

CERIAS Tech Report 2001-18

Experiences in Specifications:
Learning to Live With Ambiguity

Mark Crosbie1, Benjamin Kuperman2

2Center for Education and Research in
Information Assurance and Security

Purdue University, West Lafayette, IN 47907
1Hewlett-Packard

Experiences in Specifications:
Learning to Live With Ambiguity

∗

Mark Crosbie
Hewlett-Packard

Cupertino, CA 95014

mcrosbie@cup.hp.com

Benjamin Kuperman
CERIAS, Purdue University
West Lafayette, IN 47907

kuperman@cerias.purdue.edu

ABSTRACT
This paper describes our practical experiences in setting and
working with requirements for a piece of security software.
Principally, it discusses the conflicts that occurred between
the ease of putting the initial requirements on paper and
the difficulty in applying them. The requirements were not
formally specified, but the process of turning them into code
followed our standard software development process. How-
ever, the informality of the requirements was not the pri-
mary source of our conflicts; we believe that ambiguity al-
ways exists, ambiguity leads to assumptions, and assump-
tions are what lead to flaws – some of which may cause
security vulnerabilities.

By explaining our journey through the software development
process, we show how seemingly obvious and easily stated
requirements lead to ambiguity, choices, and the need for re-
visiting specifications throughout the process. We conclude
with some recommendations from our experiences that we
hope will be useful to other practitioners.

1. INTRODUCTION
The intrusion detection product group at Hewlett-Packard
was tasked with the design and development of a security
software product that would monitor kernel and system ac-
tivity to determine if there were indications of intruder or
misuse activity on a system. They were acutely aware of the
common mistakes that many programmers make designing
and coding security sensitive software. The team was de-
termined to avoid a repeat of these mistakes and to that
end laid out a series of requirements that they felt would in-
formally reduce their exposure to security flaws in the final
product itself.

This paper discusses some of these informal requirements,
how they came about, and how they were enforced in the

∗Portions of this work were supported by the Hewlett-
Packard Company and other sponsors of CERIAS.

From the proceedings of the First Symposium on Requirements Engineering
for Information Security, March 5-6, 2001, Indianapolis, Indiana.

CERIAS TR 2001-18

development process. We examine how the requirements
were forced to change over time both from product-release
pressures and from an evolving understanding of the nature
of a writing a security product. We conclude with a discus-
sion on what lessons we learned from this experience and
what recommendations we have for software architects and
practitioners in industry.

The key theme of this paper is: requirements may con-
tain ambiguity, ambiguity leads to assumptions, assump-
tions may lead to flaws in code, some of which may be se-
curity vulnerabilities. We will examine each phase of our
product development process with respect to this theme.

2. THE EARLY DAYS –
SETTING THE REQUIREMENTS

The first step in designing a security product, and one that
is often overlooked, is to clearly define the threat model the
product will operate against. A host-based intrusion de-
tection system (IDS) has a particular view of a computing
system which is local to itself; it does not necessarily see
activity on other computing nodes. Thus, the first level of
threats we ignore is those that occur on remote systems.
Secondly, the data available to the IDS limits the ability to
detect certain threats. As we chose to monitor kernel audit
data for the first release, this precludes any network intru-
sion detection. Third, we decided that both trusted (i.e.
root) and untrusted users would be subject to monitoring.

In determining our threat model, we focused on the exploita-
tion of vulnerabilities rather than individual attacks. We
hoped to build a product that would have a longer lifetime,
and provide more useful data to a system administrator.
By deciding on vulnerability exploitation detection, we were
able to refine the threat model to detect the classic Unix ex-
ploits.

A requirement that fell out from the enumeration of our
threat model was that of the “best-effort principle”: if the
system is compromised the IDS will do its best at providing
an alert. After that, the user should not trust further alerts
that come from the IDS on this host. While this would seem
to be self-evident, it turned out to be a powerful principle
that allowed us to choose between design choices and cod-
ing options. In addition it defined the boundaries of the
product’s operation and interaction with its environment.

With the threat model and its “best-effort principle” in

place, the team felt confident that they could draw up a
set of requirements that would guide development.

