

CERIAS Tech Report 2001-19

A RECURSIVE TCP SESSION TOKEN PROTOCOL
FOR USE IN COMPUTER FORENSICS AND TRACEBACK

Brian Carrier

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

A RECURSIVE TCP SESSION TOKEN PROTOCOL FOR USE IN COMPUTER

FORENSICS AND TRACEBACK

A Thesis

Submitted to the Faculty

of

Purdue University

by

Brian Carrier

In Partial Ful�llment of the

Requirements for the Degree

of

Master of Science

May 2001

CERIAS TR 2001-19

ii

ACKNOWLEDGMENTS

I �rst extend thanks to my thesis committee: Dr. Clay Shields, Dr. Eugene

Spa�ord, and Dr. Jens Palsberg. I would also like to thank CERIAS and all of its

members for providing me with an amazing environment, which has allowed me to

learn and grow. The technical suggestions and comments from Tom Daniels and Ben

Kuperman were always helpful and greatly appreciated.

Thank you to my family for providing me with the opportunities and freedom

over the years to follow my dreams and reach my goals.

Lastly, I would like to thank my Lego planes and spaceships, pokemon characters,

and Mr. Krups for entertaining and supporting me during the late nights in the oÆce.

Thank you Jenny for trying to understand why I was spending so much time with the

aforementioned objects and reminding me that there is sometimes a world beyond

computer security.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES : vi

LIST OF FIGURES : vii

ABSTRACT : viii

1 INTRODUCTION : 1

2 PREVIOUS AND RELATED WORK : 3

2.1 IP Traceback : 3

2.2 Network-Based Connection Chain Traceback : : : : : : : : : : : : : : 5

2.2.1 Holding Intruders Accountable on the Internet : : : : : : : : : 5

2.2.2 Detecting Stepping Stones : 5

2.2.3 Finding a Connection Chain for Tracing Intruders : : : : : : : 6

2.3 Protocol-Based Connection Chain Traceback : : : : : : : : : : : : : : 8

2.3.1 Caller Identi�cation System : : : : : : : : : : : : : : : : : : : 8

2.4 The Identi�cation Protocol : 10

3 TCP SESSION TOKEN PROTOCOL : 15

3.1 Protocol Design : 15

3.1.1 Design Goals : 15

3.1.2 Speci�cation : 16

3.1.3 Limitations : 20

3.2 Traceback Requests : 21

3.2.1 General : 21

3.2.2 Loop Detection : 22

3.2.3 Resolving Interprocess Communication : : : : : : : : : : : : : 24

3.3 Saving User and Application Data : 25

3.3.1 General : 25

iv

3.3.2 Integrity of Saved Data : 26

3.4 Security Analysis of Protocol : 27

3.5 Case Studies : 28

3.5.1 Simple Process Structure : 28

3.5.2 Complex Process Structure : 30

3.5.3 Reverse Telnet : 34

4 IMPLEMENTATION : 38

4.1 Overview : 38

4.1.1 Description : 38

4.1.2 Assumptions : 41

4.1.3 Limitations : 43

4.2 External Interface : 43

4.2.1 External Interface Layout : 43

4.2.2 External Interface Data Structures : : : : : : : : : : : : : : : 44

4.2.3 External Interface Functions : : : : : : : : : : : : : : : : : : : 47

4.3 Internal Interface : 49

4.3.1 Internal Interface Data Structures : : : : : : : : : : : : : : : : 49

4.3.2 Internal Interface Functions : : : : : : : : : : : : : : : : : : : 51

4.4 Linux Implementation : 53

4.4.1 Process Structure : 54

4.4.2 Data Collection : 56

4.4.3 Conclusion : 59

4.5 OpenBSD Implementation : 59

4.5.1 Process Structure : 60

4.5.2 Data Collection : 63

4.5.3 Conclusion : 68

4.6 Solaris Implementation : 69

4.6.1 Process Structure : 69

4.6.2 Data Collection : 74

v

4.6.3 Conclusion : 79

4.7 Performance : 79

4.7.1 Request Processing Times : 80

4.7.2 System Performance : 83

4.7.3 Conclusion : 84

5 CONCLUSION : 86

5.1 Recommended Features : 87

A Protocol Interface Speci�cation : 89

A.1 External Interface Data Structures : : : : : : : : : : : : : : : : : : : 89

A.2 External Interface Functions : 90

A.3 Internal Interface Data Structures : 91

A.4 Internal Interface Functions : 91

B Daemon Sample Outputs : 93

B.1 Simple Process Structure Report : 93

B.2 Complex Process Structure Report : : : : : : : : : : : : : : : : : : : 94

B.3 Reverse Telnet Report : 96

C Benchmark Code : 99

LIST OF REFERENCES : 101

vi

LIST OF TABLES

Table Page

3.1 Session Token Protocol request types : : : : : : : : : : : : : : : : : : 18

3.2 User, application, and system state variables : : : : : : : : : : : : : : 25

4.1 External and internal interface functions : : : : : : : : : : : : : : : : 39

4.2 Linux data collection functions : 56

4.3 Linux fddata address values : 58

4.4 Linux find proc() argument type : : : : : : : : : : : : : : : : : : : 58

4.5 OpenBSD protocol control block pointer types : : : : : : : : : : : : : 62

4.6 OpenBSD data collection functions : : : : : : : : : : : : : : : : : : : 64

4.7 OpenBSD fddata address values : 66

4.8 OpenBSD find proc() argument type : : : : : : : : : : : : : : : : : 68

4.9 Solaris data collection functions : 76

4.10 Solaris fddata address values : 77

4.11 Solaris find proc() argument type : : : : : : : : : : : : : : : : : : : 78

4.12 Average lookup time for six unique processes : : : : : : : : : : : : : : 82

4.13 Average lookup time for 14 unique processes : : : : : : : : : : : : : : 82

4.14 System performance data : 84

vii

LIST OF FIGURES

Figure Page

2.1 Connection chain example between H0 and Hn : : : : : : : : : : : : : 4

2.2 Identi�cation Protocol request : 11

2.3 Identi�cation Protocol grammar : 12

3.1 Session Token Protocol grammar : 17

3.2 Process trees of 4 hosts in a network loop : : : : : : : : : : : : : : : : 23

3.3 Process tree of pipe example : 24

3.4 Simple process structure process tree : : : : : : : : : : : : : : : : : : 29

3.5 Simple process structure process data : : : : : : : : : : : : : : : : : : 30

3.6 Complex process structure process trees : : : : : : : : : : : : : : : : 31

3.7 Complex process structure process data : : : : : : : : : : : : : : : : : 32

3.8 Reverse telnet process trees : 36

3.9 Reverse telnet process data : 37

4.1 External interface data structures : 45

4.2 Internal interface data structures : 50

4.3 Linux proc �le system layout : 54

4.4 Contents of an fd directory in Linux : : : : : : : : : : : : : : : : : : 55

4.5 OpenBSD process structure : 60

4.6 Solaris process structure : 70

4.7 Solaris Internet domain stream structures : : : : : : : : : : : : : : : : 74

4.8 Solaris local domain stream structures : : : : : : : : : : : : : : : : : 75

4.9 Solaris local domain stream layers : 75

4.10 Performance impact graph : 85

viii

ABSTRACT

Carrier, Brian D. M.S., Purdue University, May, 2001. A Recursive TCP Session
Token Protocol for Use in Computer Forensics and Traceback. Major Professor:
Clay Shields.

In this thesis, a new protocol is presented, the Session Token Protocol (STOP)

that can assist in the forensic analysis of a computer involved in malicious network

activity. It has been designed to trace attackers who log on to a series of hosts to hide

their identity. The protocol utilizes the Identi�cation Protocol (ident) infrastructure

and improves its capabilities and user's privacy. The STOP protocol saves user- and

application-level data associated with a requested TCP connection and returns a

random token. The user- and application-level data are not revealed until the token

is returned to the local administrator. A trail of tokens can be created by sending

a traceback request to the previous host from which the user has connected. The

previous host will save the appropriate data, return a token, and send a new traceback

request. This allows an incidents investigator to trace attackers to their home systems,

but does not violate the privacy of normal users. This thesis also describes how the

new protocol was implemented on three platforms.

1

1. INTRODUCTION

Many times, attackers log on to a series of compromised hosts before they attack their

target. This technique complicates the forthcoming investigation and is commonly

called stone stepping [ZP00]. The �rst obvious step when investigating an attacker's

path is to contact the previous host, if discernible, and ask the administrator to

investigate his or her system. This administrator may lack the resources, knowledge,

trust, or data to continue the investigation. In some instances, there is inadequate

logging on a system to even identify the previous host.

Attempts have been made to correlate pairs of network connections to identify

hosts that are being used in the same attack. These methods collect network-level

data related to the attack, but give no insight regarding user- or application-level

data. These methods identify a host, but not the user account or software involved.

As many operating systems do not log outbound sockets, there could be little record

of which user made a network connection to a remote host. Furthermore, because

many operating systems do not correlate inbound data ow with outbound data ow,

it maybe diÆcult to determine where the attacker logged on from, even when the user

id is known.

In this thesis, a new protocol based on the Identi�cation Protocol (ident) [Joh93]

is presented, which helps forensics investigations, while protecting the privacy of

2

users. It compensates for the lack of socket logging by giving border gateways the

ability to request data about inbound and outbound TCP connections. A daemon

that implements this protocol can save application-level data about the process and

user that opened the TCP connection, and can send traceback requests to identify

previous hosts. At each stage, a hashed token is returned and at no point in the

protocol does the requester ever directly learn user or process data. Instead, he or

she must redeem the token and prove his or her identity.

This paper will �rst describe related traceback work and the original ident proto-

col. The design goals and speci�cation of the new protocol will then be given, along

with case studies. The details of the Linux, OpenBSD, and Solaris implementations

will be given with performance results. It will conclude with operating system design

suggestions for making this process easier.

3

2. PREVIOUS AND RELATED WORK

We will begin with some basic de�nitions [SCH95]. As shown in Figure 2.1, let

Hi, 0 � i � n, be a set of hosts, and let there be a connection Ci between hosts Hi

and Hi+1 if there exists an active TCP session between them. A connection chain, C,

between hosts H0 and Hn is the set of connections Ci, where 0 � i < n.

There are currently two major categories of network traceback: IP traceback and

connection chain traceback. This paper is concerned with connection chain traceback,

but IP traceback will be briey discussed in Section 2.1 for completeness. Connection

chain traceback can be broken up into two categories: network traÆc analysis and

protocols with which stone-stepping hosts communicate. These two categories will be

discussed in Section 2.2 and Section 2.3. The Identi�cation Protocol will be discussed

in Section 2.4.

2.1 IP Traceback

IP traceback is concerned with identifying hosts that are sending IP packets with

forged source addresses. This scenario is common in denial of service attacks. The

work by Savage et al. [SWKA00] and Song and Perrig [SP01] add routing information

to the ID �eld in an IP packet [Pos81]. The extra information is added to packets

with a certain probability and will help determine the actual path through which the

packet traveled. The theory is that when a host is being ooded by forged IP packets,

4

n−1
C

1
C

0

H
2

H
n−1

H
1

H
n

H
0

C

Figure 2.1. Connection chain example between H0 and Hn

many packets will have routing data in the ID �eld and the path they took can be

determined. The e�ectiveness of this technique was analyzed by Park and Lee [PL01].

Another method, proposed by Bellovin [Bel00], sends ICMP messages from routers

that process an IP packet to the packet's destination on a probabilistic basis. The

theory is that if the victim is being ooded with forged IP messages, they can identify

the actual path by examining the source and content of the ICMP messages. This

technique does not require any modi�cation to the network because the messages can

be sent from special network devices and gateways can �lter the ICMP messages if

they do not use them.

IP traceback identi�es the host that is sending forged IP packets, but does not

identify the attacker's location. It is likely that the attacker is not sending the forged

packets from his or her personal machine and therefore an investigator must use con-

nection chain traceback to identify the attacker's home base. IP traceback attempts

to identify the host that is sending forged IP packets and connection chain traceback

attempts to identify the hosts that an attacker is using for his or her attack.

5

2.2 Network-Based Connection Chain Traceback

2.2.1 Holding Intruders Accountable on the Internet

The Staniford-Chen and Heberlein paper [SCH95] was the �rst to present work

in network connection correlation. Their goal was to provide an o�-line procedure

for identifying connection chains after an attack was detected, yet not modify any

network protocols.

Their approach was to make a thumbprint for active connections based solely

on packet content. Their design placed network sni�ers at gateways and monitored

all active connections. A thumbprint was calculated for each connection using the

character frequency of the packet contents. The size of a thumbprint increased at a

rate of 24-bytes per minute.

When an attack was detected, the data from network sni�ers was gathered and

processed. The processing included statistical analysis that would identify sets of

thumbprints that could have been in the same connection chain.

While this method may produce good results for cleartext communication pro-

tocols such as telnet or rlogin, it does not work on channels that use encryption or

compression. This method does not need accurate or synchronized clocks and there-

fore scales well because it can use thumbprints from all over the world without having

to consider network delay and synchronization.

2.2.2 Detecting Stepping Stones

Yin Zhang and Vern Paxson published a paper on tracing connection chains by

using timing analysis [ZP00]. Their design placed a network sni�er at network gate-

6

ways and recorded the ON and OFF times of all network connections. The OFF

time began after a speci�ed idle time of no data ow and the ON time began when

data ow occurred. The analysis machine would try to match inbound connections

with outbound connections by analyzing the beginning of the ON times, or similarly

the end of the OFF times. The beginning of the OFF time was not used because it

was too dependent on the available bandwidth of each connection and was therefore

not an accurate measurement.

Pairs of connections, Ci and Cj, were eliminated if their ON times were further

apart than , or if Ci's ON time began before Cj in some instances and Cj's ON time

began �rst in others.

As this approach uses only packet timing, it can be used for encrypted channels,

including link level encryption when header data is encrypted. This algorithm can be

fooled when an attacker adds more than delay between the inbound and outbound

connections. This of course is inconvenient for the attacker because his or her data

transfer will be slower.

