

CERIAS Tech Report 2001-17

Authentication-driven Authorization on
Web Access

Yuhui Zhong, Bharat Bhargava

Center for Education and Research in
Information Assurance and Security

&
Department of Computer Sciences, Purdue University

West Lafayette, IN 47907

Authentication-driven Authorization on Web Access*

Yuhui Zhong Bharat Bhargava
Center for Education and Research in Information Assurance and Security

and
Department of Computer Science

Purdue University
West Lafayette, IN, U.S.A.

CERIAS TR 2001-17

Abstract Unlike in traditional computing environ-
ments such as operating systems or databases, the
authorized user set, the mode of access, users’ access
rights, etc., are not predefined in WWW. In order to
assign privileges to authorized but not predefined us-
ers in dynamic access environments, we propose an
approach called authentication-driven authorization.
In this approach, authentication is integrated with
authorization. The validity of a user is checked by us-
ing authentication routines associated with the re-
quested data object. The access permission is achieved
by authentication rather than by inheriting from
group/role membership relation. A logic-based au-
thorization language has been designed. A prototype
has been implemented, which can be used to enforce
complex web-based application security policies.

Keywords dynamic access environments, predi-
cate, security rule

1 Introduction

The Internet is a cost-effective and ubiquitous
vehicle for connecting business enterprises. With
the growing use of the World Wide Web, security
of the web-based systems is now an important
business decision. Our research focuses on pre-
venting the information access by unauthorized

 *This research is supported by CERIAS and NSF
grants CCR-9901712 and CCR-0001788. This paper
will appear in Proc of International conference on
Internet Computing (IC’2001), Las Vegas, June 2001

users and making the information secured and
reliable for authorized users.

Current procedures for authorization on the
web are classified as:
• Domain based restriction: The web allows

access to resources that are restricted by do-
main. All access attempts that do not origi-
nate from a user or a website identified with a
specific domain will be denied.

• User based restriction: The web maintains a
list of authorized users and their passwords.
Users can log in and access material from any
computer on the Internet as long as they
know a valid user name and the password.
For systems that require a stronger authenti-
cation, username / password can be replaced
by public key certificate. The login process is
based on an authentication protocol such as
Secure Socket Layer (SSL).
A major disadvantage of these schemes is

that either the system has to maintain a prede-
fined set of user names or a predefined set of do-
main names or both [4]. Therefore, these systems
restrict information sharing over the web and re-
duce the possibility of doing business among par-
ties who do not know each other, which in turn
restricts the proliferation of the use of the web.
Our research is directed to deal with the limita-
tion of the current authorization approaches.

We envisioned that there exist two kinds of
access environments on the web.

• Static Access Environment: In this kind of
environment, the contents of the web as well
as the user requirements change rarely. A set
of users and their access rights can be prede-
fined. Intranet is an example of such access
environments.

• Dynamic Access Environment: In this kind of
environment, the contents of the web and the
user requirements change frequently. Neither
the user set nor their access right is prede-
fined.
Our research focuses on the authorization in

dynamic access environments. We investigate
three security approaches for dynamic access en-
vironment.
• Mobile Agent Approach: Under this ap-

proach, users are asked to enter appropriate
information that is used to authenticate them.
The system performs various checks on this
information using a mobile agent that decides
the access restrictions to be imposed on the
user. Details can be found in the technical re-
port [11].

• Integrate Data Mining Technology into Web
Security: Data mining technology has proved
to be an efficient tool to discover interesting
and useful patterns in a large amount of data
such as web documents. We investigate the
idea of integrating data mining techniques
into web security. We aim at finding patterns,
which are different from usual access pattern.
We discover change in a pattern by compar-
ing some traces of new patterns from the user
access logs. Details can be found in the paper
[12].

• Authentication-Driven Authorization Ap-
proach: Under this approach, authentication
is integrated with authorization.
We present the authentication-driven authori-

zation approach in this paper.

1.1 Research Considerations
The considerations for web authorization research
are as following:
• Several access control models like discre-

tionary access control model, mandatory ac-
cess control model, and role-based access
control model have been proposed [5,6].
These models are developed for static access
environments such as operating system, data-

base system and corporate intranet, where the
sets of authorized user, the mode of access
etc. are predefined. These access control
models need be modified for dynamical
access environments.

• The authorization language (i.e. the language
for specifying security policies) should be
expressive and flexible. The protection re-
quirements of data objects on web vary from
“no protection” to “highly sensitive”. All
these authorizations should be expressed us-
ing the authorization language [1, 3, 8]. The
semantics of the authorization system should
be extensible to satisfy the requirements of
web applications [2].