At the start of the product development, the lead architect
set out some basic requirements for the design of the prod-
uct based on his experience in studying software vulnerabil-
ities, flaws discovered in other products, and knowledge of
research within the security community. The requirements
were the following:

1. It must not require privilege to operate.

2. It will limit environmental assumptions.

3. It must not attempt to “guess” the right action - if
something looks incorrect, stop and tell someone.

4. It must behave in a fail-stop manner.

5. It must tolerate failures of its subcomponents.

6. The overall security of a system should not be dimin-
ished by the installation of this product.

We had the following developmental process requirements
as part of the corporate lab’s development standards:

7. Our code must not exhibit common security coding
flaws.

8. All code will be subject to a formal team code-review
process to identify and flag errors.

9. Automated test cases and code-coverage tools will be
used to ensure that code has been subjected to ade-
quate testing.

10. The code shall make minimal assumptions about the
resources on the underlying system.

We attempted to specify these requirements in a platform
independent manner. For example, the first requirement
states that the product should not require privilege to op-
erate, however, it avoids defining exactly what “privilege”
means for a given platform. We will discuss these points
briefly to explain the reasoning behind them. We also dis-
cuss our discovery that no matter how solid the initial set of
requirements are, one should plan to encounter pressure to
change them in unexpected ways as development proceeds.

Operate without special privilege
Software faults that occur in executable code running
at a level of heightened privilege can expose a sys-
tem to greater risks (in general) [13]. To minimize
the amount of exposure, it is considered good prac-
tice [3, 8, 9, 14] to minimize the amount of time that
code runs in this state. Therefore, we decided to re-
quire that the intrusion detection system run without
enhanced privileges.

Limit environmental assumptions
Many software faults occur because a programmer made
assumptions about the run-time environment [2, 6, 7,
9]. We therefore required the product to verify all en-
vironment variables, paths and file ownerships before
using them. If needed, it was required to sanitize en-
vironment variables before using them.

Do not guess
If the product could not determine the correct course

of action it would not attempt to deduce it. It would
simply stop with an error message. For example, if it
could not locate a required configuration file, it would
not attempt to deduce the configuration values.

Fail-stop
The basic premise of fail-stop behavior is that to pre-
vent exposure to vulnerabilities, a protocol will exam-
ine all inputs and abort the transaction in the event of
unexpected data. If errors did occur, the product was
to stop execution with an error message [10].

Tolerate subcomponent failure
The product must continue to operate in a recover-
able manner if sub-components failed. Perhaps a child
process experienced segmentation violation due to a
software flaw, exceeded some resource limit, or was
killed by an administrator. The product must antic-
ipate such failures and have procedures for handling
these events. Over time it became obvious that this
requirement would conflict with requirements 3 and 4
outlined above.

Security must not be weakened
As the goal of the IDS product was to improve the
state of security on the system, an obvious requirement
was that the IDS should not degrade overall system
security. This meant that we must strive to minimize
the additional risk exposure that our product incurred.

3. THE DESIGN PHASE
As expected, the initial product design was guided by the
requirements. The design called for a series of cooperating
processes that assumed they were operating in an untrusted
environment. Most of the design work focused on the pro-
tocol describing how these processes would interact, with a
keen eye to how these interactions could be used by a knowl-
edgeable attacker against the product. At the design phase,
many of the requirements were taken literally; the fail-stop
requirements led to a design that would not progress ex-
ecuting beyond the point at which a security failure was
detected. As a result, the design failed to take into account
product component recovery, for example restarting a failed
child process. We discuss each of the requirements below
and how they were viewed in the design phase.

Operate without special privilege
The first instance of an ambiguity in the requirements
was found during the design phase when deciding with
what privilege the product should operate. Requir-
ing that the product not operate with privilege im-
plies that it must operate as a non-privileged user.
We decided we could best meet this requirement by
creating an “IDS” user to own the software and exe-
cuting processes, and this user identity would be cre-
ated as needed during installation. Such a seemingly
simple operation turned out to have many complex-
ities, especially in environments that operated with
NIS or shadow passwords. The design phase had to
address the issues raised by adding a non-privileged
user. Many third-party software components assume
that they will be installed and run with “root” privi-
lege, and we had to verify that any code we incorpo-
rated met this requirement.

We discovered that the straightforward requirement
“operate as a non-privileged user” contained an un-
stated assumption; namely that all of the data we
needed to collect would be available to a user without
needing special privileges. In order to collect data on
failed attempts to log into the system, we discovered
that we had to break this requirement.