2.2.3 Finding a Connection Chain for Tracing Intruders

Another method was presented by Kunikazu Yoda and Hiroaki Etoh from IBM

[YE00]. They traced TCP packets using sequence number and timing analysis, again

not relying on packet content in case encryption was used. Their scheme is similar

to the one by Staniford-Chen and Heberlein [SCH95] because they record data about

connections at a number of network gateways and then try to correlate the results to

�nd pairs of connections.

7

They use TCP sequence numbers to correlate traÆc. When a TCP connection is

made, a random initial sequence number is chosen. A sequence number is sent with

every TCP packet and is incremented by the amount of data sent in the previous

packet. For example, if a packet was 128 bytes long and had a sequence number of

150, the next packet would have a sequence number of 278. Therefore, the sequence

numbers of a connection increase at a rate proportional to the number of bytes trans-

mitted and connections in the same connection chain will have sequence numbers that

increase at roughly the same rate.

The Yoda and Etoh scheme records the sequence number of each packet and makes

a graph with packet time on the X-axis and sequence number on the Y-axis. The

graph will increase at a rate proportional to the amount of data transmitted and two

connections are in the same chain if their graphs are similar. The X-axis and Y-axis

values are shifted to account for network time delay and initial sequence number.

The deviation is de�ned as the minimum average di�erence in the X-axis between

two graphs. When this value is small, the two connections are more likely to be in

the same chain.

This method does not work when link encryption is used because the TCP header

is encrypted. It does works when application level encryption is used, such as with

SSH [YKS+93]. This method also does not work when compression is used in some,

but not all, connections. In this case, the connections that use compression will have

a slower increase in sequence numbers.

8

2.3 Protocol-Based Connection Chain Traceback

2.3.1 Caller Identi�cation System

The only published protocol-based solution to tracing multiple host connections

is the Caller Identi�cation System (Caller ID) [JKS+93]. The Caller ID system is a

set of protocols designed to authenticate a user and identify the previous hosts that a

user is logged into. Its primary purpose is for authentication, but the data it gathers

can also be used to trace an attacker. The system consists of two pieces of software

that must run on each host, the Extended TCP Wrapper (ETCPW) and the Caller

Identi�cation Server (CIS).

The typical sequence of events is as follows:

1. A user attempts to log in to Hi from Hi�1.

2. The log in attempt is processed by a daemon onHi, which passes the information

to the local Extended TCP Wrapper application, ETCPWi.

3. ETCPWi sends a request to the local CIS, CISi. The request includes the local

port, remote port, and remote address.

4. CISi sends a request to the CIS on Hi�1, CISi�1, which is identi�ed by the

data from ETCPWi. The request includes the remote and local ports numbers.

5. CISi�1 identi�es the user session and returns a list of user id and IP address

pairs of the previous hosts through which the user logged in.

9

6. CISi veri�es the list by sending a request to each IP address on it. The request

includes only the user id. The remote host will return 'yes' if the user has a

process running and will return 'no' if the user does not.

7. If any CIS responds with 'no' then the user is not allowed to log in to Hi.

Otherwise, CISi saves the list, to return it when contacted by CISi+1, and

noti�es ETCPWi that the user is authorized.

This system requires every host to run a CIS daemon and requires extensive

overhead because it must save the previous host list for all active connections. This

is only practical in an university or large corporate network and not across the entire

Internet.

The Caller ID work does not address the problem of mapping an outgoing TCP

connection with an incoming connection. The CIS saves the list of previous hosts for

a user, but when the user has several active log in sessions, the CIS will not know

which host list to send [BDKS00]. This issue is addressed in this thesis.

The Caller ID system does not protect a user's privacy. The system tells every

host in the connection chain which other hosts the user is logged into. This allows

hosts to create pro�les of their users and maintain a list of other accounts their users

hold.

The Caller ID system is a weak form of authentication because it requires one to

trust the response of an untrusted system. For example, let an attacker gain root

access to Hi�1 and replace the CIS. The attacker then logs into Hi, so CISi sends a

10

request to CISi�1. CISi�1 can fool CISi in several ways. The easiest is to say that

the user has logged into Hi�1 locally and therefore the original source of the attack

will not be learned. The next easiest is to return a host list of another user. This will

certainly pass the authentication process, but lead an investigation to an innocent

user.

Another method of fooling this system depends on implementation. The paper

says that the host list is veri�ed by checking that a user is running a process on that

host. If proper checking is not done, CISi�1 can select random hosts and common

users like nobody or root. Similarly, the CIS could finger random hosts for a list of

active users and return them in the list. This scenario can be prevented by sending

the port numbers when verifying the list.

This protocol may add considerable delay to the log in time, especially if a host

is unreachable and the CIS must wait to timeout.

2.4 The Identi�cation Protocol

The Identi�cation Protocol (ident) [Joh93] is a simple 2-way protocol that was

designed to allow a server to identify the client-side user name of a network connection.

The ident protocol was previously called the Authentication Server Protocol [Joh85]

and was later renamed because of its actual functionality. The protocol, as shown in

Figure 2.2, works as follows:

1. User Ui�1 on host Hi�1 establishes a TCP connection from port <CL PORT> to

port <SV PORT> with host Hi.

11

<CL_PORT> <SV_PORT>

H
i

H
i−1

113

Figure 2.2. Identi�cation Protocol request

2. To determine the identity of Ui�1, Hi establishes a connection to TCP port 113

on Hi�1 and sends the following message:

<CL PORT>,<SV PORT>

3. Hi�1 determines which, if any, process has a connection from port <CL PORT>

to port <SV PORT> using the source IP address of the request

4. If the process is found, it returns a message such as:

<CL PORT>,<SV PORT>:USERID:UNIX:<USER ID>

where <USER ID> is Ui�1. In the case of error, the following is sent:

<CL PORT>,<SV PORT>:ERROR:<ERROR MSG>

The grammar for the protocol is given in Figure 2.3.

An ident daemon comes with most UNIX systems and is used for several appli-

cations, including:

Internet Relay Chat (IRC): Resolves a handle to a user name. Many IRC servers

require that a client be running an ident daemon. Some IRC clients contain

ident daemons that return false user information.

12

<request> ::= <port-pair> <EOL>

<port-pair> ::= <integer> "," <integer>

<EOL> ::= "015 012" ; CR-LF End of Line Indicator

<reply> ::= <port-pair> ":" <reply-text> <EOL>

<reply-text> ::= <ident-reply> | <error-reply>

<ident-reply> ::= "USERID" ":" <os> ["," <charset>]

":" <user-id>

<error-reply> ::= "ERROR" ":" <error-type>

<error-type> ::= "INVALID-PORT" | "UNKNOWN-ERROR" |

"NO-USER" | "HIDDEN-USER" | <error-token>

<os> ::= "OTHER" | "UNIX" | <token> | as defined in RFC 1340

<charset> ::= "US-ASCII" | as defined in RFC 1340

<user-id> ::= <octet-string>

<token> ::= 1*64<token-characters> ; 1-64 characters

<error-token> ::= "X"1*63<token-characters>

<integer> ::= 1*5<digit> ; 1-5 digits

<digit> ::= [0-9]

<token-characters> ::= All printable ASCII except ":"

<octet-string> ::= 1*512<octet-characters>

<octet-characters> ::= <any octet from 00 to 177 except

NULL (000), CR (015) and LF (012)

Figure 2.3. Identi�cation Protocol grammar

Electronic Mail: Sendmail [sen] sends an ident request when it receives mail to

trace forged mail. The ident response is placed in the email header.

Anonymous FTP: FTP servers can be con�gured to use ident to determine the

user name of those who use the anonymous login.

Port Filters: Applications such as TCP Wrappers [Ven92] can log and �lter network

requests based on ident replies.

13

As ident returns user information to untrusted sources, it is not surprising that

it can be used for other purposes besides security-based user identi�cation. Dave

Goldsmith showed that RFC 1413 did not specify that the daemon should only return

the identity of connections that originated on the local host [Gol96]. By exploiting

this, an attacker can learn as what user a service is running. The attacker establishes

a connection to the service and sends an ident request for the connection. If the

ident daemon does not distinguish between inbound and outbound connections, it

will respond with the user name of the service.

Another undesirable consequence of running an ident daemon is that email ad-

dresses can be gathered to create bulk email lists, or SPAM. This can occur when

a user is using the World Wide Web and connects to a web server. Once the TCP

connection is established between the HTML browser and the server, the server can

query for the user name.

Several ident implementations take additional steps to protect user privacy. The

daemon that ships with the OpenBSD operating system [Ope00] returns a string of

80 random bits in hexadecimal instead of the user name. The random token can be

translated to a user name via log entries after proper identi�cation and need have been

presented to the system administrator. Similarly, the pidentd ident daemon [Eri00]

can return the user name encrypted using DES. When an investigator needs to know

the actual user, he or she can send the encrypted string to the system administrator

and he or she can decrypt it. Other measures include always returning "OTHER" as

14

the operating system type, returning "UNKNOWN-ERROR" for all types of errors, and

returning a default user name instead of errors.

In theory, the ident protocol is useful, but in practice it has many shortcomings.

These shortcomings are because of issues with trust. This protocol requires a host

running it to give sensitive data to an untrusted host. Furthermore, the host receiving

the data cannot trust it and therefore should not make any decisions based on it. For

these reasons, this protocol provides little bene�t and yet leaks private data.

The S/Ident Protocol [Mor98] is an extension to the ident protocol. It uses ident

to provide authentication for application protocols that do not o�er it. For example,

this could be used by an HTTP server to authenticate a user before a sensitive HTML

document is sent. This protocol relies on an authentication infrastructure, such as

Kerberos, and therefore is not applicable to our needs.

15

3. TCP SESSION TOKEN PROTOCOL

The protocol that is proposed in this thesis, the TCP Session Token Protocol

(STOP), provides additional functionality to what is o�ered by the Identi�cation Pro-

tocol (ident) [Joh93]. It can be run on any host with no modi�cation of protocols,

network topology, or kernel. It saves user- and application-level data and can send

recursive requests to trace connection chains. It can also be run in parallel with

network analysis tools like those described in Section 2.2.

Section 3.1 will list the protocol design goals and speci�cations. Section 3.2 will

discuss recursive traceback requests and Section 3.3 will discuss saving user- and

application-level data. Section 3.4 will discuss the security of this protocol followed

by three case studies in Section 3.5.

3.1 Protocol Design

3.1.1 Design Goals

The original protocol design goals were:

1. Must be backward compatible with the Identi�cation Protocol as speci�ed in

RFC1413 [Joh93] because of its widespread usage and implementation.

2. Must not release any user, application, or system data until proper credentials

have been provided to an administrator.

16

3. Must provide a mechanism to request that a daemon implementing this protocol

save additional user- and application-level data.

4. Must provide a mechanism such that the protocol can trace a user's path

through previous hosts.

5. Must not release any data to eavesdroppers that they could not have determined

from other traÆc on the network segment.

6. Must be con�gurable to comply with the system security and privacy polices.

7. Should be eÆcient and not add considerable load to the daemon host or delay

to the requester.

8. Should allow a host that is not on the connection chain to make requests on

behalf of a host.

The standard ident protocol satis�es goals 1 and 7. Some implementations satisfy

goals 2, 5, and 6 by returning random tokens instead of user names and returning

"OTHER" instead of the actual operating system. The ident protocol o�ers nothing

similar to goals 3, 4, or 8.

3.1.2 Speci�cation

The ident protocol satis�ed many of the design goals and was used as a basis for

the additional features. The new protocol modi�es the request message to provide

more options and modi�es the response message to protect privacy. The new grammar

can be found in Figure 3.1. The request message has the following format:

17

<request> ::= <port-pair> ":" <request-type> [":" <ip>]<EOL>

<port-pair> ::= <integer> "," <integer>

<request-type> ::= "ID" | "ID REC" ":" <sid> | "SV" |

"SV REC" ":" <sid>

<ip> ::= <byte> "." <byte> "." <byte> "." <byte>

<sid> ::= <int>

<EOL> ::= "015 012" ; CR-LF End of Line Indicator

<reply> ::= <port-pair> ":" <reply-text> <EOL>

<reply-text> ::= <ok-reply> | <error-reply>

<ok-reply> ::= "USERID" ":" "OTHER" ["," <charset>]

":" <user-token>

<error-reply> ::= "ERROR" ":" <error-type>

<error-type> ::= "INVALID-PORT" | "UNKNOWN-ERROR" |

"NO-USER" | <error-token>

<charset> ::= "US-ASCII" | as defined in RFC 1340

<user-token> ::= 1*512<token-characters>

<error-token> ::= "X"1*63<token-characters>

<byte> ::= integer values 0 to 28 in ASCII

<int> ::= integer values 0 to 232 in ASCII

<token-characters> ::= All printable ASCII except ":"

Figure 3.1. Session Token Protocol grammar

<CL PORT>,<SV PORT>:<REQ TYPE>[:<SID>][:<CL IP>]

<CL PORT> and <SV PORT> are the TCP ports of the requested connection and

the <REQ TYPE> entry speci�es the request type. Its values are given in Table 3.1.

<CL IP> is an optional IP address in the standard X.X.X.X format that can be used

as the remote address, instead of the address of the host that connected to the dae-

mon. This is intended to be used by gateways or Intrusion Detection Systems (IDS)

to compensate for the lack of socket logging on many machines. By utilizing this,

gateways can collect tokens on all outbound or inbound connections. To prevent in-

18

Table 3.1
Session Token Protocol request types

Type Description
ID This request has the same behavior as the original ident protocol.

The daemon saves the user name in a log �le and returns a user
token.

ID REC This request will cause the daemon to log the user name and return
a token. The daemon then sends ID REC requests to the host from
which the user logged in. This option requires a random session
identi�er, <SID>, to identify cycles in the traceback.

SV This request will cause the daemon to not only log the user
name, but also save data associated with the process that opened
<CL PORT>.