1.2 Our Approach
We support authorization in a dynamic access
environment by integrating authentication into
authorization. In traditional settings, authoriza-
tion is divided into authentication and access con-
trol. Authentication verifies that the identity of a
user is valid. Access control determines whether
the requester is authorized to perform the action
or not. The access permission is achieved by in-
heriting from group/role membership relation.
This view of authorization is not suitable for dy-
namic access environments where a valid user of
a data object may not be a predefined user. The
problem is in assigning privileges to strangers.

We solve this problem by authentication. A
user is verified by using a set of routines associ-
ated with the data object requested by the user.
These routines are called authentication routines.
The access permission is granted if the user
passes the authentication. The goal of authentica-
tion is not to prove the identity of the user (the
identity of a user may be unavailable or meaning-
less to the web [3]), but to prove that the re-
questor satisfies the security constraints of the
requested data object. Since the authorization
decisions are made based on the results of au-
thentication, we call this approach authentication-
driven authorization. The following example il-
lustrates the idea. Suppose the person who can
access web page “Alice’s wedding” is only re-
quired to know where the wedding ceremony
took place. Carol becomes a legitimate user of the
web page by proving that she has this knowledge.
She does not have to provide any other informa-

tion (e.g. username/password, social security
number, occupation, public key certification etc.).

Because of the use of authentication routines,
we cannot use the existing authorization lan-
guages. A logic-based authorization language has
been designed and presented in Section 3. This
language has a special type of predicates, user-
defined predicates, which makes the language
expressive and extensible. A prototype of an au-
thorization system based on this authorization
language has been implemented.

The remainder of this paper is organized as
following: Section 2 introduces related research.
In section 3, our logic infrastructure is described.
The architecture of the prototype system is pre-
sented in section 4. Section 5 discusses the im-
plementation issues.

2 Related Work
The research of Professor S. Jajodia influences us
in the design aspects of the authorization lan-
guage. Most existing authorization systems are
designed with one specific access control policy.
The drawback of such systems is that it is diffi-
cult to capture all protection requirements that a
user may enforce using a single policy [1]. S. Ja-
jodia, P. Samarati and V.S. Subrahmanian pro-
posed a logic-based authorization language
whose expressiveness is strong [1,8]. However,
this language is designed for static access envi-
ronments. The access restrictions are enforced
through static group/role membership relations.

A certificate-based approach to assign roles
to strangers is proposed in [2]. This approach
solves the problem of assigning privileges to
strangers based on public key certificate. Our ap-
proach does not require web users to use certifi-
cates.

3 Logic Infrastructure of the Pro-
posed System

We present the authorization language in this sec-
tion.

3.1 Objects
The object set O is the data set to which authori-
zation can be granted. The most important objects
for access requests are web pages. In order to fa-
cilitate the system administration, the web pages

are organized in a multilevel hierarchy. In addi-
tion to specifying protection constraints for each
web page individually, we can specify the secu-
rity rule for a set of web pages. The hierarchy
reflects both physical and logical views. The hi-
erarchy of the directories and web pages in the
file system constitutes a physical view. The web
pages can form the logical views. Logical views
are defined based on application requirements.
Similar to the definition of user group in tradi-
tional authorization systems, we define an object
group as a set of web pages or other groups.
Since user group is not defined in our authoriza-
tion system (it can be implemented using user-
defined predicate), we simply call “object group”
as “group”. Like directories, the nodes corre-
sponding to groups in a hierarchical graph are
internal nodes. There is a unique name associated
with each view (logical or physical). Since the
authorization can be granted to directories and
groups, the object set O includes directories D
and groups G in addition to web pages P.

3.2 Subjects
A subject is a user or a program on behalf of a
user that requests a specific operation (e.g. read)
on a web page.

3.3 Operations
We consider the following operations: read,
write, create, delete.

3.4 Predicates
Predicates are major components of the logic in-
frastructure. Unlike the logic system proposed in
[1,8], the set of predicates is not fixed in the sys-
tem. We introduce the notion of user-defined
predicate that allows system administrators to
dynamically extend the authorization system. A
user-defined predicate can have any semantic.
User-defined predicates are used to achieve two
goals: implementing authentication-driven au-
thorization by incorporating authentication rou-
tines into the authorization system and enhancing
the expressiveness of the authorization model. In
the following predicates, the first four predicates
are fixed by system. The fifth is the set of predi-
cates defined by users.
• ismember, a ternary predicate whose first two

arguments are two objects o1, o2, and third ar-

gument is the name of a view v. It captures
the membership relation on a view between
objects. This predicate is used in a security
rule to specify the objects to which the rule is
applicable.