Login attempts occur within application level processes
owned by root. The kernel does not normally see failed
login attempts, but they are reported through the sys-
log facility and stored in a file named btmp, which is
only readable only by root for security reasons. This
left us with the following four options:

1. Do not collect this data.

2. Modify the permissions on the file to be readable
to our user.

3. Modify either all login programs or syslogd to al-
low us to collect the data.

4. Have a process with permissions to read that file.

The first option violated our non-security functionality
requirements. To handle log rollover, the second would
require us to have a mechanism to re-apply the per-
mission changes which would likely require enhanced
privileges. The third was unlikely from an organiza-
tional perspective – those programs were owned by
other development groups and changes could only be
made with their approval. The fourth solution met our
needs and appeared to have an acceptable amount of
deviation from our security requirements.

Limit environmental assumptions
Environmental assumptions remain hidden in every
design, no matter how hard the designer tries to make
them explicit. For example, a design that assumes it
can create files, assumes that it is running on a writable
media file-system that has enough space remaining to
create the required file.

Sanitizing the environment was implemented on the
“everything that is not expressly permitted is denied”
principle. We chose sane values for various shell envi-
ronment variables and decided that no user supplied
variables would be honored. All return values from
standard library and system calls were checked and
handled as appropriately as possible.

Despite our best efforts, we feel that the assumptions
we made still have left room for flaws – we don’t be-
lieve any program of this size can be guaranteed to
be error free. These flaws may express themselves as
vulnerabilities, although we hope to detect and correct
many of these before they affect customers.

Do not guess
The “no guessing” requirement was easy to satisfy in
the design phase; any failure caused an error message
to be generated and the program returned to a stable
state.

Fail-stop
Coupled with “limit environmental assumptions” and
“do not guess” characteristics, this requirement in-
volved shutting down processes whenever an error or
unexpected transition occurred.

Tolerate subcomponent failure
To tolerate subcomponent failure, we first needed to
anticipate and plan on each module or function being
unable to complete their task. This involves the design
of meaningful return codes from subroutines, and ap-
propriate response routines in the invoking programs.

There was a certain degree of ambiguity in this require-
ment, especially when it is taken with the “fail-stop”
and “do not guess” requirements. For example, how
many failures should the design allow before deciding
that a non-recoverable error has occurred? Can re-
coverable errors be distinguished from unrecoverable
errors (e.g. an interrupted system call vs. an out-of-
memory condition)? We made certain assumptions in
response to these and other questions. Despite our
best efforts, these assumptions may contain security
flaws – failure to operate when disk space is exhausted,
for example. By being able to discern the ambiguity
that existed between the requirements, we were able
to focus our efforts on clarifying areas of confusion in-
stead of spending that time on detailing the better
understood aspects.

Security must not be weakened
Despite being a laudable requirement, we discovered
that this requirement was difficult to satisfy in the
design phase. Part of the difficulty arose because it
is hard to quantify what a “reduction in security” is.
The team had a conceptual understanding of this re-
quirement, don’t make security mistakes when pro-
gramming, but turning this into a design was difficult.

To satisfy this requirement, we examined what steps
one would take to weaken the security of the system.
For our definition of weaken, we chose “introduce new
vulnerabilities” – the IDS product should not provide
new avenues for attack into the system. We examined
how other products had introduced new vulnerabili-
ties and determined how we could avoid these through
careful design and coding. Many of these preventive
measures were already captured in the other security
requirements, but this rule became very useful for eval-
uating design proposals and modifications. For exam-
ple, a kernel change that met all other requirements
but might expose kernel data tables to user modifi-
cation would not meet this requirement and therefore
should not be permitted.

4. THE CODING PHASE
The requirements for the product which we had laid out
earlier were seriously challenged in the coding phase. Dur-
ing this phase, many assumptions hidden in seemingly ob-
vious requirements were exposed. Below, we discuss how
the coding phase forced us to re-evaluate many of our basic
requirements.

Operate without special privilege
Despite the requirement that the product operate with-
out any elevated privileges, we were forced to com-
promise in coding. We limited the duration that the
product executes with elevated privilege according to
the principle of least privilege [3, 8, 14]. We knew up
front that this requirement might be difficult to follow

stringently depending on the data sources employed,
but we had hoped that any transgressions of this rule
could be removed before a final release1.

