions of the solution space, due to the less
exhaustive search undertaken, than democratic
groups.

Using the mutation rate, m, as a measure of
exploration, we would expect that autocratic groups
would tend to refine solutions deemed acceptable to
the leader, rather than propose radically different
alternatives. The group members all had access to

Ž .decision tools discussed below which provided in-
stant feedback to the increased revenue or cost of a
proposed solution. This instant feedback ensures that
all solutions proposed are feasible according to the
problem constraints. However, the search space is
still large enough to allow for considerable differ-
ences among proposed solutions. These differences
can be measured by their so-called AdiversityB. GA
research has concerned itself extensively with the

w x w xconcept of Hamming distance 10 . Mitchell 20
defines Hamming distance as the number of loca-
tions or genes at which the corresponding values or
bits differ. Other such distance measures are possi-
ble, however Hamming distance represents the sim-
plest and most widely used distance measure for
complex search spaces in GA literature. This leads
to,

Ž .HYPOTHESIS 1 H1b . Autocratic groups will have
lower solution diversity than democratic groups as
measured by each group’s average Hamming dis-
tance.

We measure solution diversity, D, as the distance
between the solutions, or points, in the solution
space. We compute the average Hamming distance
for each group’s solutions by computing the Ham-
ming distance between every pair of solutions in the
group and summing up all of the distances. This sum
is then divided by the number of solution pairs in the
group to create an average diversity level for each
group. As D becomes small, the best fit x should
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also become small. As there is less diversity within
the group, the crossover rate, or the rate at which
ApartsB of proposals or ideas are exchanged, will
become small, as most of the proposals are already
identical. As autocratic groups experience less diver-
sity, there should be a lower rate of exchange of
proposals, or at least components of proposals. Cor-
respondingly, D and x should both be larger for
democratic groups. This leads to,

Ž .HYPOTHESIS 1 H1c . If there is little or no
diversity within the groups, autocratic groups will
experience a lower rate of exchange of ideas or
proposals than democratic groups as measured by the
maximum likelihood estimate of each group’s
crossover rate.

We test this hypothesis by comparing x between
autocratic and democratic groups. Assuming that
diversity is lower for autocratic groups as proposed
in H1b, x should be lower for autocratic groups than
for democratic groups.

To further study the effect of leadership on GA
parameters, we examined the level interaction of the
leaders with the other group members. By examining
leader interaction we can gain insights into the lead-
ership style of the group leaders. As mentioned
previously, leadership style is difficult to describe or
measure, due to its inherent multidimensionality. For
our purposes, we classified leadership style into two

Ž . Žbroad categories: directive Active and passive In-
.active . The experimental groups were partitioned

into the two categories by using an equality measure
similar to the equality of participation measure pro-

w xposed in Hiltz et al. 12 . The number of ideas
proposed by the leaders was compared to the number
of ideas proposed by rest of the group members. If
all group members, including the leader, are partici-
pating equally each group member should contribute

Ž .roughly one-fourth 25% of the ideas generated.
However, the leader’s role is different from the roles
of the other functional managers, specifically the
leader’s role is to maximize the welfare of the
organization while the other managers’ role is to
maximize the welfare of their individual depart-
ments, within the organization. Therefore, leaders
might not contribute an equal number of solutions to
the entire ApoolB. Some leaders will take on an

Table 1
Leader classification according to idea contribution percentage by
group

Ž .Leader Total group Leader % Leader
ideas ideas style

12 26 0.461 Active
4 19 0.211 Inactive
2 25 0.080 Inactive
3 11 0.273 Active
9 24 0.375 Active
5 16 0.313 Active
2 11 0.182 Inactive
4 18 0.222 Inactive
6 18 0.333 Active
1 11 0.091 Inactive
1 10 0.100 Inactive
2 17 0.118 Inactive
6 14 0.429 Active
8 18 0.444 Active
7 18 0.389 Active
3 12 0.250 Inactive
3 18 0.167 Inactive
3 15 0.200 Inactive
15 26 0.577 Active
5 19 0.263 Active
2 17 0.118 Inactive
5 15 0.333 Active
4 12 0.333 Active

active level of participation whereas others will as-
sume an inactive participation level. Using data from

w xBarkhi 1 , approximately one half of the groups had
leaders that contributed less than one quarter of the
ideas and one half of the leaders contributed one
quarter of the ideas or more. We designated the
lower participation leaders as Inactive leaders and
the higher output leaders as Active leaders. This
information is provided in Table 1. In accordance
with H1a, the Active leaders will act to narrow the
direction of the search for a solution. However, this
active approach should also act to encourage a thor-
ough search in hopes of finding the optimal solution
for the organization. Therefore we believe,

Ž .HYPOTHESIS 2 H2a . Groups with Active leaders
will propose more explorative solutions than groups
with Inactive leaders as measured by the maximum
likelihood estimate of each group’s mutation rate.