• grant, a ternary predicate. The first argument
of grant is an object term, the second one is a
subject term, and the third is an operation.
This predicate is used by system administra-
tors to explicitly allow accesses to objects.

• deny, a ternary predicate, with the same ar-
guments as grant. This predicate is used by
system administrators to explicitly deny ac-
cesses to objects.

• decision, a ternary predicate, with the same
arguments as grant. The predicate represents
the authorization decision made by the au-
thorization system. A request of operation a
on an object o from a subject s is authorized
if and only if we can infer that decision(o, s,
a) is true from the security rules.

• P1 is the set of the user-defined predicates. A
user-defined predicate has the same argu-
ments as grant. In contrary to the predicates
defined above, the semantic of a user-defined
predicate is interpreted by routines outside
the authorization system. The expressiveness
of our authorization system stems from this
set of predicates. In Section 5, we will dis-
cuss how to implement user-defined predi-
cates.

3.5 Security Rule
There are two kinds of security rules in our logic
infrastructure. They are authorization rules and
meta rules.

3.5.1 Authorization rule
Authorization rules are specified by system ad-
ministrators to explicitly allow or deny accesses
on objects.

(1) grant(o,s,a)← l1 & l2 …& ln

(2) deny(o,s,a) ← l1 & l2 …& ln

For 1≤ i ≤n, li is a literal that is either a predi-
cate belonging to the set of {ismember}∪ P1 or its
negation. And o,s,a are an object term, a subject
term and an operation respectively.

The first kind of rules explicitly allows ac-
cesses to objects. The second kind of rules explic-
itly denies accesses to objects. The literals in the

right hand side are used to specify conditions that
must be satisfied. There are two types of condi-
tions. One kind of conditions specifies the objects
to which the authorization rules are applied. This
kind of conditions is described using predicate
ismember. The other kind of conditions is speci-
fied by user-defined predicates in the set of P1.

These predicates verify that a subject is the valid
user of the requested object and all provisional
actions are executed. The notion of provisional
actions was first proposed in [2]. A set of provi-
sional actions is defined in this paper. Provisional
actions are security operations extending seman-
tics of the authorization policies. For example,
before a valid user is allowed to read sensitive
information, he may be required to sign a term.
Unlike the authorization system in [2], which de-
fines a fixed set of provisional actions as primi-
tives in the authorization system, we implement
the semantics of provisional actions via user-
defined predicates. It is more flexible to adding
new provisional actions in our system than in the
system proposed in [2].
Example:

The following authorization rule states the
access restriction on web page ‘wedding’ (men-
tioned in Section 1). Loc is a user-defined predi-
cate that checks whether a user knows the wed-
ding place.
grant(u, wedding, read) ← Loc(u, wedding, read)

The following authorization rule illustrates
how to include provisional actions in an authori-
zation rule. validuser is a user-defined predicate
that verifies that the user is entitled to read the
data object ‘code’. The user-defined predicate
sign asks a valid user to sign a term before grant-
ing the access to him.
grant(u, code, read) ← validuser(u, code, read)
& sign(u, code, read)

3.5.2 Meta Rule
Meta rules are used to specify which kind of poli-
cies (open policy or closed policy) should be en-
forced on data objects. In addition, conflict reso-
lution policies and default policies are specified
by meta rules.
• Open/closed policy: If a closed policy is en-

forced, a user can access an object if there ex-
ists an authorization rule stating that the user
can access the object. If an open policy is en-
forced, a user can access an object if there

Execution Environment

Admin Tool

Access
request

Rule Manager

System
Administrator

Security Rule
database

Predicate
Repository

Authorization
Manager

Predicate
Manager

Figure 1 System Architecture

does not exist an authorization rule stating
that the user cannot access the object. Open
policy is very convenient for web authoriza-
tion. For example, we can naturally specify
the constraint ‘those who have no social se-
curity id cannot read this page’ by open pol-
icy. System administrators determine whether
an open policy or a close policy should be en-
forced on data objects using a 3-tuple <obj,
operation, policy>. System administrators
describe the set of object to which the
open/closed policy is applied by obj. obj is
stated using predicate ismember. policy is ei-
ther close or open. The open/closed policies
are stored as following two rules in the sys-
tem.
decision(o,s,a) ← grant(o,s,a) (closed policy)
decision(o,s,a) ← ¬ deny(o,s,a) (open policy)