Limiting environmental assumptions
Programmers make implicit assumptions about sizes
and limits when they write code. Breaking these un-
written assumptions is the key to a type of vulnera-
bility exploitation. Unfortunately, we were forced to
make environmental assumptions. (Many were arbi-
trary decisions that had to be made without sufficient
data to know the “right” answer.) It was difficult to
know what assumptions to make, because the require-
ments were too nebulous to guide us. For example,
how long should we wait for a process to terminate?
How many times should you try to restart a failing
child process? Should you grab all the memory you
will ever need at start up so malloc() can never fail?
Requirements of survivability in the face of resource
exhaustion are easy to state, but the implementation
of solutions in code is very difficult. We recognize it is
likely that there are hidden security flaws within these
assumptions. We continue to utilize our software en-
gineering processes to find and correct these flaws.

Integration of modules
The integration of modules authored by two program-
mers often allowed us to discover as-yet undiscovered
ambiguities within our specifications. Frequently, this
occurred when two modules were being connected. In-
dividual engineers utilized their unique coding styles
when solving problems, and we failed to document
some of the assumptions which they made. The same
engineer who designed a module would then write the
code for that module, creating a situation where the
assumptions made were not violated within the mod-
ule, but broke down when two modules were inte-
grated.

One example of this occurred between two modules,
one that read in data and another that formatted it.
The formatting module assumed that it received a null
terminated string from the input module and used that
assumption throughout. However, the author of the
reader module passed only the data bytes, not the ter-
mination character. This coding flaw descended from
an inherent assumption in the design (all strings should
be null terminated), and our security requirement of
maintaining careful watch over the length of strings.
The result was two implementations based on differ-
ing assumptions.

The ambiguity was in the definition of the length of a
string – is it the number of characters of data, or data
plus terminator. Each module contained a differing
assumption as to how this ambiguity was to be inter-
preted, leading to software flaws which (if undiscov-
ered) might have been vulnerable to attack. Resolving
this ambiguity required us to clarify our assumptions,
recode the modules appropriately and review all of our
code for other instances of this assumption.

Do not weaken overall system security
As discussed previously, we did not want to add new

1This was not able to be removed before the initial release
and remains on the list of goals for future development.

avenues for attack against the system. If the same se-
curity problem occurred more than once we decided
to solve it once and solve it well, and then reuse the
solution. For example, we found ourselves continually
worrying about opening and creating files in a secure
fashion. This led to the creation of a library of se-
cure implementations of common functions. We cre-
ated secure tmpfile() and secure exec() to enforce
the security policies enumerated within our design.

We continued to find subtle bugs in this library, de-
spite many hours of code review spread over months of
work by several engineers! Each pass through brought
new errors to light. Some were coding flaws, but most
were violations of our security requirements (subtle
race conditions, buffer size assumptions, environment
assumptions, etc.). Our secure library is a microcosm
example of a situation of how specifying requirements
is easy but the implementation of them is difficult.

5. TESTING, AND BETA FEEDBACK
Once the code reached a level of stability, we focussed on in-
tegration testing and product usability. It was at this time
that our initial requirements were subjected to a detailed
scrutiny in the operational arena. One of the initial design
requirements was that the product exhibit fail-stop behavior
and halt its execution when a serious error occurred. Over
time, it became apparent that a product that behaved in
this manner would be of limited utility to our customers. In
fact, our product had to survive in a hostile environment,
halting operation at the first sign of trouble was an unre-
alistic operational choice. To address this, we decided to
modify our design and recode some key components to sup-
port failure recovery. If a child process failed, there would
be some attempt to restart it.

While this appears to be a reasonable requirement at first
glance (“restart processes if possible when they fail”), the
implementation exposed many conflicting issues: how many
times should we attempt to restart? If we fail in those at-
tempts, should we then halt operations? Can the product
continue to “limp along” without a key component oper-
ating? Will we break the “no guessing, no assumptions”
requirement by operating in a recovery mode? These ques-
tions were addressed by revisiting and revising our initial
design specification over a course of meetings. The formal
review did not catch all of the instances in which this con-
flict occurred, but those were addressed informally whenever
detected.

6. WHY DID OUR REQUIREMENTS CHANGE
DURING THE SOFTWARE DEVELOP-
MENT PROCESS?

As our team moved through the software engineering process
from design into final implementation, we encountered vari-
ous ambiguities hidden within our initial requirements. The
need to re-examine and change the requirements resulted
from the following:

• Personal processes – Each contributor to the project
also brought their own personal view of how require-
ments should be handled.

• Internal developmental pressures – As we moved through
the design and coding phases we changed our notion
of how the requirements were interpreted.