This hypothesis will be tested by comparing the
best-fit mutation rate between the two leadership-type
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groups. Similarly, the level of solution diversity
should be higher for the Active leaders than the
Inactive leaders. This leads to,

Ž .HYPOTHESIS 2 H2b . Groups with leaders classi-
fied as Active will have a higher solution diversity
than groups with leaders classified as Inactive as
measured by each group’s average Hamming dis-
tance.

The level of diversity, D, therefore should be lower
for Inactive groups than Active groups. As previ-
ously mentioned, as D becomes small, x should
also become small for Inactive leader groups. Corre-
spondingly, D and x should both be larger for
Active leader groups. This leads to,

Ž .HYPOTHESIS 2 H2c . If there is little or no
diversity within the groups, Active-leader groups
will experience a higher rate of exchange of ideas or
proposals than Inactive-leader groups as measured
by the maximum likelihood estimate of each group’s
crossover rate.

5. Model details

In order to address the research questions, experi-
mental data from actual computer-supported group
decision-making was required. The experimental data

w xwas provided by Barkhi 1 where groups were faced
w xwith a mixed-motive task 19 by which group mem-

bers had to coordinate the final solution in the face
of conflicting pay-off information. In that study,
incentive structure, leadership presence and commu-
nications channel were varied. Groups were con-
structed such that each member represented a differ-
ent department within a simulated manufacturing
environment, the departments being labeled as pro-
duction, purchasing and marketing. Some of the
groups in the study were comprised of the three
members labeled as above and the others were com-

Žprised of four members the previous three plus a
designated AleaderB who had override power on all

.decisions made within the group . The group was
assigned a combinatorial problem with a calculated
payoff for each member.

In order to examine the effects of leadership
presence and leadership style, the crossover and

mutation rates had to be estimated from the data
w xusing the MC model for GAs 21 . In order to use the

model, the problem and data from group experiments
was encoded as follows. Each string in the popula-
tion represented a set of orders to be filled as pro-
posed by a manager or the leader in a specific
generation. Each string was composed of twenty

Žbinary digits, each representing the inclusion or
. Ž .exclusion of a customer order by a one or zero .

A population consists of a number of solutions.
The number will vary from episode to episode, but
there is no AnaturalB demarcation for computer-sup-
ported groups. Such groups can be modeled as hav-
ing a dynamic population size. Four different schemes
were originally examined for modeling the popula-

w xtions 26 .
For this study, the Peer-Influenced population

scheme was utilized. The scheme treats the inputs of
all users equally, due to the unknown levels of
influence the leaders might have over other group
members. The scheme is implemented as follows.

Ž .The GA population size expands or contracts de-
pending upon the frequency of group member inter-
action. Each generation is delineated by the proposal
of a solution from a different user. For example, in a
group of size four, the marketing manager might
propose a solution. After some thought and no input
from other participants, the marketing manager pro-
poses a slightly altered solution. The production
manager then adds his solution. This suggestion
marks the entirety of the population and its size is
three. If the purchasing manager then suggests a
solution, followed by another solution from the pro-
duction manager, that population size is two. It is
worthwhile to note that this strategy relies not on the
timing of the solutions but on the interaction of the

Ž .different group member’s solutions ideas . Theoreti-
cally, it might be preferable to close each generation
after input has been made by all four participants.
However, due to group interaction dynamics, it is
possible that one or more managers might engage in
freeloading behaviors and artificially influence the
creation and sizing of generations.

6. Results

Hypothesis H1a stated that autocratic groups are
likely to propose a less explorative search than
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democratic groups. To test this hypothesis, we com-
pared the best-fit mutation rates between autocratic
and democratic groups. In order to not reject this
hypothesis, autocratic groups must have a smaller m

than democratic groups. This difference was weakly
Ž .significant at as0.10 ps0.072 . These results

are reported in Table 2.
Hypothesis H1b states that autocratic groups are

likely to have lower solution diversity than demo-
cratic groups, where solution diversity is measured
by D. This hypothesis was not rejected at as0.05.

Hypothesis H1c examines the relationship be-
tween the crossover rates of the two groups. H1c
states if D is close to zero, meaning there is little
diversity within the groups, autocratic groups are
likely to experience a lower rate of exchange of
ideas or proposals than democratic groups. In order
to not reject this hypothesis, autocratic groups must
have a lower best-fit crossover rate than democratic
groups. This difference was significant at as0.10

Ž .but again not strongly so ps0.058 .
Hypothesis H2a examined a specific aspect of

leadership style as described above on the GA pa-
rameter mutation. H2a stated that groups with lead-
ers classified as Active are likely to propose a more
explorative search than groups with leaders classified
as Inactive. We do not reject this hypothesis at

Žas0.10 but was not strongly significant ps
.0.081 . The results are presented in Table 3.