• Default policies: A default policy is a 3-tuple
<obj, operation, permission>. obj and opera-
tion specify the set of objects and the opera-
tion as in open/closed policies. permission is
either grant or deny. When there is no
authorization rule for a request on an object,
we refer to the default policy of the object.
Authorization decision is made based on
permission field of the corresponding default
policy. In case there exists either no default
policy or contradictory default policies, we
choose the conservative strategy and deny the
request.• Conflict resolution: The existence of the deny
rules incurs potential conflicts (opposite deci-
sions are made according to different rules).
We use conflict resolution policies to solve
this problem. A conflict resolution policy is
a 3-tuple <obj, operation, resolution>. obj
and operation specify the set of objects and
the operation as in open/closed policies. The
value of resolution field can be denial-take-
precedence, permission-take-precedence, or
default.
For the rules in the logic system proposed in

[1,8], the expressiveness of the complex rule set
is strong. However, it introduces overheads when
system is enforcing rules. It is difficult for system
administrators to write a complicate security rule.
A complex rule is prone to errors. Based on these
considerations, we choose a simple rule set. Spe-
cially, we separate the authorization rules and
meta rules. Authorization rules, which are rela-

tively straightforward, are specified in a logic
form. Meta rules are difficult to be expressed by
using first-order logic so that they are defined as
3-tuples. The complex security rules can be de-
scribed with the aid of user-defined predicates in
our infrastructure.

4 System Architecture
Figure 1 shows the architecture of the authoriza-
tion system. The system consists of Predicate
Repository, Security Rule database, Rule Man-
ager, Admin Tool, and Execution Environment.

4.1 Predicate Repository & Security Rule
database

Predicate Repository stores the information of
user-defined predicates including the names and
the registration entries of the corresponding au-
thentication routines. Security Rule database
stores the authorization rules and meta rules.

4.2 Admin Tool & Rule Manager
Admin Tool is the GUI for system administrators
to register authentication routines, state user-
define predicates and specify security rules.
Admin Tool interacts with Routine Repository and
Security Rule database via Rule Manager. The
functionality of Rule Manager includes checking
the authentication routines provided by system
administrators, creating registration entries for
these routines, transforming user-defined predi-
cates and security rules into internal representa-
tions, and maintaining internal data structures to
speedup the processes of making authorization
decisions.

4.3 Execution Environment
Execution Environment is composed of Predicate
Manager and Authorization Manager. Authoriza-
tion decisions are made by Authorization Man-
ager. Upon receiving an access request, Authori-
zation Manager first searches the authorization
rules associated with the object. If such an au-
thorization rule does not exist, Authorization
Manager makes the decision based on default
policies associated with the object. In case there
is no default policy, Authorization Manager de-
nies the access request. If authorization rules ex-
ist, Authorization Manager infers the authoriza-
tion decision based on authorization rules. When
encountering a user-defined predicate, it sends an
evaluation request to Predicate Manager. When
receiving the request of evaluating a user-defined
predicate from Authorization Manager, Predicate
Manager retrieves the registration entry of the
corresponding authentication routine in Predicate
Repository using the name of the predicate. It
prepares arguments for the routine, invokes it,
and returns the result (true or false) to Authoriza-
tion Manager. System administrators are allowed
to specify timeout for each authentication routine
to prevent a routine from consuming system re-
sources for a long time. In case of timeout, Predi-
cate Manager interrupts the execution of the au-
thentication routine and returns false. If all the
predicates on the right hand side of an authoriza-
tion rule are true, the predicate on the left hand
side (i.e. grant or deny) is true. The Authorization
Manager infers the result of decision based on
the value of grant/deny and the open/closed poli-
cies. If several authorization rules exist, it is pos-

sible that contradictory results of decision are
inferred based on different rules. In this situation,
the conflict resolution policy is referred. If the
conflict resolution policy is denial-take-
precedence, the result of decision is determined
as false. If the system administrator specifies
permission-take-precedence as conflict resolution
policy, the result of decision is true. The access
request is granted if and only if decision is true.