• External pressures – The typical software product sched-
ule is seldom realistic. Despite our best efforts to
track and plan our development process, we found that
schedule slip occurred because of external dependen-
cies.

We examine some of these pressures and how they forced
changes in our requirements.

Skills problem
Security coding demands a high degree of paranoia
and attention to small details. A general requirement
such as “no additional vulnerabilities” leads to some
very detailed coding scenarios. Not every program-
mer can write code to this level because of their back-
ground, past experience in writing robust software, or
education2. Mentoring and education within a group is
needed. Given the rate of employee turnover, mentor-
ing consumed more time than originally anticipated.

When requirements are set, it is usually assumed that
every engineer can understand, internalize and code
to the requirements. Unfortunately, such an idealized
engineer does not exist. A formally rigorous require-
ments phase has little value if the engineers do not
have the skills needed to translate the requirements
into solid code.

It could be argued that the initial requirements were
poorly specified. Certainly, the product team went
through no formal requirements specification process.
Nor did they have the time or skills to do so. The ini-
tial requirements were internalized by the development
team and provided the guiding compass for develop-
ment choices. We began to question the requirements
as evidence for their unsuitability to the product tar-
get environment began to mount. We were forced to
revisit the requirements during testing whenever the
product’s operation was deemed unsatisfactory.

Failure to document ambiguity
Even though we recognized that the requirements were
ambiguous, we sometimes failed to document the am-
biguity as it was found. Furthermore, our decisions to
remove any ambiguity should have been documented.

Code from outside parties
To speed up the development time, certain portions
of the code were obtained from other groups within
HP. We also believed that development time could be
reduced by utilizing third party code produced by ex-
perts in a particular field (e.g. encryption). Our as-
sumption was that such code would be a close match
to our pedantically paranoid coding requirements. In
cases where this assumption did not hold, we were
forced to balance our production schedule against the

2How many computer programming courses emphasize the
need to validate input data? How many are still accepting
the use of scanf() for input or strcpy() to duplicate data
despite the number of reported vulnerabilities these create?

severity of disparity and the time needed to rectify the
situation.

In some instances, externally developed code did not
meet our specified design standards for the overall project.
It might not anticipate failure, not perform in a fail-
stop manner, or even contain well known (though still
common) programming flaws. We are unsure if we
saved any significant amount of time by not having
to author the code ourselves as we needed to expend
a fair amount of resources incorporating the outside
code into our stated design framework. Much of the
problems in this category occurred in previously de-
veloped commercial packages or licensable security li-
braries that could not be customized due to our inter-
nal management, schedule, or financial pressures.

Review meetings uncover ambiguity
We held reviews of the product design to verify that
it met our customer requirements. We also held code
review meetings during the development stage (we de-
fine a “code review” as a formal inspection of the code
by a subset of the entire team). The goals are to log
the defects found and to educate the author and the
rest of the team about the problems noted. Despite
the effectiveness of these meetings at uncovering many
errors, the review process cannot guarantee the discov-
ery of all errors. For example, the secure code library
was reviewed three times over a period of six months.
During each iteration, a new, subtle bug was found.
In fact, it became a right-of-passage within the team
for new employees to hone their security skills by at-
tempting to find new defects in the already-reviewed
library code! Some of the defects found resulted from
ambiguous requirements such as “no additional vul-
nerabilities.” For example, if the Unix OS makes it
very difficult to securely delete files, should we count
that as a defect in our requirements, or in our imple-
mentation? However, the review process provided an
excellent opportunity to uncover hidden assumptions
and inter-module problems. It also provided a non-
judgemental forum in which engineers could question
requirements and agitate for change if they felt that
the requirements were not justifiable.

Software metrics
One of the internal lab requirements was the use of var-
ious code coverage techniques. Depending on the tech-
nique, a certain minimum level of coverage percentage
was required during the testing phase. However, our
requirements of not making assumptions led to the cre-
ation of code paths that, theoretically, could not be
reached. For instance, a flag is checked, and then re-
set – but shortly thereafter another set of tests are
made, one of which is based on the value of that flag.
The lab metrics pressured us to remove such checks
and paths, while our requirement against making as-
sumptions indicated it should remain.

Conflict between security and usability
We feel that a key reason the requirements were forced
to change over time was the conflict between security
and usability. A contributing factor to the change
was the problems encountered in turning high-level

requirements into secure code. Despite the require-
ment that environmental assumptions be limited, it is
inevitable that the code produced will contain subtle
assumptions.