Hypothesis H2b stated Active leader groups would
have a higher D than Inactive leader groups. This
hypothesis was not supported. In fact, D was higher
for Inactive leader groups than Active leader groups.
Active leader groups had a much lower D then
Inactive Leader groups. The results are listed in
Table 3.

Hypothesis H2c stated that if diversity is low
within the groups, Inactive leader groups should
have a lower x than Active leader groups. This

Table 2
Results of statistical tests on leadership hypotheses

Hypothesis Autocratic Democratic Results
mean mean

H1a 0.018 0.028 0.072; do not reject H1a
H1b 0.807 1.258 0.017; do not reject H1b
H1c 0.092 0.223 0.058; do not reject H1c

Table 3
Results of statistical tests on leadership style hypotheses

Hypothesis Active Inactive Results
mean mean

H2a 0.023 0.011 0.081; do not reject H2a
H2b 0.690 0.960 0.035; reject H2b

Ž .Active- Inactive
H2c 0.149 0.017 0.051; do not reject H2c

hypothesis was not rejected and was significant at
Ž .as0.10 but not strongly so ps0.051 .

7. Conclusions

Several conclusions can be drawn from the above
results. Our experiments found significant results at
the as0.10 level for the effect of leadership pres-
ence on the GA parameters of mutation and crossover
as well as solution diversity. Thus, we have tenta-
tively established a link between the presence of
leadership and the exploration of the search space as
measured by the GA parameters.

By further breaking down leadership into two
leadership participation levels, the outcomes were
somewhat confused. We hypothesized that Active
leader groups would encourage a broader search than
Inactive leader groups. This hypothesis was sup-
ported. However, the average diversity of the solu-
tions was lower for Active leader groups. This seems
to contradict the finding of higher levels of exploita-
tion found within Active leader groups. Obviously,
much more work needs to be performed to fully
understand the relationships between leadership ap-
proach and the GA parameters examined here.

The important implication of this study is that
there does appear to be differences in the searches
performed by democratic and autocratic groups, as
measured by the estimated crossover and mutation
rates. Search differences also appear between types
of autocratic groups, for both Active and Inactive
leaders. By understanding how these different groups
explore and exploit the solution space, adjustments
can be made to the technology and perhaps the group
itself to facilitate the groups’ search for the optimal
solution.

There are several limitations to this study. First,
the current study is subject to the limitations of the
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underlying model and by the limitations of the study
used in examining the research questions. The task
used in the underlying study was much more highly
constrained than many GDSS tasks, reducing the
number of feasible solutions available to the group
members. Thus, the exploitation of the search space,
therefore the crossover rates are much lower than
would be seen in a less constrained task. Obviously,
more data sets from various GDSS configurations
and environments need to be examined within the
model. Second, we need to further enhance the model
to better capture the GDSS processes. There are
many different GAs with many variations on selec-
tion, crossover and mutation operators, as well as
other operators available. Re-running our experi-
ments with different GAs in the model might well
provide more insightful results. Finally, more re-
search needs to be performed with respect to leader-
ship style within the GDSS context. Leadership is
multi-dimensional and very difficult to measure. Our
division into ActiverInactive groups was a simplis-
tic approach to this complex domain, yet serves to
encourage more research into this facet of GDSS
use.

8. Future research

There are numerous opportunities for future re-
search in this area. As mentioned in the above
section, much more experimental data is required for
further validation of the model and to better under-
stand the possible relationships between GA parame-
ters and the context variables of the group. Also, the
GA model itself needs to be fine-tuned to better
capture the underlying GDSS processes. For exam-
ple, elitist selection might provide additional insights
into GDSS use. More complex variations of crossover
and mutation operators are available as well.

Another possibility is to use the concept of GA
w xmasks 30 that allow the best crossover and muta-

tion schemes to be discovered from the data itself.
Theoretically, the use of crossover and mutation
masks would free researchers from discovering the

Žbest crossover and mutation implementations which
could vary from GDSS setting to setting and even

.from group to group! . However, the use of crossover
and mutation masks poses a very computationally

difficult challenge, even in the realm of today’s
high-speed processors.

Finally, this research could be extended beyond
GDSS groups into group meetings that not supported
by technology, time-series meetings and even virtual
organizations. The ideas that underlie this particular
study should apply to the above group activities.
Eventually, the use of a model like the one described
in this paper will provide deep insights into group
activities, which in turn will lead to better outcomes
for researchers and practitioners alike.
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