SV REC This request saves the same information as SV and also has the
traceback property as described with ID REC. This type also re-
quires a session identi�er, <SID>.

formation gathering by attackers, no error messages will be returned when <CL IP>

is speci�ed in the request.

The protocol uses the same response messages as the ident protocol, with three

exceptions. "OTHER" is always returned as the operating system type to satisfy design

goals 2 and 5 and because the operating system value is not required to identify a

session. The second exception is that "HIDDEN-USER" is no longer required as an error

message. The original intent of this message was to allow users to specify that their

user name not be sent to other systems. This protocol only returns random tokens

and therefore does not need this error type. The last change is that only printable

ASCII is allowed in the user token. The original protocol allowed the return token to

be any octet value except NULL, CR, and LF. This protocol returns random tokens

19

that will be later redeemed for actual data, and it will be easier if tokens are generated

using only printable ASCII.

This protocol returns a user token instead of a user name, because of the second

design goal. In some implementations, the user may 'opt-in' to have his or her user

name sent, to satisfy the requirements by some Internet Relay Chat (IRC) networks.

A daemon that implements this protocol must have the following properties:

� Return a user token for all established outbound connections.

� User tokens need not be cryptographically random, but must not contain any

obvious values related to the request, such as UID, time, or IP address. The

tokens must also be the same length for all request types and responses.

� Return an error for requests of TCP sessions that were not initiated by the local

host (i.e. inbound connections).

� Return a user token to all requests that specify the remote IP address of the

connection; this includes replacing error messages.

� Process requests in the original RFC 1413 format as ID type requests.

� Save additional user- and application-level data when SV or SV REC requests are

received (see Section 3.3).

� Send requests with the same type and session identi�er to the hosts that a user

logged in from when ID REC or SV REC requests are received (see Section 3.2).

20

� Save tokens from recursive traceback requests with the returned user token.

The recursive-based tokens must not be sent to the original requester.

� Do not process more than one request of type ID REC or SV REC from the same

host with the same session identi�er for a speci�ed number of seconds, 120 for

example. If a second request is received within the speci�ed number of seconds

of the �rst, a user token is returned and the event is logged.

A daemon that implements this protocol should have the following properties:

� Provide an option to return a user token instead of error messages.

� Provide an user-based option to return the actual user name instead of a token

for an ID type request. All other request types must return a token.

� Provide options for what user, application, and host data to save on behalf of

SV and SV REC requests to satisfy policies or resources such as disk space.

3.1.3 Limitations

The protocol described in this thesis has limitations, which will be described in

this section. The traceback property only works if every intermediate host is running

a STOP daemon. The chain of hosts can be identi�ed to the �rst host not running the

protocol. If every intermediate host in the chain is running the protocol, then the

attacker can be identi�ed even when he or she is not.

As will be shown in Section 3.4, the data from a STOP daemon cannot always be

trusted. Attackers that gain root privileges to a host can replace the daemon with a

21

rogue version. The validity of the daemon and saved data must be determined during

an investigation.

When a connection chain is closed before the traceback is complete, the remaining

hosts cannot be determined. Most operating systems do not save socket data after it

has been closed, so the previous host cannot be identi�ed. A feature to cache socket

data would require a kernel modi�cation, which is out of the design scope.

3.2 Traceback Requests

3.2.1 General

The ID REC and SV REC request types allow tokens to be generated along an entire

path of hosts. Unfortunately, the standard UNIX environment saves little about the

previous host address. The only records of the previous host are typically entries in

wtmp or utmp �les, which on many systems are host names truncated to 16 characters.

Furthermore, there is not always a clear correlation between a process and a speci�c

login. The only way to compensate for this is to 'walk' up the process tree and save

information associated with all open sockets and pipes. Requests are then sent to any

host connected via a TCP socket to one of the analyzed processes. See Section 4 for

details on how the prototype implementation did this. Buchholz and Shields [BS01]

have proposed a better solution to this problem by including the previous host IP

address in every process structure, but this solution requires kernel modi�cation.

The user token should be sent back to the requester before the recursive requests

are sent. This is so the requester does not have to wait for all responses to be received.

When the responses from the previous host are received, they should be saved with

22

the original token. If any of the responses are sent to the the requester, then the

daemon would be violating design goal 2 because the requester would learn that the

previous host is not the end of the chain.

3.2.2 Loop Detection

The traceback requests must contain a random session identi�er to prevent cycles

and a denial of service situation. The daemon must keep track of the ID REC and

SV REC requests that it has seen within a speci�ed number of seconds. The number

of seconds should be chosen such that it is larger than the time required to trace a

connection and smaller than the expected cycle time of the 32-bit random session

identi�er. 120 seconds was used in the prototype implementation. If the daemon

receives a duplicate request for a socket with the same session identi�er and from

the same host within the speci�ed time, it must not process the request and return a

<user-reply> type message.

If the procedure described in Section 3.2.1 is used to determine previous hosts,

the scenario shown in Figure 3.2 will cause a loop. Let H2 have a process that runs

the following pseudo code:

listen (Port1);

connect (H3, Port2);

listen (Port3);

Let H3 have a process that runs the following pseudo code:

listen (Port2);

connect (H2, Port3);

23

INIT

1 Port 4Port 2

Port 3

H
1

H
2

H
3

H
4

SCHED

INIT

SCHED SCHEDSCHED

INIT INIT

Port

Figure 3.2. Process trees of 4 hosts in a network loop

connect (H4, Port4);

Let H4 run the following pseudo code:

listen (Port4);

Let the attacker connect to port Port1 on H2 from H1. This will cause H2 to connect

to H3, who will then connect back to H2 and then connect to H4. Now, let the

following events occur:

1. H4 sends a SV REC request to H3 with random session identi�er SID.

2. H3 sends a SV REC request with identi�er SID to H2 because of the inbound

connection to Port2.

3. H2 sends SV REC requests with identi�er SID to H1 for the connection to Port1

and to H3 for the connection to Port3.

4. H3 sends a SV REC request with identi�er SID to H2 for the connection to

Port2. The loop is not detected on H3 because it has not previously seen a

request from H2.

5. H2 notices that it has already processed a request from H3 with identi�er SID

and does not send any more requests.

24

nc HOST 8889nc −l −p 8888 H
i+1

H
i−1

H
i

INIT

SCHED

CSH

Figure 3.3. Process tree of command: # nc -l -p 8888 | nc HOST 8889

3.2.3 Resolving Interprocess Communication

Performing a simple 'walk' up the process tree may not be adequate when tracing

malicious users. As shown in Figure 3.3, if an attacker ran the following simple

command to 'pass through' host Hi, the daemon could not determine host Hi�1.

nc -l -p 8888 | nc <Hi+1> 8889

This command uses netcat [Hob96] to listen on port 8888 of host Hi and pipes data

received on that port to another netcat process that sends the data to port 8889 on

host Hi+1. When the daemon 'walks' up the process that connects to Hi+1 it does

not encounter any other sockets. Therefore, if Hi+1 sent a request of type SV REC the

daemon would not be able to send a recursive request. By resolving the pipe and

determining which process was at the other end of the pipe, it is able to determine

the identity of Hi�1.

It is therefore important that the daemon resolve as many types of Interprocess

Communication (IPC) as possible. This includes pipes, local domain sockets (also

called UNIX domain sockets), and Internet domain sockets connected to localhost

25

Table 3.2
User, application, and system state variables

per process per request

Process name Host name
Process identi�er (PID) Boot time
Parent PID OS/version/kernel
Real and e�ective UID Address of requesting host
Start time Address and port of remote end of socket
Terminal device Address and port of local end of socket
Priority Type of request
Open sockets and pipes Entries in utmp for users in report

or a local interface. IPC techniques such as shared memory are not addressed in this

thesis.

The processes that are identi�ed from resolving IPC must have their process tree

expanded and their sockets and pipes resolved. This continues until all sockets and

pipes have been resolved.

3.3 Saving User and Application Data

3.3.1 General

A distinct feature of this protocol is the ability to save user- and application-level

state data. This functionality is achieved by sending an SV or SV REC request to the

daemon. Upon receiving this request, the daemon will save additional data to a �le

in a directory such as =var=stop.

Table 3.2 lists data that is important to save. The �rst column lists those variables

that should be saved for every process that is analyzed. This includes the process

with the socket open and the parents of that process as the tree is 'walked'. These

26

values could give investigators information regarding the type of software that was

being used in the attack. Furthermore, the values listed are easy to determine. Some

data, such as open �les, could be useful to an investigator but is expensive to save

because the daemon would have to translate an inode number to an actual �le name.

The second column lists variables that should be saved with every request. It

includes data that can help an investigator verify what operating system was used

and who made the request. This data is recommended for completeness, but if storage

space is an issue then this data may not be saved.

3.3.2 Integrity of Saved Data

If the attacker has gained root access to the system, he or she can easily modify

or delete the process state �les and log �le entries. There is little that can be done

to prevent this, but measures can be taken to detect it.

The log entries can be protected by sending log entries to a log server. An attacker

must gain root access to the log server to modify the logs. An alternative is to use

cryptography to detect when a log entry has been modi�ed [SK99] [BY97]. These

methods will not prevent the log from being modi�ed, but will identify when an entry

has been changed or deleted.

The easiest way to protect the process data �les is to generate a one-way hash of

them using SHA-1 [SHA93]. The hash value is returned to the requester as the token.

When the requester redeems his or her token for the data �le, the hash can again be

taken of the �le to verify it is the same value as when it was originally created. This

will show when a modi�cation has occurred, but not what was modi�ed.

27

3.4 Security Analysis of Protocol

This protocol may not trace every connection chain, because the daemon can be

killed on any system for which the attacker has gained root privileges. This section

will analyze the e�ectiveness of the protocol when the daemon of host Hi has been

killed or replaced. It is important to remember that the logs of any system that has

had root access compromised are never fully trusted.

If the attacker kills the daemon, then this is the same situation as though the host

was never running it. Therefore, Hi+1 will have a log message indicating that Hi has

rejected the network connection and the attacker's path can be traced back to only

Hi.

If the attacker replaces the daemon with a rogue version, several situations can

occur:

� The daemon could not save any data. This is the same as if it were not running

and the path would be known to Hi.

� The daemon could not send recursive requests, which would cause the path to

also end at Hi if it does not save the previous host data or at Hi�1 if it does

save the previous host data.

� The daemon could save false application and traceback data. For example, the

daemon could pick another user session at random, and claim that it was the

attacker's session. This scenario could lead an investigator away from the true

path, but the compromised host would be investigated for malicious activity.

28

The above conditions would be identi�ed during a thorough forensic analysis of

the system. These scenarios show that this protocol is not a quick �x to the stepping

stones scenario and must be used only as a tool, whose data must be veri�ed.

3.5 Case Studies

This section provides three examples of process trees that could exist and be

analyzed by a daemon that implements this protocol. Each example provides an

explanation and a possible procedure that the daemon could use to resolve the process

structure. The �rst example is a simple and common scenario, the second is much

more complex and unlikely to typically occur, and the third is a method used by

attackers to control a compromised system.

3.5.1 Simple Process Structure

The most basic traceback scenario is if a user logs into a system, gets a shell,

and then logs into another host. An example of the process trees in this scenario are

shown in Figure 3.4.

In this example, Alice is logged into H1. She then uses the ssh protocol to log

into H2 and from there uses the telnet protocol to log into H3. Let H3 send a SV REC

request to H2. A summary of the data saved is shown in Figure 3.5, where Hi�1 has

IP address 1.1.1.1, Hi has IP address 2.2.2.2, and Hi+1 has IP address 3.3.3.3.

The full report is given in Appendix B.1.

The request for the socket between 2.2.2.2 port 968 and 3.3.3.3 port 23 is sent

from 3.3.3.3 to 2.2.2.2 with session id 92847523456:

968, 23: SV REC: 92847523456

29

SWAPPER [0]

3
(3.3.3.3)

2
H (2.2.2.2)H

1
(1.1.1.1)

TELNET [8339]

SWAPPER

INIT

SSHD

SSHD

BASH

SSH

SSHD [8000]

INIT [1]

SSHD [8337]

CSH [8338]

SWAPPER

INIT

TELNETD

TELNETD

KSH

H

Figure 3.4. Simple process structure process tree

The daemon on 2.2.2.2 identi�es that process 8339 has that Internet socket

open. The other �le descriptors are analyzed, but there are no other open sockets

or pipes. The parent of 8339 is identi�ed as 8338, csh, and its �le descriptors are

also analyzed. It is found to have no open sockets or pipes. The parent of csh is the

SSH daemon child process, 8337. It is found to have an Internet domain socket from

1.1.1.1 using local port 22 and remote port 616. The SSH daemon parent process,

8000, is analyzed and found to have an Internet domain socket listening on port 22

with no connections. The parent of sshd is init and neither it or its parent, swapper,

have any open sockets or pipes.

The list of processes and �le descriptors are analyzed for Internet sockets to

localhost, local sockets, or pipes. None of these exist. The data is saved to a

�le, the SHA-1 hash of the �le is calculated and returned to the requester, and the

list is once again analyzed for Internet domain sockets. Process 8337 has an Internet

domain socket with host 1.1.1.1, so the following message is sent to 1.1.1.1.1:

30

Primary Processes

1: telnet [8339] parent: 8338

Sockets:

INET TCP: 2.2.2.2:968 -> 3.3.3.3:23

2: csh [8338] parent: 8337

3: sshd [8337] parent: 8000

Sockets:

INET TCP: 2.2.2.2:22 <- 1.1.1.1:616

4: sshd [8000] parent: 1

Sockets:

INET TCP: localhost:22 <- any:0

5: init [1] parent: 0

6: swapper [0] parent: N/A

Figure 3.5. Simple process structure process data

616, 22: SV REC: 92847523456

The daemon on 1.1.1.1 will process the request and identify the ssh process as

having the socket open. The ssh, bash, sshd, sshd, init, and swapper processes will

be analyzed, saved to a �le, and a token will be returned to 2.2.2.2. 1.1.1.1 will

send a request to the host that connected to it through the sshd process.