5 System Implementation
We have implemented a prototype of the authori-
zation system using Java. Admin Tool and Rule
Manager are implemented as standalone applica-
tions. Server-side Java technologies are used to
implement Execution Environment. Particularly,
the Execution Environment is implemented as a
Java Servlet [9].
• Integrating User-define Predicates: We de-

fined a new interface PredicateInterface to
unify user-defined predicates. This interface
defines a method evaluation. The method
evaluation is used to evaluate the predicate. It
returns true if and only if the predicate is true.
Three classes ReqSubject, ReqObject, and
ReqOperation are defined to represent the
subject, object and operation respectively.
The parameters of method evaluation are in-
stances of these three classes. In current im-
plementation, an authentication routine must
be a Java class that implements the Predi-
cateInterface interface. When a user-defined
predicate is registered, the predicate name
and the class name of the corresponding rou-
tine are stored in Predicate Repository.
public interface PredicateInterface{

boolean evaluation(ReqSubject sub,
ReqObject obj,
ReqOperation oper);

…
}

• Evaluating User-defined Predicates: The
Predicate Manager is responsible for invok-
ing authentication routines of user-defined
predicates. Since user-defined predicates are
dynamically defined in the system, we cannot
hardcode the predicates set in the implemen-
tation. We need a mechanism to create an in-
stance whose class name is unknown until
runtime. We solve this problem by using the

Reflection APIs of Java [10]. Upon receiving
the request of evaluating a user-defined
predicate, the Predicate Manager retrieves
the class name of the authentication routine
using the predicate name. It creates an in-
stance using the class name and invokes its
evaluation method to evaluate the predicate.

• Integrating the prototype with web servers:
The prototype is integrated with a web server
via a Servlet program in the Execution Envi-
ronment. When a browser requests a page,
the web server runs the Servlet program. The
Servlet receives an instance of HttpServle-
tRequest and creates instances of ReqSubject,
ReqObject, and ReqOperation. The Servlet
sends the instances to Authorization Manager
that makes the authorization decision. After
receiving the decision that access is granted
by Authorization Manager, the Servlet sends
the requested web pages to the web server.

6 Conclusions and Future works
We present an authorization approach and the
authorization language for dynamic access envi-
ronments. The architecture and the implementa-
tion of the prototype are discussed. The prototype
has been implemented using Java. It is platform
independent and can be integrated with web serv-
ers to enforce complex application polices.

Currently, we focus on making decisions lo-
cally and avoid using authorization delegation.
We plan to incorporate trust delegation in the fu-
ture. A prototype of user-modeling mobile agent
has been developed in West Michigan University
[11]. It will be integrated into our system. We
plan to apply the prototype as a middleware be-
tween a web server and an information system to
evaluate the proposed scheme in terms of security
capabilities.

Reference
[1] S. Jajodia, P. Samarati, V.S. Subramanian,

and E. Bertino. A Logical Language for
Expressing Authorizations. In Proc of the
1997 IEEE Symposium on Security and Pri-
vacy, 1997

[2] M. Kudo and S. Hada. XML Document
Security based on Provisional Authoriza-
tion. In Proc of ACM Conference on Com-
puter and Communications Security, 2000

[3] N. Li, B. N. Grosof, and J. Feigenbaum. A
Logic-based Knowledge Representation for
Authorization with Delegation. In Proc of
the 12th Computer Security Foundations
Workshop, 1999

[4] M. Mohania, V. Kumar, Y. Kambayashi,
and B. Bhargava. Secured Web Access. In
International Conference on Digital Librar-
ies: Research and Practice, Nov. 2000

[5] J. Joshi, W. Aref, A. Ghafoor, and E. Spaf-
ford. Security Models for Web-Based Ap-
plications. Communications of the ACM,
Feb. 2001

[6] G. Ahn and R. Sandhu. The RSL99 Lan-
guage for Role-Based Separation of Duty
Constraints. In Proc of the fourth ACM
workshop on Role-based Access Control,
1999

[7] A. Herzberg, Y. Mass, and J. Mihaeli. Ac-
cess Control Meets Public Key Infrastruc-
ture, Or: Assigning Roles to Strangers. In
Proc of the 2000 IEEE Symposium on Secu-
rity and Privacy, 2000

[8] S. Jajodia, P. Samarati, V. Subramanian,
and E. Bertino. A Unified Framework for
Enforcing Multiple Access Control Poli-
cies. In Proc of the 1997 ACM international
SIGMOD Conference on Management of
Data, May 1997.

[9] Java Servlet API,
http://java.sun.com/products/servlet/

[10] Java Reflection API
http://java.sun.com/j2se/1.3/docs/guide/refl
ection

[11] W. Tu, S. Tang and M. Mohania. Web Da-
tabases and Agent Technology. In Techni-
cal Report, Department of Computer Sci-
ence, West Michigan University, Mar. 2001

[12] M. Mahoui, B. Bhargava, and M. Mohania.
Data Mining for Web Security: User-
watcher. In Proc of the 2001 International
Conference on Internet Computing, Jun.
2001.

	CERIAS Tech Report 2002.pdf
	Yuhui Zhong, Bharat Bhargava