Ease-of-use requirements often conflict with a straight-
forward implementation of security requirements3. Of
course, the definition of “easy to use” varies greatly
with the level of expertise of the user. We generated
information on the ease of use from feedback provided
by our alpha/beta testers, usability testing, and docu-
mentation review from people outside of the program-
ming team.

As part of our installation, keys must be generated to
encrypt communications between our GUI and the in-
dividual agent detecting intrusions. Our initial design
called for a four step procedure involving two trans-
fers of information between the GUI and each individ-
ual agent. Due to user feedback, we re-examined the
protocol. We managed to simplify this to a three step
process requiring only one transfer without a reduction
in security.

However, the transfer step still must be performed us-
ing a “secure channel” (a nebulous term which we ex-
plained through the use of examples such as carrying a
floppy disk between machines or via an encrypted net-
work connection). The likelihood of customers obeying
the intent of our warnings to not transfer certificates
via email is expected to be low; however, we could
not justify the substantial decrease in usability that
would be required to attempt to enforce this require-
ment is followed by the end user in a manner that we
had specified. The ambiguity of our requirement for a
“secure channel” might be misinterpreted (or ignored)
by a user exposing them to a potential threat.

7. RECOMMENDATIONS
In some ways ambiguity can be viewed as being both posi-
tive and negative. While it is frustrating to have to re-hash
design decisions throughout the lifecycle of software devel-
opment, requirements that are clear and easy to understand
in a general context lead to better understanding of the re-
quirements. The compactness of these understandable (but
sometimes ambiguous) requirements are able to be kept in
mind by all the participants, and by noticing where the am-
biguity or conflict between rules exist, more energy can be
focussed on these “hot spots.”

Balance explicitness against platform independence
It may be tempting to set down explicit and detailed
requirements and hope that ambiguity will be removed
from the development process. We feel that overly de-
tailed requirements specification will cause a prolifera-
tion of documents; one for each target platform of the
product. There is a greater chance that these docu-
ments will become out-of-sync with each other.

To achieve the required balance we recommend that
practitioners are aware of the general principles of se-
curity and build their requirements from there. For

3It seems that ease-of-coding and ease-of-use are often in-
versely related.

example, a requirement that states “will not create
world-writable files” is preferable to “will not create
mode 666 files.” However, there are times when plat-
form details need to be exposed. We feel that these
details should be minimized in a high-level require-
ments document, and that reference should be made
to a per-platform assumptions document.

Maintain an “assumptions document”
Assumptions are similar to the pre- and post-conditions
on procedural entry and exit points. Documenting
such assumptions during the lifetime of the project is
a valuable task. However, assumptions span far more
than procedures in code: they can also include cod-
ing standards, product operations, security goals and
organizational philosophies.

The assumptions document must be kept current. It
is essential in the face of inevitable employee turnover
and will become a valuable educational tool over time.
In addition, it captures the thinking of many individ-
uals in one place and helps offset the skills problem
identified earlier.

What do we mean by assumptions? Every time a de-
veloper faces a decision in design or coding forced by
an ambiguous high-level requirement, the choice made,
and the reasoning why it was made, should be recorded
in the requirements document. In addition, if a high-
level requirement must be satisfied in different ways
for different platforms, the decisions made should be
recorded.

While capturing this level of detail would be wonder-
ful, the reality is that if every small decision made
during design or coding were to be reflected in an as-
sumptions document, the development process would
quickly be bogged down in administrative paperwork.
To minimize the amount of overhead imposed, we sug-
gest using the following questions as triggers to the
developer to update the assumptions document:

Are hard-coded values used?
Are any magic numbers, hard-coded error mes-
sages, or file names defined and/or assumed? Are
upper or lower limits assumed for boundary con-
ditions? Any occurrence of these should be doc-
umented.

How are objects created, deleted or modified?
We loosely define “objects” to be any system en-
tity that may have a system-wide impact. For
example, a file, a process or a semaphore are ob-
jects by this definition as they are visible to other
system entities. When considering an action that
affects these objects, a developer must consider
two criteria:

1. Will other system entities notice an adverse
change after the action is taken? Will the
action cause a reduction in available system
resources for other processes? If so, the as-
sumptions made about the impacts of the ac-
tion must be documented. For example, if all
the semaphores in the kernel are allocated,
will other activity on the system be adversely
affected?