3.5.2 Complex Process Structure

A more complex process structure can be found in Figure 3.6. This process struc-

ture contains 14 unique processes, three process groups, and six forms of interprocess

communication that must be resolved. This structure starts as only process P1 lis-

tening on an Internet domain socket. When it receives a connection, it spawns o�

process P2 into its own process group and they connect with an Internet domain

socket. Process P3 is then spawned, an Internet domain connection is made, and P3

creates 9 children that can communicate via pipes. Process P4 creates an Internet

31

5

5

P
8

P
2

P
1

P
3

P
7

P
10

P
12

P
11

P
6

P
9

P
4

H
i−1

H
i+1

Inheritance

Internet Socket

Uni−directional Pipe

H
i

SCHED

INIT

12

11

14 13 2

9

10

1

3

4

7

6

8

P

Figure 3.6. Complex process structure process trees

domain socket and connects to Hi+1 and a one-way communication path between P4

and P1 exists (through P8, P5, and P2).

If this structure was running on a system, the STOP request would come from Hi+1

for the connection to process P4 and eventually resolve to process P1. A summary of

the state data on an OpenBSD system from this lookup is given in Figure 3.7. The

actual numeric process identi�ers have been replaced with the process labels shown

in Figure 3.6. The full report can be found in Appendix B.2. As will be shown in

Section 4.5, pipes are saved and resolved in OpenBSD by using the kernel memory

addresses of pipe structures and Internet domain sockets are resolved by comparing

the local and remote address and port tuples.

32

Primary Processes

1: resolve [P4] parent: P3

Sockets:

INET TCP: 2.2.2.2:8526 -> 3.3.3.3:9010

Pipes:

E07F2600 -> E08CA780

2: resolve [P3] parent: 1

3: init [1] parent: 0

4: swapper [0] parent: N/A

Resolved Processes

5: resolve [P12] parent: P10

Pipes:

E08CA780 -> E07F2600

E08CAE80 -> E0801880

6: resolve [P10] parent: P7

Pipes:

E0801C00 -> E0801400

7: resolve [P7] parent: P4

8: resolve [P11] parent: P10

Pipes:

E0801880 -> E08CAE80

9: resolve [P9] parent: P6

Pipes:

E0801400 -> E0801C00

10: resolve [P6] parent: P4

11: resolve [P8] parent: P5

Pipes:

E08CA780 -> E07F2600

E08CA380 -> E07E8080

12: resolve [P5] parent: P3

Sockets:

INET TCP: localhost:8012 <- any

INET TCP: 127.0.0.1:8012 <- 127.0.0.1:32145

Pipes:

E07E8080 -> E08CA380

13: resolve [P2] parent: 1

Sockets:

INET TCP: localhost:8011 <- any

INET TCP: 127.0.0.1:8011 <- 127.0.0.1:39352

INET TCP: 127.0.0.1:32145 -> 127.0.0.1:8012

14: resolve [P1] parent: 1

Sockets:

INET TCP: localhost:8010 <- any

INET TCP: 2.2.2.2:8010 <- 1.1.1.1:1874

INET TCP: 127.0.0.1:39352 -> 127.0.0.1:8011

Figure 3.7. Complex process structure process data

33

When a STOP request is sent fromHi+1, P4 is identi�ed as having the socket toHi+1

open. It is analyzed and found to have a pipe with a local structure at kernel memory

address 0xE07F2600 and remote structure at kernel memory address 0xE08CA780, in

addition to the requested connection. The parent of P4, P3, is analyzed but does not

contain open sockets or pipes. The init process and swapper processes are analyzed

next, but neither have open sockets or pipes.

The pipe on P4 is resolved by looking for processes with a local pipe structure at

0xE08CA780. P12 and P8 are both found with a pipe structure at this kernel memory

address.

Process P12 is analyzed and a new pipe with local address 0xE08CAE80 and remote

address 0xE0801880 is identi�ed. The parent of P12, P10, is analyzed and a pipe with

local address 0xE0801C00 and remote address 0xE0801400 is found. The parent of

P10, P7, is analyzed, but does not contain any open sockets or pipes. The parent of

P7, P4, has already been analyzed.

The pipe that P12 has open is resolved to P11, which contains no additional �le

descriptors. The parent of P11, P10, has already been analyzed.

The pipe that P10 has open is resolved to P9. It is analyzed as is the parent

process, P6. Neither of them have additional open sockets or pipes and the parent of

P6, P4, is the original process.

P8 was analyzed next, because of the pipe with P4, and a new pipe is found with

local address 0xE08CA380 and remote address 0xE07E8080. The parent of P8, P5,

is analyzed and found to have the same pipe open. It also has an Internet domain

34

socket on port 8012, which is connected to localhost. The parent of P5, P3, has

already been analyzed. The pipe that P8 and P5 has open is searched for, but no

other processes are identi�ed.

The Internet domain socket connection on P5 to localhost was resolved to process

P2, which also had an Internet domain socket on port 8011 to localhost. The parent

of P2 is init. The TCP connection on P2 is resolved to P1, which is found to have an

Internet domain socket on port 8010 to host 1.1.1.1. The parent of P1 is also init.

At this point, all IPC methods have been resolved.

If the original request had type ID REC or SV REC, then a traceback request would

have been sent to 1.1.1.1 because of the connection with P1.

3.5.3 Reverse Telnet

Reverse telnet [SMK01] is a technique that an attacker can use to execute com-

mands on a compromised system behind a restrictive �rewall. For example, a �rewall

may allow only port 80 and STOP traÆc to the HTTP server. Let the server have a

Common Gateway Interface (CGI) script with a vulnerability such that attackers can

execute an arbitrary command. To gain control of the host, the attacker must either

kill the HTTP server and replace it with a shell listening on port 80, or get the host

to make an outbound connection to his or her machine.

The reverse telnet technique creates two one-way communication channels, both

of which start on the compromised host and connect to the attacker's host. The

attacker �rst executes the following netcat command on his or her machine, Hi�1 :

nc -l -p 8000

35

and in a di�erent terminal:

nc -l -p 8001

The attacker exploits the server vulnerability such that the server executes the

following command:

/bin/telnet Hi�1 8000 | /bin/sh | /bin/telnet Hi�1 8001

A �gure of this can be seen in Figure 3.8. The attacker is running two netcat

servers that are listening on ports 8000 and 8001 for connections. The command

that is run on the compromised host uses two telnet sessions to connect to the two

netcat servers. The �rewall will not block the connections because they are outbound.

The data received on the compromised server from the telnet connection to port 8000

is passed to /bin/sh through a pipe. The output from /bin/sh is then passed via

pipe to the second telnet session, which sends the data to port 8001 on the attacker's

system. The result of this is that the attacker can type commands in the window

with the server listening on port 8000, they will be executed by the /bin/sh process,

and the output will be sent to the other window with the second netcat server.

Let the attacker, Hi�1, have IP address 1.1.1.1, the compromised server, Hi,

have IP address 2.2.2.2, and let there be an IDS system on the victim's network

that sends a request to the victim. There are two possible requests, the port 8000

connection will be examined �rst. The IDS system sends the following request to the

daemon on 2.2.2.2:

1885, 8000 : SV REC : 1485730682 : 1.1.1.1

36

sched

server [9818]

init [1]

sched [0]

nc −l −p 8001nc −l −p 8000

Attacker

Victim

/bin/sh [10213]telnet 1.1.1.1 8000 [10212] telnet 1.1.1.1 8001 [10214]

bash bash

init

Figure 3.8. Reverse telnet process trees

A summary of the daemon output on a Linux box is shown in Figure 3.9 and the

full report is available in Appendix B.3. As will be shown in Section 4.4, pipes are

resolved in Linux by using the inode associated with it.

The daemon determines that process 10212 has the socket open and also identi�es

a pipe with inode 0x38AB64. The parent process is the vulnerable server, which has

an Internet socket open on port 80. The parent of the server is init and sched, which

do not have any sockets or pipes. When the pipe with inode 0x38AB64 is resolved,

the =bin=sh process is identi�ed, which also has a pipe with inode 0x38AB65. The

parent of the =bin=sh process is the server program, which has already been seen. The

0x38AB65 pipe is resolved to process 10214. Process 10214 is analyzed and found

to have an Internet socket to host 1.1.1.1. The state data is saved and a token is

returned to the IDS.

37

Primary Processes

1: telnet [10212] parent: 9818

Sockets:

INET TCP: 2.2.2.2:1885 <> 1.1.1.1:8000

Pipes:

0 -> 38AB64

2: server [9818] parent: 1

Sockets:

INET TCP: 2.2.2.2:80 <> any

3: init [1] parent: 0

4: sched [0] parent: N/A

Resolved Processes

5: sh [10213] parent: 9818

Pipes:

0 -> 38AB64

0 -> 38AB65

6: telnet [10214] parent: 9818

Sockets:

INET TCP: 2.2.2.2:1886 <> 1.1.1.1:8001

Pipes:

0 -> 38AB65

Figure 3.9. Reverse telnet process data

The daemon will analyze the process data for Internet domain sockets to which to

send requests. The daemon cannot determine socket direction, because it is running

on a Linux system, and will send a request for the connection in process 10214 to

1.1.1.1.

If the machine that the attacker is using is also running a STOP daemon, it may

not process the request because it is an inbound connection. If the daemon cannot

determine direction, then the netcat session will be saved and a request will be sent

to the previous host.

If a request was sent for the connection to port 8001, then the same process data

would have been saved, but in the opposite order.

38

4. IMPLEMENTATION

The protocol as described in Section 3 was implemented on three operating systems:

Linux, OpenBSD, and Solaris. Each platform had a trait that made the implemen-

tation distinct. For example, Linux uses the process pseudo �le system and Solaris

uses stream-based sockets.

The functions that were written for the implementation can be broken up into

two categories: the external interface and the internal interface. Within each of these

categories, there are general functions that are common to all platforms and others

that are platform-speci�c. An overview of the implementation, including runtime

options, is given in Section 4.1. The external interface is described in Section 4.2

and the internal interface is described in Section 4.3. The implementation details for

Linux, OpenBSD, and Solaris are presented in Sections 4.4, 4.5, and 4.6, respectively.

Section 4.7 concludes with the measured performance results.

4.1 Overview

4.1.1 Description

The main design goals when implementing this protocol were for it to be secure,

portable across multiple platforms, and able to be easily turned into a library. A

library was an important goal so that it would be easy for existing ident programs

to be modi�ed to handle the new features.

39

Table 4.1
External and internal interface functions

External Interface
Platform Function Description

General parse req() Parses the request string
print procdata() Prints process data
send reqs() Sends recursive traceback requests

Speci�c process req() Processes request

Internal Interface
Platform Function Description

General resolve lcl() Identi�es IPC methods to resolve
Speci�c walk ptree() Saves user and application data

find proc() Identi�es processes based on �le descriptors

These goals were met by creating internal and external interfaces. Table 4.1 gives

the functions and actions that each interface provides. The table also de�nes which

actions are platform-speci�c and which are general. The external interface is used as

the library API. It de�nes data structures and functions that all platforms use when

interacting with the protocol. The internal interface de�nes a set of functions that

are called by the external interface functions and allow for generic code to be reused.

In general, the platform-speci�c code gathers process data and generic code identi�es

IPC methods to resolve, prints process data to �les, and parses request strings.

The daemon was based on the oidentd ident daemon [McC00] and had several

run-time options including:

� Always return random tokens instead of errors.

� Always return "UNKNOWN-ERROR" for all error types.

40

� Select what state data to save for SV and SV REC requests.

� Allow users to 'opt-in' to releasing their user name.

� Restrict the number of active lookups to limit the amount of resources the

daemon takes.

If users are allowed to 'opt-in' to their user name being released, then they can create

a �le called ~/.ident that contains a list of hosts to which their user name can be

sent. All other hosts are sent a user token.

The implementation resolves all pipes, local domain sockets, and Internet domain

sockets to localhost or ones that have the same local and remote IP addresses.

This assumes that only one process has a socket open, but that many processes

would have a pipe open. The reason for this is that Internet sockets are traditionally

used for communication between hosts, but pipes are always used for Interprocess

Communication and are more likely to be used by more than one process. IPC

methods such as shared memory were not resolved.

For request types SV and SV REC, the state data was stored in a �le. The SHA-1

hash of the data was computed and sent to the requester as the user token. The

SHA-1 hash is sent as the token to detect any tampering the attacker may do to the

data �le. Our implementation saved all variables mentioned in Section 3.3. For a

typical process tree with six processes, the output �le was roughly 1600 bytes. If the

tokens are saved to a small disk, an attacker could cause the drive to �ll with token

41

�les before the actual attack. The data �les could also be compressed to roughly 700

bytes. Sample reports can be found in Appendix B.

For request types ID REC and SV REC, the process data is analyzed for open In-

ternet domain stream sockets. We tried to limit ourselves to sending requests for

inbound sockets only, but this was unsuccessful. One reason it was unsuccessful is

that only OpenBSD socket structures save data about direction. When the direction

is known, then requests are only sent to inbound sockets, but when direction is not

known requests are sent to all sockets.

Cycles are detected by keeping a hash table of ID REC and SV REC requests. The

hash function uses bits from the random session id, remote address, remote port, and

local port.

4.1.2 Assumptions

Several assumptions were made while implementing the STOP protocol. It is as-

sumed that only one process has a socket open, but that many processes may have

a pipe open. This makes the typical scenario faster, because the program will stop

searching after identifying one process with the speci�ed socket. Pipes are used only

for IPC, while Internet domain sockets are primarily used for communication between

hosts. A child process may have the same socket as its parent, but usually one of

them closes it after the child is created. The implementation can be easily modi�ed if

this assumption is found to be invalid. This implementation did not take advantage

of the reference count value of a socket or pipe, which could be used to identify the

number of processes to search for.

42

An attacker could exploit this assumption by creating two processes with the

same socket and letting the child process create its own process group. If the daemon

resolves the socket to the child process, its parent is init and the previous host will

not be determined. This will only work if the daemon analyzes the child process

before the parent, which could be diÆcult for the attacker to ensure.

This implementation also assumes that �les will not be used for interprocess com-

munication. It is possible for communication to be performed using this method,

but �les are typically used for storage and not as a communication channel. This

assumption was made to make the typical scenario more eÆcient. If this assumption

is shown to be invalid, the reference count could be used to identify �les that are open

by more than one process.

When sending recursive traceback requests, it is assumed that the services that ac-

cept incoming network connections and provide a method to make outbound network

connections are creating child processes for each inbound connection. It is further

assumed that the parent is closing its copy of the socket. When these assumptions

are not true, the STOP daemon may send recursive traceback requests to every host

that is connected to the service. This could generate an avalanche e�ect of traceback

requests. These assumptions are made to simplify the traceback process. Otherwise,

a �le descriptor ow analysis must be performed to identify an inbound socket that

can communicate with the requested outbound socket.

43

4.1.3 Limitations

This implementation has limitations that are because of the types of platforms

used, assumptions that made the program faster, and the scope of the project. The

Linux implementation does not resolve local domain sockets because the process �le

system does not show which sockets are connected. None of the implementations

resolve any System V forms of IPC, such as shared memory, because of the scope of

the project. As mentioned in Section 4.1.2, �les are not resolved and only one process

is identi�ed when searching for a socket.

This implementation does not include a daemon for devices that do Network

Address Translation (NAT). A NAT device that runs this protocol would return a

token for a STOP request, identify the internal host that has the requested connection,

and send a request to it. The response from the internal host would be logged with

the token that was sent to the original request. This implementation was out of the

scope of this project.

4.2 External Interface

This section describes the external interface for the protocol implementation. The

general ow of execution will be described �rst, followed by the data structures and

functions that are used. A detailed speci�cation can be found in Appendix A.

4.2.1 External Interface Layout

The external interface was organized for the following sequence of events:

1. Request is received as an ASCII string.

44

2. The request string is parsed by parse req() and a reqtype structure is �lled

with the request details.

3. The reqtype structure is passed to process req() and a list of processes asso-

ciated with the requested TCP connection are returned in a procdata structure.

4. If the request was for type ID or ID REC, then a token is returned to the requester

and the UID is saved.

5. If the request was for type SV or SV REC, then the process data is saved using

print procdata() and the hash of the data is returned to the requester.

6. If the request was for type ID REC or SV REC, then send reqs() is called to send

requests to previous hosts.

4.2.2 External Interface Data Structures

Three data structures were used in the external interface. One was used to store

the request details, and two were used to store process and �le descriptor data. The

structure �elds can be found in Figure 4.1 and the speci�c types are speci�ed in

Appendix A.1.

reqtype

The reqtype data structure contains the details of the connection request. The

actual request is sent to the daemon as an ASCII string. As will be shown in Section

4.2.3, the string is passed to the parse req() function, which �lls the appropriate

45

remaddr

procdata

rgid

egid

fd

start

prio

dev

euid

ruid

ptype

ppid

pid

name

parent next

lcladdr

remaddr

type

lclport

remport

protocol

dir

lclunix

remunix

fddata

type

lcladdr

remport

reqaddr

sessid

ruid

pid

reqtype

lclport

Figure 4.1. External interface data structures

�elds of the reqtype structure. The �elds of this structure can be found in Figure

4.1.

This structure is passed as an argument to all interface functions. Its contents

include the IP address and port number of the remote host and local interface. There

is also a �eld for the IP address of the host that requested the connection, because

this could be di�erent then the remote host if the optional IP address is given in the

request. The type of request, such as ID or SV REC, and the session identi�er are also

saved in this structure.

The reqtype structure also contains �elds for process id and user id. These are

for the respective values of the requested process. This was done as an optimization

46

for the basic ID request so it does not have to allocate the larger structures that are

described next. The reqtype structure has a size of 32 bytes.

procdata

As described in Section 3.3, a daemon that implements this protocol analyzes

and saves state data about processes and �le descriptors for ID REC, SV, and SV REC

type requests. The platform-speci�c process data is copied to the generic procdata

structure. The �elds of the structure are found in Figure 4.1. This structure is a

linked list, the head of which is the process that had the requested socket open. The

next entry in the list is either the parent process or a process that was identi�ed by

resolving a method of IPC. The ptype �eld distinguishes between these two types of

processes. Processes that were in the original process tree are marked as PRIMARY

and those that were resolved are marked as SECONDARY.

This structure contains basic process data such as process name, PID, real UID,

e�ective UID, real GID, e�ective GID, start time, terminal device, and priority. As

described next, �le descriptors are stored in a linked list of fddata structures. The

pointer of the �le descriptor list is found in fd.

The contents of this structure are �lled by the walk ptree() function. The

procdata list is used when sending traceback requests and printing process details to

a log �le. The structure is 52 bytes long before the process name array is allocated.

47

fddata

The fddata structure holds data on open �le descriptors; its �elds can be found

in Figure 4.1. The structure forms a linked list and the head is pointed to by the

procdata structure. This structure contains data about all sockets and pipes. The

type �eld di�erentiates among them.

The structure contains enough data to identify the local and remote ends of the

communication channel. The type of data stored depends on both the �le descriptor

type and operating system. Therefore, the exact content will be explained in the

platform-speci�c sections. All data is stored in host architecture byte order.

For all types of �le descriptors, the direction (dir) and protocol type (protocol)

are saved. The direction is set to either INBOUND, OUTBOUND, or UNKNOWN. The direction

�eld is useful when sending out traceback requests and resolving local connections.

The protocol type is set to either STREAM, DATA GRAM, or RAW. For local domain sockets,

the bounded paths are saved as ASCII strings. The fddata structure has a size of 32

bytes before the local domain strings are allocated.

4.2.3 External Interface Functions

This section describes functions that are part of the protocol external interface.

Some functions are platform-speci�c and their details will be provided in the platform-

speci�c sections. The functions are presented in the order of execution. A speci�cation

for the functions, including argument types, can be found in Appendix A.2.

48

parse req

The protocol request is received from the network as an ASCII string. The re-

quest string is passed to the parse req() function, which parses it and �lls in the

appropriate �elds in the reqtype structure (Section 4.2.2). This function identi�es

the port numbers, remote address, request type, and session identi�er from the string.

After this function, the reqtype structure will be used when referring to the details

of the request.

process req

After the request string has been parsed by parse req(), the resulting reqtype

structure is passed to the process req() function to collect process data. This func-

tion returns a procdata list that contains data on primary and secondary processes.

The details of this function are platform-speci�c, to optimize the performance. In

general, the process req() function has three main steps. The �rst is to identify the

UID and PID of the requested process. If the request was an ID request, then there

is nothing left to do. If it was not, then process req() must save data by walking

up the process tree using the walk ptree() function. The third step is to resolve all

local communication methods by using the resolve lcl() function.

print procdata

The print procdata() function takes the reqtype structure and the procdata

list as arguments. It prints data depending on the status of the printflags global

49

variable. This variable is de�ned at execution time based on a con�guration �le. By

default, all data is printed, but because of disk size constraints or privacy policies the

amount can be restricted.

This function prints all variables de�ned in Section 3.3.1. Samples are given in

Appendix B.

send reqs

The send reqs() function takes a reqtype structure and procdata list as argu-

ments and searches the procdata list for TCP Internet domain sockets whose direc-

tion is either INBOUND or UNKNOWN and whose local and remote addresses are di�erent.

When one is found, a request is created using the session identi�er and type found

in reqtype. The request is sent to the remote end of the connection. The returned

tokens are logged to a �le.

4.3 Internal Interface

This section describes the internal interface for the STOP protocol. The functions

and data structures presented here are called by the external interface functions.

4.3.1 Internal Interface Data Structures

This section describes a data structure that is used when resolving methods of

IPC. The speci�cation can be found in Appendix A.3.

50

next

lclcomm

addr

rev

p2

p1

type

Figure 4.2. Internal interface data structures

lclcomm

The lclcomm structure is a small linked list. It is used within the resolve lcl()

function to keep a sorted list of local connections to resolve. It contains six �elds and

has a size of 14 bytes. The �elds can be found in Figure 4.2. As will be seen, this

structure allowed the daemon to easily determine when it did not need to resolve a

connection because the remote end had already been analyzed.

The lclcomm structures are stored in a list sorted according to two �elds, p1 and

p2, where p1 < p2. The list is �rst sorted by increasing values of p1 and if multiple

structures exist with the same p1 value then the p2 value is compared.

The contents of p1 and p2 are platform-speci�c. In general, they contain port

numbers for Internet domain sockets and kernel memory addresses or inode values

for pipes and local domain sockets. The local port or memory address should be

placed in p1 and the remote port or memory address should be placed in p2. If p2 >

p1, then they are reversed and the rev �eld is set to 1. Otherwise, rev is set to 0.

The type �eld identi�es the type of connection.

51

The address of Internet domain sockets is copied into the addr �eld. Only sockets

to localhost (127.0.0.1) or those that have the same local and remote IP addresses

are resolved. In both cases, only one address is needed. For local domain sockets and

pipes, the contents of lcladdr and remaddr in the fddata structure are copied into

p1 and p2, with rev set accordingly.

Two structures are opposites if they have equal p1 and p2 values, but opposite

rev values. For example, if there is a socket to localhost, the lclcomm structures

that are created for each end of the socket are opposites because they contain the

same port numbers, but have a di�erent perspective about which is local and remote.

4.3.2 Internal Interface Functions

This implementation de�ned three functions in the internal interface. This section

will describe what they do. The formal speci�cation can be found in Appendix A.4.

walk ptree

The walk ptree() function is platform-speci�c and takes as arguments a PID

and a list of processes that have already been seen. The function enters data into

the procdata structures (Section 4.2.2) by analyzing processes starting with the PID

argument. After a process has been analyzed, the parent is analyzed and the proce-

dure is repeated until process 0 is reached or until a process that has already been

analyzed is reached. The latter case is determined by using the list of seen processes

that was passed as an argument.

52

This function is originally called from within process req() and is later called

from within resolve lcl() to analyze the identi�ed secondary processes.

resolve lcl

The resolve lcl() function is responsible for resolving forms of Interprocess

Communication. It takes the procdata list from walk ptree(), identi�es local socket

and pipe connections, and calls find proc() to identify the process on the other end.

After the process has been identi�ed, walk ptree() is called to gather data on the

new process tree. The new process tree is analyzed for additional IPC connections

and the procedure continues until all IPC connections have been resolved.

To do this eÆciently, the lclcomm data structure is used. The resolve lcl()

function maintains a seen list and a todo list of lclcomm structures. The todo

list contains sockets or pipes that need to be resolved and the seen list contains all

local sockets and pipes that have been added to the todo list. After a connection is

resolved, it is removed from the todo, but not the seen list.

This function searches a procdata list for Internet domain sockets to localhost

(127.0.0.1), Internet domain sockets with the same local and remote IP addresses,

local domain sockets, and pipes. When one of these connections is found, data about

the connection is placed in a lclcomm structure, as described in Section 4.3.1.

If the socket or pipe is not in the seen list, it is added to both the seen and todo

lists. If it is in the seen list, then the todo list is examined. If the todo list already

contains this connection, then the new one is ignored. If the opposite connection is in

53

todo (equal values of p1 and p2 but opposite values of rev) and the connection is for

a socket, then we remove the opposite from the todo list and add the new connection

to the seen list. This case occurs when we have already analyzed both ends of the

socket. Opposite ends of pipes are not removed from the todo list because there may

exist several processes at each end.

�nd proc

The find proc() function is platform-speci�c. It takes a (void *) pointer, a

type identi�er, and an empty array for PIDs as arguments. The contents of the

pointer are based on the type identi�er and platform.

In general, this function will cycle through all processes on the system and identify

the ones with a �le descriptor trait speci�ed by the search type and the value in the

(void *) pointer. Each process that is found with the trait is added to the PID array

that was passed as an argument. Details are given in the platform-speci�c sections.

4.4 Linux Implementation

The protocol presented in this thesis was implemented on the Debian Linux 2.2

kernel [lin00]. The Linux platform is distinctive from OpenBSD and Solaris because it

includes a process pseudo �le system from which state data is gathered. This section

will describe the location of process data in Linux, followed by the implementation

details.

54

.....

/proc

/<PID>

/net

stat

status

exe

/<PID>

/fd

1

2

3

/fd

/net

udp

raw

unix

tcp

Figure 4.3. Linux proc �le system layout

4.4.1 Process Structure

The Linux operating system provides access to process data through a pseudo �le

system, procfs. The procfs is an abstraction into a �le-like format of the kernel

memory-based process structures. It provides a uniform interface to process details.

As shown in Figure 4.3, the /proc/ directory is the mounting point for the procfs

and contains �les and directories for process and system data. Process related data

is stored in a directory named by the process identi�cation number (PID). System

directories and �les have names such as net/, sys/, meminfo, and version.

The process directories contain �les with environment settings, process status,

memory maps, and the original command line. The stat and status �les contain,

among other data, the parent PID, tty device, start time, scheduling priority, and

real and e�ective user and group identi�ers.

55

ls -l /proc/213/fd/

lrwx------ 1 root root 64 Apr 1 10:45 0 -> /dev/pts/5

lrwx------ 1 root root 64 Apr 1 10:45 1 -> /dev/pts/5

lrwx------ 1 root root 64 Apr 1 10:45 2 -> /dev/pts/5

lr-x------ 1 root root 64 Apr 1 10:45 3 -> pipe:[3703552]

lrwx------ 1 root root 64 Apr 1 10:45 4 -> socket:[3703580]

l-wx------ 1 root root 64 Apr 1 10:45 5 -> /root/prog/main.c

Figure 4.4. Contents of an fd directory in Linux

A subdirectory, fd/, contains symbolic links to open �le descriptors. The links are

named using the �le descriptor indices. For example, /proc/213/fd/0 is a symbolic

link to the standard input for process 213. A sample listing of an fd directory can be

found in Figure 4.4. The pipe:[3703552] entry shows that the process has a pipe

with inode number 3703552 opened. In this example, the reading end is open and

the writing end is closed. If another process has the writing end open, it will have an

fd entry with the same inode, but with write permissions. The socket:[3703580]

entry shows that the process has a socket with inode number 3703580, but does not

identify whether it is an Internet domain or local domain socket. As will be shown,

this can be determined by looking in the /proc/net/ �les for inode 3703580. The

last entry shows that the /root/prog/main.c �le is open for writing.