2. If another entity changes an object, will the
action need to be modified? This criteria is
the same as the previous one but from the
other perspective – do the assumptions rely
on an unchanging underlying system, or do
they still hold if the system state is constantly
changing.

What object properties are relied upon?
If the developer is relying on an object property to
be constant, then that assumption must be docu-
mented. For example, is the developer relying on
the file system to always have enough space for a
write? Does a process have sufficient privilege to
create another process on the system?

What timing assumptions are made?
Does the ordering of actions matter, and if so,
what assumptions have been made about order-
ing? If there are cooperative processes, does the
sequence in which they are awakened matter?

Is atomicity of action assumed?
Can the action on a system object be assumed
to be atomic, or can other unforeseen actions be
interleaved with the current one and cause un-
predictable results? If the developer is making an
assumption about atomicity of action then that
must be documented. For example, a common
programming mistake in Unix is to check for the
existence of a file using the stat system call and if
the file does not exist, to create it using the creat
call. While the programmer may assume that
these two steps can be considered atomic, in real-
ity an attacker may create a symbolic link in the
interval between the stat and creat calls, leading
to a classic race-condition exploit. Had the devel-
oper documented this assumption of atomicity, it
is more likely that the potential race-condition
would have been discovered and fixed by a team
review.

Recognize that the requirements will not be complete

The more general the security requirements, the larger
the set of implementations which will fit these require-
ments. Inversely, the more specific the requirements,
the smaller range of possible implementations or inter-
pretations. However, the specifications cannot always
be fully defined at project inception, and their revising
needs to be a continual part of the software develop-
ment process. Ambiguities will always exist between
the requirements, design, and implementation compo-
nents of a project.

Incorporation of outside code into your project require-
ments requires the reconciliation between two teams’
sets of security requirements. Even if one team were
able to dictate the initial requirements, the interpre-
tations of the software engineers in the other group
would likely differ. In order to unite everything un-
der one common set of requirements, these differences
must be uncovered, examined, and unified.

The environment in which a product will ultimately
operate must be factored into the requirements speci-
fication. Failure to do this will result in uncontrolled

environmental assumptions appearing in the code. An-
ticipating these assumptions at the requirements stage
will help control and track them; leaving them to the
coding stage results in different assumptions for each
author’s assigned subset of code. It is important to un-
derstand both the deployment environment and threat
model when codifying security requirements.

Recognize that requirements may change
We began with our set of security requirements when
the initial design and specifications were made. In the
course of development, we were forced to compromise
on a few issues. We allowed “fail-stop” behavior to
become “fail-continue” in certain situations. Addition-
ally, our requirement of “no assumptions” transformed
into a best-effort operation for the sake of usability.
Requirements specification will seldom anticipate ev-
ery circumstance or situation that will be discovered
during the development cycle, so having a mechanism
by which ambiguity in requirements can be revisited
and the specifications revised is essential. For example,
ease of use concerns, or other external pressures, might
dictate a change in protocol. Originally, this product
used a four step process with three secure data trans-
fers. After initial user testing was performed, this was
an area that was considered too cumbersome for com-
mercial release. After some reworking of the protocol,
we were able to produce an equivalent three step pro-
cedure that only required one secure transfer.

People must turn requirements into code
To successfully utilize security requirements as part of
a design, a team needs a requirements “guru” to get
the initial specifications as correct as possible. The
guru must mentor the development team and explain
why and where these requirements are needed. In-
dividual engineers may not have the skills needed to
adequately translate a requirement into a secure, func-
tional piece of code. If requirements appear to be neb-
ulous and capricious, then they will not guide the en-
gineers and might be ignored by them during the de-
velopment process. Even though change is often nec-
essary, people have great difficulty in changing their
perspective once they gain the understanding of a set
of requirements.

By adopting (or at least considering) the above recommen-
dations, we believe that a software development team can
define and utilize a manageable set of security requirements.
The requirements will be phrased in a manner that can be
easily understood by attempting to remain both simple and
platform independent. The development process will an-
ticipate the need to educate programmers, review code, and
revisit the requirements. Ambiguity and conflict between se-
curity requirements should be expected, and through proper
communication and planning these issues can be addressed
and the resolutions recorded.

8. ADDENDUM
Neither of the authors of this paper were knowledgeable
in the academic field of requirements engineering during
the development of this project, nor the initial writing of
this paper. Hewlett-Packard utilizes a well defined, mature

software development process which we followed as part of
our software engineering procedure. This process utilizes
many tools and techniques to refine the requirements of a
project including the following: validation of sponsor’s in-
tentions; balancing schedule, scope, and resources; flexibil-
ity matrices; dependency diagrams; work breakdown struc-
tures; critical path analysis; logical dependecy relationships;
design meetings; Is/Is Not documents; and others. We felt
that our experiences as practitioners might be valuable to
those building new solutions in the requirements engineering
arena.

Our reviewers pointed us towards Axel van Lamsweerde’s
ICSE 2000 publication [15] which presents an overview of
the past 25 years of academic research in Requirements
Engineering. Reading through Lamsweerde’s paper, it is
clear that some of the discoveries within the Requirements
Engineering community are incorporated into our software
development process. Reading his historical discussion we
see that many of the items we encountered are well known
within the academic community. Bell and Thayer’s 1976 pa-
per [4] discusses ambiguity in requirements and the need for
continuing review and revision during the software develop-
ment process. Ross and Schoman 1977 paper [12] discussed
the need to define the environment in which a system would
be developed and deployed, and that such things need to
be considered in the construction requirements. Other tech-
niques such as domain analysis, elicitation, negotiation and
agreement, basing requirements on goals ([1, 5, 11] and oth-
ers), iteration, and revision are described in [15] and seem
similar to the processes we followed. We believe that the
problems and solutions documented in requirements engi-
neering research are reflected by our experiences. Our ex-
posure to some of these more formal techniques will prove
valuable as we continue our software engineering.

9. REFERENCES
[1] A. I. Antón. Goal-based requirements analysis. In

Second IEEE International Conference on
Requirements Engineering (ICRE ‘96), pages 136–144,
Colorado Springs, Colorado, 15–18 April 1996.

[2] T. Aslam, I. Krsul, and E. H. Spafford. Use of a
taxonomy of security faults. Technical Report
TR-96-051, COAST Laboratory, Department of
Computer Sciences, Purdue University, West
Lafayette, IN 47907-1398, September 1996.

[3] AUSCERT. A Lab engineers check list for writing
secure Unix code, rev.3c edition, May 1996.

[4] T. E. Bell and T. Thayer. Software requirements: Are
they really a problem? In Proceedings of the 2nd
International Conference on on Software Engineering,
pages 61–68, San Francisco, USA, 1976.

[5] V. Berzins and Luki. Software Engineering with
Abstractions. Addison-Wesley, 1991.

[6] M. Bishop. A taxonomy of unix system and network
vulnerabilities. Technical Report CSE-95-10,
University of California at Davis, Department of
Computer Science, University of California at Davis,
Davis, CA 95616-8562, May 1995.

[7] M. Bishop and D. Bailey. A critical analysis of
vulnerability taxonomies. Technical Report
CSE-96-11, University of California at Davis,
September 1995.

[8] D. E. R. Denning. Cryptography and Data Security.
Addison-Wesley, Reading, Massachusetts, 1982.

[9] S. Garfinkel and G. Spafford. Practical UNIX
Security. O’Reilly & Associates, Inc., 981 Chestnut
Street, Newton, MA 02164, USA, 1991.

[10] L. Gong and P. Syverson. Fail-stop protocols: An
approach to designing secure protocols. In R. K. Iyer,
M. Morganti, F. W. K, and V. Gligor, editors,
Dependable Computing for Critical Applications, pages
79–100. IEEE Computer Society, 1998.

[11] G. F. Hice, W. S. Turner, and L. F. Cashwell. System
Development Methodology. North-Holland,
Amsterdam, 1974.

[12] D. T. Ross and K. E. Schoman. Structured analysis
for requirements definition. IEEE Transactions on
Software Engineering, 3(1):6–15, January 1977.

[13] R. S. Ross and T. R. Malarkey. Integrity in
Automated Information Systems. Technical Report
79-91, National Computer Security Center, Sept. 1991.

[14] M. D. Schroeder and J. H. Saltzer. A hardware
architecture for implementing protection rings.
Communications of the ACM, 15(3):157–170, Mar.
1972.

[15] A. van Lamsweerde. Requirements enignieering in the
year 00: A research perspective. In Proceedings of the
22nd International Conference on on Software
Engineering, pages 5–19. Association for Computing
Machinery, ACM Press, June 2000.

	CERIAS Tech Report 2002.pdf
	1Mark Crosbie, 2Benjamin Kuperman