The details of a socket inode can be found in the /proc/net/tcp, /proc/net/udp,

/proc/net/raw, and /proc/net/unix �les. The �rst three �les contain entries for

every TCP, UDP, and RAW Internet domain socket, with the local and remote ad-

dresses and ports, inode number, and UID. The /proc/net/unix �le contains an

entry for every local domain socket with the inode, bound �le system path, and state

56

Table 4.2
Linux data collection functions

Function Description

find raw() Searches /proc/net/raw for a socket with speci�c addresses and
ports. Returns the socket inode and UID.

find tcp() Searches /proc/net/tcp for a socket with speci�c addresses and
ports. Returns the socket inode and UID.

find udp() Searches /proc/net/udp for a socket with speci�c addresses and
ports. Returns the socket inode and UID.

read fd() Reads the fd directory entries and calls save pipe() or
save socket() accordingly.

read name() Parses exe �le in process directory and adds process name to
procdata structure.

read stat() Parses stat �le in process directory and adds the parent PID,
device, priority, and start time to the procdata structure.

read status() Parses status �le in process directory and adds the real and
e�ective UID and real and e�ective GID to the procdata struc-
ture.

save pipe() Saves pipe related data in an fddata structure.
save socket Searches the /proc/net/ftcp, udp, raw, unixg �les for an in-

ode entry and saves the appropriate data in an fddata structure.

data. Unfortunately, it does not show the connection status, so we are not able to

determine which local domain sockets are connected.

4.4.2 Data Collection

Process state data in Linux was collected by parsing �les in the process pseudo

�le system. To make the program simple, functions were created for each �le that

needed to be parsed. Table 4.2 shows the functions that were added to the Linux

implementation. The daemon needs to read the contents of all /proc/ directories,

and therefore needs root permissions.

57

process req

The process req() function calls the find tcp() function for ID type requests to

determine the UID of the requested socket, because the UID is saved in /proc/net/tcp.

For non-ID type requests, process req() calls find proc() to determine the PID of

the process with the requested socket. The PID is passed to walk ptree() to save

the process state and resolve lcl() is called to resolve any local IPC methods.

walk ptree

The walk ptree() function is passed the PID of a process and a list of already

seen processes. It saves state data about the process and its parent processes. Brief

descriptions of the functions called can be found in Table 4.2.

The process name is saved using read name() and the user and group identi�ers

are saved using read status(). The parent PID, device, priority, and start time

are saved using read stat() and lastly, the read fd() function is used to save data

about open �le descriptors. As shown in Table 4.3, the associated inode for local

domain sockets and pipes is saved in the remaddr �eld of the fddata structure. The

lcladdr �eld is set to 0.

�nd proc

The find proc() function searches all process subdirectories in the /proc/ direc-

tory for a speci�c �le descriptor inode. Table 4.4 shows the data type and contents

of the void pointer.

58

Table 4.3
Linux fddata address values

fddata
lcladdr remaddr

Internet domain socket IP address IP address
Local domain socket 0 inode number
pipe 0 inode number

Table 4.4
Linux find proc() argument type

Data type Contents

Internet domain socket reqtype Connection tuples
Local domain socket uint32 t inode number
pipe uint32 t inode number

When the function is called to �nd the PID for a socket, the inode of the socket

is �rst determined by calling find tcp(), find udp(), or find raw(). Each fd

subdirectory is then searched for an entry, such as socket:[3703580]. This is clearly

an expensive operation because of the number of context switches that must occur

while opening each process directory and reading the link of each �le descriptor. We

can optimize the process slightly because we already know the UID of the process.

Before we read any �le descriptors, the status �le is �rst parsed to check if this

process has the same UID as the one we are looking for.

When find proc() is called to �nd processes with a pipe open, the function is

passed an inode value. The function searches all processes for a �le descriptor entry

with the appropriate link, such as pipe:[3703552].

59

4.4.3 Conclusion

The Linux implementation was the only one that utilized a process �le system.

Solaris also has procfs, but did not contain the required data. Unlike Solaris, Linux

does not provide access to kernel memory, besides directly reading /dev/kmem. This

technique is clearly not portable because Linux is not distributed with the header

�les for process structures unless the kernel source code is installed.

The Linux implementation was the easiest to develop, debug, and understand.

The functions are simple because they typically only open a �le for reading and use

fscanf() to extract the data. The /proc/net/ �les are also convenient because

they list the UID of the socket. To prevent enumeration methods as described by

Goldsmith [Gol96], the �les should also contain the socket direction.

Though the procfs provides a convenient interface to most process data, it did not

contain all of the data in which we were interested. The largest shortcoming is that

the connection between local domain sockets is not shown. Therefore, an attacker can

stop the traceback by running two processes that communicate via a local domain

socket. Another useful feature would have been a method to easily group sets of

processes by UID. This would have saved time when searching for sockets because

the UID comparison could have been done in kernel memory instead of user memory.

4.5 OpenBSD Implementation

The protocol was implemented on a 4.4 BSD kernel using the OpenBSD 2.8 plat-

form [Ope00]. The OpenBSD platform was distinctive from the other platforms

because it provided an interface to kernel memory and its sockets were implemented

60

p_pptr

socket

so_type

so_pcb

so_state

so_proto

pipe

pipe_peer

f_type

f_data

file

unp_socket

unp_addr

unp_conn

unpcb

inp_ppcb

inp_lport

inp_laddr

inp_fport

inp_faddr

inpcb

filedesc

p_start

pstats

p_svuid

p_ruid

pcred

pr_type

pr_domain

protosw

dom_family

domain

p_cred

fd_ofiles

proc

rawcb

rcb_faddr

rcb_laddr

p_pid

p_comm

p_stats

p_fd

Figure 4.5. OpenBSD process structure

in a non-stream based stack. The �rst part of this section will give the process

organization of OpenBSD, followed by data gathering methods.

4.5.1 Process Structure

Processes

Processes in OpenBSD are organized by proc structures in kernel memory. The

proc structures are dynamically created and each contain data for a speci�c process.

Figure 4.5 shows the structures and �elds of the proc structure of interest. The proc

structure contains pointers to the parent process (p pptr), child processes, and sibling

processes. The structure also contains the process name (p comm) and PID (p pid).

The p cred �eld in proc is a pointer to a pcred structure for the process cre-

dentials. This structure contains the processes UID, GID, and a pointer to the user

61

credentials structure, ucred. The ucred structure contains the e�ective user and

group ids. The pstats structure contains the process start time.

File Descriptors

The p fd �eld in proc is a pointer to a filedesc structure, which manages the

�le descriptors for all open �les, sockets, and pipes. Among other �elds, it contains

an array of file structures for open descriptors.

The file structure is a generic structure for vnodes, sockets, and pipes. The struc-

ture contains general �le related data such as a pointer to user credentials, pointers

to �le operation functions, and the address of a �le-type speci�c structure (f data).

The type of the speci�c structure is identi�ed by the f type �eld and can point to

either a vnode, pipe, or socket structure.

The vnode structure is used when regular �les are open by a process. It provides

an abstraction to the speci�c �le system being used. The pipe structure is used to

represent a one-way pipe. It contains �elds for bu�ers, state data, and a pointer to

the pipe structure on the remote end. We can easily determine when two processes

are connected via a pipe if one process's pipe structure is at the same address as the

other's remote pipe pointer.

Sockets

The f data �eld points to a socket structure for all socket types. It contains �elds

for socket state, creator UID, and data bu�ers. The OpenBSD socket structure is

62

Table 4.5
OpenBSD protocol control block pointer types

Domain stream datagram raw

Internet inpcb inpcb rawcb

Local unpcb unpcb N/A

the only one found in this research that had a state bit for direction. The socket is

outbound when the SS CONNECTOUT bit is set. The so type �eld identi�es the socket

as stream, datagram, or raw. The socket structure also contains pointers to the

protosw protocol switch structure and a protocol control block.

The protocol switch table, protosw, is used for communicating between protocol

layers and with the system. It contains pointers to speci�c protocol functions that

pass information to the layers above and below. It also contains �elds that specify

the protocol type, protocol number, ag options, and a pointer to a domain structure.

The domain structures in OpenBSD form a list where each domain supported by

the system has an entry. The structure contains domain-speci�c method pointers and

a �eld that speci�es the domain type. Examples of domain types include Internet

and local.

The protocol control block pointer in the socket structure points to an object

whose type is based on the protocol and domain type. Therefore, we must �rst

examine the protosw and domain structures before this �eld. Table 4.5 shows the

object type based on protocol and domain.

63

The inpcb structure is a generic Internet domain protocol control block and is

stored in a hash table. This structure contains the local and remote ports and ad-

dresses, routing data, and a pointer to the socket structure. Each inpcb structure

contains a pointer to a speci�c protocol control block (inp ppcb), based on the socket

type. For example, when the socket type is stream, the inp ppcb structure points to

a tcpcb structure.

The rawcb structure is the protocol control block used for raw sockets. It contains

�elds for the doubly linked list it is stored in, a pointer to the original socket, and

data structures for the remote and local addresses.

The unpcb structure is the protocol control block used for local domain sockets.

This structure contains a pointer to the original socket, a pointer to a vnode structure

if the socket is bound to a �le location, and structures for bu�er data. If the socket is

connected, this structure also contains a pointer to the protocol control block of the

remote socket, unp conn.

4.5.2 Data Collection

Process data was collected by reading data structures directly from kernel mem-

ory. OpenBSD provides uniform access to kernel memory using the KVM library. The

library must �rst be opened using kvm open() and then data is transfered from ker-

nel memory to user memory using kvm read(). kvm getprocs() returns a list of

processes that match a certain property. For example, it can return sets of processes

with a speci�c UID, process group ID, or all processes. Table 4.6 shows the functions

that were written for the OpenBSD implementation.

64

Table 4.6
OpenBSD data collection functions

Function Description

find tcp() Calls sysctl() system call to determine the UID of a TCP
socket

save pipe() Saves pipe structure addresses in fddata structure
save socket() Saves appropriate address data for local and Internet domain

sockets in a fddata structure.

OpenBSD contains a sysctl() system call for determining the UID of a TCP

socket. The Management Information Base (MIB) string for the system call is

fCTL NET, PF INET, IPPROTO TCP, TCPCTL IDENTg and a tcp ident mapping struc-

ture is passed as the argument. The system call returns the UID of the socket, but

not the PID.

process req

The implementation of process req() in OpenBSD �rst calls the find tcp()

function. The find tcp() function takes a reqtype structure as an argument and

places the socket data into the tcp ident mapping structure. It then calls the

sysctl() system call to identify the UID of the socket.

If the request type was ID, then process req() returns. For non-ID type requests,

kernel init() is called to open the KVM library �le descriptor. The kvm open()

function needs direct access to /dev/mem and therefore needs root privilege. To

handle this, the kernel init() function changes from e�ective user nobody to root

before it calls kvm open(), and then resumes as user nobody.

65

The find proc() function is used to �nd the PID of the requested socket and

walk ptree() is called to save the process tree starting at the PID. The process req()

function concludes by calling resolve lcl() to resolve all pipes and sockets.

walk ptree

The walk ptree() function is passed a PID and a procdata list of processes that

have already been seen. The PID is passed to kvm getprocs() to read the associated

proc structure from kernel memory. The pointers in the structure can no longer be

used in the traditional manner, because they point to addresses in kernel memory.

Instead, kvm read() is used to copy data from the kernel memory address to a bu�er

in user memory.

For each process, the PID and process name are determined directly from the

proc structure. The real and e�ective UID are determined from the pcred structure

and the process start time is determined from the pstats structure.

The �le descriptors are analyzed next by reading the filedesc structure and the

list of file structure pointers from kernel memory. The list of pointers is cycled

and each file structure is read from kernel memory. Using the f type �eld we can

determine if the descriptor is from a �le, pipe, or socket. For pipes, save pipe() is

called and save socket() is called for a socket. Table 4.7 contains the content that

was saved in the address �elds of the fddata structures.

The save pipe() function is passed the file structure as an argument, and it

reads the pipe structure from kernel memory using the f data pointer. As mentioned

66

Table 4.7
OpenBSD fddata address values

fddata
lcladdr remaddr

Internet domain socket IP address IP address
Local domain socket socket address socket address
pipe pipe address pipe address

in Section 4.5.1, the pipe structure contains a pointer to the pipe structure on the

remote end. The address of the local pipe structure is saved in the lcladdr �eld of

fddata and the address of the remote pipe structure is saved in the remaddr �eld.

When we need to resolve the pipe, we will search processes for a pipe structure at

the remote address.

The save socket() function is more complex because of the di�erent combina-

tions of protocol types and domains. The socket structure is read from the f data

pointer and the protocol switch table is read from the so proto pointer in socket.

The domain structure is read from the pr domain �eld in the protocol switch table.

When an Internet domain socket is found, the corresponding inpcb or rawcb

structure is read from kernel memory using the so pcb pointer in socket. The local

and remote addresses and ports are copied to the fddata structure and stored in host

order.

The direction of stream sockets are determined by using the SS CONNECTOUT ag

and the direction of datagram and raw sockets is determined based on the existence

of a remote address. If a remote address and port exist, then the socket is outbound.

67

Otherwise, it is set to inbound. This is because a listening datagram or raw socket does

not have state and therefore does not save data about who connects to it. Therefore,

only outbound sockets will have the remote address �eld �lled.

When a local domain (Unix domain) socket is found, the unpcb structure is read

from memory. The lcladdr �eld of fddata is �lled with the kernel memory address

of the socket structure. If the socket is bound, then the path is read from the mbuf

structure pointed to by unp addr and stored in the lclunix �eld of fddata. If the

socket is connected, the remote unpcb structure is read from unp conn. The kernel

memory address of the remote socket structure is saved in the remaddr �eld of fddata

and the remote bounded path is saved in remunix. When we are resolving the socket,

we will search for a socket structure at the address saved in remaddr.

�nd proc

As mentioned in Section 4.2.3, find proc() �nds the processes that have a speci�c

socket or pipe open. It uses the kvm getprocs() function to get a list of processes to

search. The kvm getprocs() function can either return all processes or only processes

with a speci�ed UID. To narrow the search for TCP sockets, the UID is determined

by calling the find tcp() function. Table 4.8 shows the data type and content of the

void pointer argument.

For each process returned by kvm getprocs(), the filedesc structure and list of

file pointers are read from kernel memory. Each file structure in the list is then

processed. Based on the f type �eld we can quickly ignore �les of a type di�erent

68

Table 4.8
OpenBSD find proc() argument type

Data type Contents

Internet domain socket reqtype Connection tuples
Local domain socket uint32 t socket address
pipe uint32 t pipe address

than what we are looking for. When searching for a local domain socket or pipe, the

address of the socket or pipe structure is compared with the address passed as an

argument. When searching for an Internet domain socket, the inpcb protocol control

block is read from kernel memory and the addresses and ports are compared with

those passed as an argument in the reqtype structure.

When the appropriate process is found, it is placed in the PID array. The function

returns after �nding one socket process, but continues to search when looking for

pipes.

4.5.3 Conclusion

Accessing kernel memory as we have done here does not guarantee valid data. For

example, between the time that we read the list of file pointers to when we read

the �nal file structure from memory, the �le could close and the data would not be

valid. The process pseudo-�le system that Linux o�ers can guarantee valid data, but

is much slower.

This procedure would be easier if each �le descriptor stored a list of processes that

have the �le open. The list could be updated when the reference count is updated

and we would no longer have to search through all the �le descriptors for the PID.

69

The layout of the OpenBSD �le descriptors was much more intuitive than was seen

with Solaris. OpenBSD provides clear pointers to the Protocol Control Blocks, while

Solaris requires the daemon to traverse the stream stack and then access the Protocol

Control Blocks. OpenBSD must also be noticed for its sysctl() call to identify the

UID of a socket and the direction bit in the socket structure. These features were

written for the original ident protocol and were easily adapted to this protocol.

4.6 Solaris Implementation

This protocol was also implemented on the Solaris 2.7 operating system [sol]. The

Solaris platform is distinctive because it o�ers an interface to kernel memory and

uses a streams-based socket approach. The �rst part of this section will describe the

process structure, and then the implementation details will be provided.

4.6.1 Process Structure

Processes

Processes in Solaris are organized in the traditional UNIX fashion, with proc

structures in the process table. The process table is in kernel memory and is therefore

not directly available from a user process. Figure 4.6 shows the �elds and structures

in which we are interested.

Solaris, like Linux, provides a process pseudo �le system, but it could not be

utilized for this program. The Solaris process �le system is not as advanced as Linux

and does not contain data about �le descriptors. Therefore, it did not meet the needs

of this program and was not used even for basic data such as parent PID and UID.

70

sonode

p_ppid

p_parent

p_pidp

proc

p_cred

p_user u_flist

u_start

u_nofiles

u_comm

user

f_vnode

file

v_stream

v_type

v_data

vnode

sin_port

sin_addr

sin_family

sockaddr_in

sun_path

sun_family

sockaddr_un

soaddr_ux

sou_vp

sou_magicfn_flag

fn_dest

fifonode

pid_id

pid

cr_ruid

cr_uid

cred

cr_gid

cr_rgid

stdata

sd_wrq

sd_vnode

so_state

so_type

so_faddr

so_laddr

so_family

so_ux_laddr

so_ux_faddr

Figure 4.6. Solaris process structure

The p cred �eld in the proc structure points to a cred structure that contains the

process credentials, including the e�ective and real user and group identi�ers. The

p pidp �eld points to a pid structure that contains the process identi�er (PID) and

process group information. The p ppid �eld contains the PID of the parent process

and p parent is a pointer to the parent proc structure.

The p user �eld points to the user structure that contains the process name

(u comm), start time (u start), and a list of open �les (u flist). The u flist

�eld points to an array of file structures with size u nofiles. A file structure

is allocated for every open �le descriptor and contains a pointer to the vnode struc-

ture (f vnode), user credentials (f cred), and the current read and write o�sets

(f offset).

71

File Descriptors

A vnode structure is allocated for every open �le descriptor to act as a generic

interface to all �le system types, pipes, and sockets. It contains pointers to speci�c

functions, but we are only concerned with the data it stores. The v type �eld identi�es

what type of �le descriptor is open, for example regular �le, socket, directory, or FIFO

(pipe). The v stream �eld points to the head of the associated stream and the v data

�eld points to a structure that is speci�c to the type of open �le: a fifonode structure

for pipes, a sonode structure for sockets, and an inode structure for regular �les.

The fifonode structure is used for two-way FIFO channels and one-way pipe

channels. The exact type can be determined using the fn flag �eld. This structure

contains �elds for the bu�ers, reference counts, and the fn dest �eld is a pointer to

the vnode at the end of the pipe. This was used to identify the processes that had

the remote end of the pipe open.

When the �le descriptor is for a socket, the v data �eld points to a sonode struc-

ture. The so family �eld identi�es the socket as local domain (Unix domain) or

Internet domain. The so type �eld identi�es the socket as stream, datagram, or raw.

The sonode structure contains �elds for local and remote address structures. These

�elds are: so laddr, so faddr, so ux laddr, and so ux faddr and they point to

sockaddr in, sockaddr un, or soaddr ux structures. These �elds should contain all

of the data we need, but this is not the case because the data is not always accurate

and in some cases not even valid. To get accurate data, we must examine the stream

queues and the associated protocol control blocks.

72

Streams

Streams are used to create a bi-directional communication path between network-

ing layers. Each layer represents a di�erent protocol, for example one layer could

be TCP and the next layer could be IP. Figure 4.7 shows a stream example for an

Internet domain socket. Each layer communicates with the layers above and below

by using two uni-directional communication channels using queue structures. The

head of the stream is an stdata structure. It contains many administrative �elds

and we are most interested in the sd wrq and sd vnode �elds. The sd wrq �eld is a

pointer to the head of the write queue, or the downward uni-directional path. Data

is received into the stdata structure from below using bu�ers that are allocated in

this structure. The sd vnode �eld points back to the vnode structure.

The queue structure contains four �elds of interest. A stream is a linked list

of queue structures, which are linked together using the q next �eld. The queue

structure itself is generic, but the q ptr �eld points to a layer speci�c protocol control

block structure. For example, in the IP layer, the q ptr �eld points to an ipc s

structure. The q stream �eld is a backward pointer to the stream head. The q qinfo

�eld is a pointer to a qinit structure that contains information about the layer.

The qi minfo �eld in qinit is a pointer to a module info structure that contains

information about the size, identi�cation number, and name of this layer. The name

�eld, mi idname, is the protocol name in ASCII, ip for example.

Figure 4.7 shows the stream associated with an Internet domain socket starting

at the stdata stream head. The �rst queue structure holds the bu�ers and data

73

associated with the stdata structure above it. The mi idname string for this layer is

strwhead. The second layer is found by following the q next �eld and it is for TCP,

UDP, or ICMP protocols. If the module info structure is read, then the mi idname

string is either: tcp, udp, or icmp. icmp is used when a RAW socket is opened.

The third layer is the IP layer and the mi idname string is set to ip. At this layer,

the q ptr �eld points to an ipc s structure and the local and remote addresses and

ports can be determined. The ipc s structure also contains a backward pointer to

the read and write queue structures for the layer.

The ipc s structures are organized in a hash table and we can use the table to

lookup a speci�c connection. The hashing function is the exclusive-OR of the local

and remote ports and addresses. Therefore, if we are given the ports and addresses

of a socket, we can easily identify the ipc s structure in the hash table. The process

associated with the ipc s structure is identi�ed by using one of the backward queue

pointers to read the q stream �eld, which points to the stream head. The stream

head contains a pointer to the vnode structure. All processes are searched for a vnode

value equal to the one associated with the desired ipc s structure.

Figure 4.8 shows the stream associated with a local domain socket. As shown

in Figure 4.9, a local domain socket stream has four layers. When the write stream

is followed, the fourth layer is the read input to the remote end of the local socket.

Exactly as with Internet domain sockets, the �rst queue structure is for the writing

stream head. The second layer is a transport layer for the write stream of the local end

of the socket. The third layer is the transport layer for the read stream of the remote

74

qinit

qi_minfo

module_info

mi_idnamesd_wrq

stdata

sd_vnode

char *

"strwhead"

"ip"

"tcp"

"udp"

"icmp

q_next

q_ptr

q_qinfo

queue
write head

q_stream

q_next

q_ptr

q_qinfo

queue
ip

q_stream

q_stream

q_next

q_ptr

q_qinfo

queue
tcp/udp/icmp

icp_s

ipc_laddr

ipc_lport

ipc_faddr

ipc_fport

ipc_rq

ipc_wq

Figure 4.7. Solaris Internet domain stream structures

end of the socket and the fourth layer is the read stream head for the remote end of

the socket. The q stream �eld in the fourth layer, points to the stdata structure

for the remote end of the socket and because the stdata structure contains a pointer

to the vnode associated with it, we can identify processes with the other end of the

socket open by comparing the vnode value in their file structures.

4.6.2 Data Collection

As mentioned in Section 4.6.1, process data is stored in kernel memory. We

therefore do not have direct access to the data from our user space daemon. Data

in kernel memory is copied to user memory using the KVM library functions. The

memory handle is opened using kvm open() and data is transfered using kvm read().

A speci�c process's structure can be read using kvm getproc() or all processes can by

cycled through using kvm setproc() and kvm nextproc(). Of course, any pointer in

the structures that are copied from kernel memory are no longer valid and kvm read()

must be used to follow them.

75

qinit

qi_minfo

module_info

mi_idnamesd_wrq

stdata

sd_vnode

char *

"strwhead"

"tl"

"strrhead"

q_next

q_ptr

q_qinfo

queue
write head

q_stream

q_next

q_ptr

q_qinfo

queue

q_stream

tl

q_next

q_ptr

q_qinfo

queue

q_stream

read head

sd_wrq

stdata

sd_vnode

remote

q_next

q_ptr

q_qinfo

queue

q_stream

tl

Figure 4.8. Solaris local domain stream structures

local stdata

sd_wrq q_next

q_stream

transport

q_next

q_stream

write head

q_next

q_stream

transport

q_next

q_stream

read head

q_next

q_stream

write head

q_next

q_stream

read head

q_next

q_stream

transport

q_next

q_stream

transport

sd_wrq

remote stdata

Figure 4.9. Solaris local domain stream layers

Table 4.9 contains the additional functions that were used in the Solaris imple-

mentation.

process req

The process req() implementation for Solaris calls find proc() to identify the

UID and PID of a socket, for all request types. Unlike Linux and OpenBSD, it takes

the same amount of e�ort to �nd the PID as the UID. The details of this process will

be given later.

76

Table 4.9
Solaris data collection functions

Function Description

find tcp() Identi�es the vnode address of a requested socket. This address
can be used by find proc() to determine the UID and PID of
it.

save pipe() Saves pipe structure addresses in fddata structure
save socket() Saves appropriate address data for local and Internet domain

sockets in a fddata structure.

If the request type is ID, then the process req() function returns after calling

find proc(). Otherwise, walk ptree() is called to identify the processes tree and

resolve lcl() is called to resolve forms of IPC.

walk ptree

The walk ptree() function saves data associated with the process tree starting

at a speci�ed process. The Solaris implementation uses kvm getproc() to copy the

proc structure into user memory. The cred credentials structure is read from kernel

memory to determine the UID and GID values. The user structure is read to deter-

mine the process name and start time. The list of file structures is read from the

user structure and each is processed to identify sockets and pipes. The vnode struc-

ture is read from the f vnode �eld in file to determine the �le type. The contents

of the fddata address �elds in Solaris are given in Table 4.10.

If the vnode is for a FIFO or pipe, then the fifonode structure is read from the

v data �eld in the save pipe() function. The local vnode address is stored as the

77

Table 4.10
Solaris fddata address values

fddata
lcladdr remaddr

Internet domain socket IP address IP address
Local domain socket vnode address vnode address
pipe vnode address vnode address

local address in the fddata structure. The address of the remote vnode structure,

located in the fn dest �eld, is saved in the remote address �eld of fddata.

If the vnode is for a socket, then the sonode structure is read from within the

save socket() function to determine the domain and protocol type. As previously

mentioned, the socket address information cannot be trusted so it is not gathered

from here. If the socket is in the local domain, the sockaddr un structures are read

to determine the bound �le system path. These paths were found to be reliable.

If the socket is in the Internet domain, then the stream head is read from v stream.

We follow the stream for three levels until we read the queue structure for the IP

level. The icp s structure is read and the IP address and ports are saved in the

fddata structure.

If the socket is in the local domain, then the stream head is read from v stream

and the local address �eld in fddata is set to the local vnode address. The remote

address �eld is set to the remote vnode address, which is found by following the stream

for four levels. The stream head is read from the fourth level using the q stream �eld

and the remote vnode is read from the sd vnode �eld.

78

Table 4.11
Solaris find proc() argument type

Data type Contents

Internet domain socket reqtype Connection tuples
Local domain socket uint32 t vnode address
pipe uint32 t vnode address

The walk ptree() function then repeats this procedure on the parent process

until we reach a process we have already analyzed or we reach the top of the process

tree.

�nd proc

The find proc() function determines the PID of the process that has a socket or

pipe open. As shown in Table 4.10, when a local domain socket or a pipe is searched

for, the find proc() is passed the address of a vnode structure.

When an Internet domain socket is searched for, find proc() is passed a reqtype

structure. It is expensive to �nd a process based on connection tuples because there

are many layers of structures to read, but we can easily identify the vnode address

for TCP connections using the IP protocol control block hash table, as described in

Section 4.6.1. The find tcp() function uses the hash table to determine the vnode

address of a TCP socket. Therefore, all TCP connections are �rst sent to find tcp()

to identify the vnode address. All other types of Internet domain sockets (UDP and

RAW) must be searched for based on the address tuples.

79

The find proc() function cycles through all processes using kvm setproc() and

kvm nextproc(). The �le descriptors of every process are examined and the f vnode

�eld is compared with the vnode address identi�ed above, or similarly the tuples are

compared for other sockets.

When a process has been found with the same vnode address, or connection tuple,

the PID is added to the PID array that was passed as an argument. The function

returns after �nding one process for sockets, but searches all processes for pipes. The

UID is copied to the ruid �eld of the reqtype structure when a TCP socket is found,

because this function is also used to identify the UID for ID type requests.

4.6.3 Conclusion

Using Solaris, we were able to identify all needed process information and resolve

the needed forms of IPC. It is inconvenient that the sonode structure does not contain

the correct addresses. It would be much more eÆcient if it did. There also exists a

lack of documentation about the stream structures and hash tables. The hash table

was identi�ed from the oidentd source [McC00] and the lsof source code was used as

a guide for using the stream layers [Abe00].

The Solaris implementation would have been more eÆcient if there were a back-

ward reference from �le descriptors to processes so they would not have to be searched.

The direction of sockets should be noted in the sonode structure.

4.7 Performance

The Linux and OpenBSD systems that were used to implement this protocol have

identical hardware and were tested for performance results. The systems had 600

80

MHz Intel Pentium III processors and 128MB of RAM.

The daemon was �rst tested to determine how long requests would take to com-

plete. This was performed in several environments and the results are given in Section

4.7.1. The system impact was also tested to determine how much a system's perfor-

mance would be impacted by running this daemon. These results are found in Section

4.7.2.

4.7.1 Request Processing Times

The implementation code was tested to determine how long a request would take

to complete. To simulate an actual daemon, the public interface was used. The test

program created a child process, waited for it to �nish, and repeated for a speci�ed

number of times. Each child process parsed a request string and processed it. The

time it took to process the speci�ed number of requests was recorded and divided by

the number of requests to determine the average lookup time. The number of lookups

was varied depending on the environment so that each test took around 90 minutes

to complete.

This procedure was performed on two process structures, one simple and one

complex. The results are given in the following two sections.

Simple Process Structure

The test program was �rst run on a simple process tree that contained six unique

processes and no forms of IPC. It is the process tree shown in Figure 3.4. It is assumed

that a STOP daemon would process this type of structure the most frequently.

81

Table 4.12 shows the average number of milliseconds per lookup from the tests.

The �rst data column shows the lookup time for an ID type request. As described

in Section 3.1.2, an ID type request is equivalent to the traditional ident protocol

request. This was run to compare how much longer a new SV type request takes

over the original ident lookup. The results show that Linux is the most eÆcient at

determining the UID of a socket. This operation was performed in Linux by parsing

the /proc/net/tcp �le and in OpenBSD by using the sysctl() system call. Linux

adds entries to the /proc/net/tcp �le as a stack and the most recent socket is on

top. Typically, a request will be made for the socket shortly after it is opened and it

will therefore be one of the �rst entries in the �le. The OpenBSD sysctl() function

uses a hash table to �nd the protocol control block entry for the socket.

The second and third data columns contain the times for performing a SV type

request. The third column saves the data to a �le, while the second does not. As

described in Section 3.1.2, a SV type request saves state data for the process tree that

has the requested socket open. From the second data column, it is clear that it is

faster to directly access kernel memory in OpenBSD than by searching and parsing

/proc/ �les. OpenBSD has a 201% increase in lookup time between a traditional ID

request and the new SV request and Linux has nearly a 973% increase in lookup time.

On average, Linux spends 136% more time performing an SV lookup than OpenBSD

does. This is because OpenBSD can do more in kernel space and Linux must do

�le IO and use scanf() to determine process data. When both platforms write the

process data to �le, Linux takes only slightly longer.

82

Table 4.12
Average lookup time for six unique processes

Platform ID SV SV with �le

Linux 0.533 mS 5.718 mS 8.243 mS
OpenBSD 0.803 mS 2.421 mS 7.871 mS

Table 4.13
Average lookup time for 14 unique processes

Platform SV SV with 100 procs

Linux 63.354 mS 224.589 mS
OpenBSD 10.256 mS 32.059 mS

Complex Process Structure

The test program was then run on the 14-process structure described in Section

3.5.2 and shown in Figure 3.6. This structure resolves to 14 unique processes, three

process groups, and contains six instances of IPC to resolve using pipes and Internet

domain sockets. This structure is not typical and is used as an extreme example.

The testing program performed lookups on the socket from process P4 on a system

with no other users and the results can be found in data column one of Table 4.13.

These results show that the OpenBSD lookup time for the 14-processes structure is

324% longer than for the six process structure. Linux had a 1008% increase over the

six process structure and was 518% longer than OpenBSD. The tests were repeated

with the addition of 100 processes that had the three standard �le descriptors, two

open pipe descriptors and one open �le descriptor. Therefore, each lookup had to

examine 600 additional �le descriptors when resolving pipes. The testing program

83

was run again and the results can be found in the second data column. This shows that

the average OpenBSD lookup had a 213% increase with the 100 additional processes,

Linux had a 254% increase, and Linux took 600% longer than OpenBSD.

While these increases sound substantial, they are for an non-typical example. As

will be shown next, the system impact of processing requests is minimal.

4.7.2 System Performance

The system impact was measured to identify how much system performance would

be impacted by running this daemon versus not running the daemon.

To perform this test, a memory intensive program was written where each round

took roughly 10 minutes to run with no load. The code is given in Appendix C.1. The

program creates an array of 1,000,000 oating point entries. It then performs a series

of oating point calculations on elements within the array. To cause non-sequential

memory accesses, operations are performed on random elements in the array. The

initial values, such as 0.1029384756, were chosen at random and the random number

generator was always seeded with 123456.

The execution time of the benchmark program was measured on the OpenBSD and

Linux systems with no other processes running to get a base time. The test program

used in the previous lookup tests was modi�ed such that it slept for a speci�ed number

of seconds between lookups. The test program and benchmark program were then run

simultaneously and timed. The benchmark base time was divided by the execution

time to calculate the performance impact. The impact percentage was compared with

the number of lookups per minute being performed.

84

Table 4.14
System performance data

requests per minute
Platform 6 20 60 120 600 3000 6000
Linux 99.88% 99.74% 99.21% 98.45% 92.99% 75.85% 64.08%
OpenBSD 99.99% 99.90% 99.61% 99.17% 96.11% 86.96% 80.80%

Table 4.14 shows the performance percentages that were found by running the

daemon at intervals of 6, 20, 60, 120, 600, 3000, and 6000 lookups per minute. Each

lookup was a SV type request on a 6-process basic process tree with the output printed

to a �le. Figure 4.10 shows these values in a graph.

This data shows that the daemon does not pose a signi�cant threat to system per-

formance under typical operation. For a reference value, the average number of logins

per minute was calculated from the main student computer at Purdue University. The

computer, expert.cc.purdue.edu, is run by the Purdue University Computing Cen-

ter and all graduate and undergraduate students are given an account on it. Over a

seven hour period, there were 2499 logins, or almost six per minute. If we use this

value as an upper bound for the number of requests a host like expert would receive

a minute, the daemon impact would be negligible. The upper bound is the extreme

case that every user logged into another system after logging into expert. Few users

do this on a regular basis.

4.7.3 Conclusion

Clearly, resolving processes is an expensive operation, but the complex structure

as shown in Section 4.7.1 is not typical. The lookup times with the additional 100

85

0

20

40

60

80

100

1 10 100 1000

P
er

fo
rm

an
ce

 (
%

)

Requests per minute

OpenBSD
Linux

Figure 4.10. Performance impact graph

processes shows that on a multiple user system, signi�cant time could be spent on

these lookups and possibly result in a denial of service scenario if enough requests

are being serviced. As shown in Section 4.7.2, a system can process 100 requests per

second for basic process trees and only see an 80% or 64% performance decrease. This

high number of requests will most likely only occur when the host is under attack.

The daemon restricted the number of active lookups to prevent it from consuming

all of the system resources. The data presented here also shows that by only using a

process pseudo �le system, the daemon does not scale as well.

86

5. CONCLUSION

This thesis has provided the framework and details for a protocol to provide data

that is commonly missing during forensic investigations. The Session Token Protocol

(STOP) can provide a record of socket activity and allows an attacker who is using a

series of hosts to be traced. By returning only random tokens, the protocol protects

a user's privacy and makes it diÆcult for other systems to rely on it as a method of

authentication.

This protocol is most e�ective when many hosts are running it and could be

used across the Internet, but is best suited in universities and other large networks.

Research has found that existing ident daemons will correctly parse the new request

format and not return an error.

The ability to make requests on behalf of other machines provides border gateways

and intrusion detection systems with a method to request data on suspicious inbound

and outbound traÆc.

This thesis has shown that this protocol can be implemented and is e�ective in

saving data about a network session and tracing connection chains. It can be used in

parallel with other traceback techniques such as network traÆc analysis to provide

application-level data to investigators.

87

5.1 Recommended Features

This design collects data in a manner that operating systems were not designed to

do. This section contains some features that would make the data collection easier.

The most obvious feature is to add process data to the �le descriptor structure.

This will not add considerable overhead because the kernel already increments the �le

descriptor's reference count whenever a new process opens the �le and decrements it

whenever a process closes it. The �le descriptor could either save a list of proc pointers

or a list of PID values. If this list existed, then sockets can be easily identi�ed using

the protocol control block hash table and no additional work would be required to

identify the processes involved. This would save considerable amount of the searching

that this daemon does.

Another feature is to save the socket direction, which can already be found in

OpenBSD. The socket direction is used when responding to a request for an inbound

socket. Even though this protocol is not vulnerable to the attack described by Gold-

smith [Gol96] because it only returns random tokens, processing inbound connections

could make the system more susceptible to a denial of service attack. This data is

also useful when determining to which hosts to send traceback requests. This feature

requires little additional time and space. It can be implemented as a 1-bit ag and

set when the listen() or connect() system calls are called.

The Linux process �le system should provide some method of identifying local

domain sockets that are connected. Otherwise, we have no way of resolving local

domain sockets.

88

Process entries should be able to be retrieved by UID. OpenBSD already provides

this option, but Linux and Solaris do not. In some cases, we knew the UID of the

process we were looking for, but had to examine the process structure data to identify

it. It is much faster if the UID of a process was examined in kernel memory before it is

copied out. This could be achieved in Solaris by adding an option to kvm getproc()

and in Linux by using a subdirectory for each user, which contains symbolic links to

the processes they are running.

Solaris should update the sonode structure with the correct IP addresses at all

times. The streams structure should not have to be traversed to get accurate data

when the �eld already exists.

APPENDICES

89

A. Protocol Interface Speci�cation

A.1 External Interface Data Structures

reqtype

type uint8 t Type of request (ID, ID REC, SV, SV REC)

lcladdr uint32 t IP address of local interface

remaddr uint32 t IP address of remote host

lclport uint16 t TCP port on local interface

remport uint16 t TCP port on remote host

reqaddr uint32 t IP address of requesting host

sessid uint32 t Random id for recursive requests

ruid uid t Real user id of requested process

pid pid t Process id of requested process

procdata

*parent procdata pointer to parent process

*name char process name

pid pid t identi�er of process

ppid pid t identi�er of parent process

ptype uint8 t type of process entry (primary or secondary)

ruid uid t real user id of process

euid uid t e�ective user id of process

rgid gid t real group id of process

egid gid t e�ective group id of process

dev dev t terminal device identi�er

start time t time that process started

prio int32 t priority of process

*fd fddata pointer to fddata structures for pipes and sockets

90

fddata

*next fddata Pointer to next fddata structure

type uint8 t type of �le descriptor (ISOCK, USOCK, PIPE)

protocol uint8 t socket protocol (STR, GRAM, RAW)

dir uint t socket direction (IN, OUT, UNKNOWN)

lcladdr uint32 t local Internet domain IP address or address of local end

of pipe structure

remaddr uint32 t remote Internet domain IP address or address of remote

end of pipe structure

lclport uint16 t local Internet domain socket port

remport uint16 t remote Internet domain socket port

*lclunix char local local domain socket path

*remunix char remote local domain socket path

A.2 External Interface Functions

parse req

in char *str

reqtype *req

out int

desc parse req() takes a NULL-terminated string (str) as an argument and
parses it according to the STOP protocol grammar. The �elds of req are

�lled based on the values in str. Returns 0 on success and 1 on error.

process req

in reqtype *req

out procdata *

desc process req() takes a reqtype structure and processes the request based

on the contents. If the request type is ID, then it returns NULL and the

ruid �eld of req is �lled in or the ruid �eld is -1 on error. If the request

is non-ID, then it returns a linked list of procdata structures for the socket

in the request. All IPC forms will have been resolved. NULL is returned

on error.

print procdata

in procdata *pdptr
FILE *hLog

reqtype *req

out int

desc print procdata() prints the contents of the pdptr linked list to hLog. The

contents of req are also printed to hLog. Returns 0 on success and 1 on

error.

91

send reqs

in procdata *pdptr

FILE *hLog

reqtype *req

out int

desc send reqs() searches the pdptr list for inbound Internet domain socket

connections from a remote host. It sends a request of the same type as

speci�ed in req to the host, using the session identi�er speci�ed in req. The

tokens that are returned from the requests are printed to hLog. Returns 0

on success and 1 on error.

A.3 Internal Interface Data Structures

lclcomm

*next lclcomm Pointer to next structure in linked list

type uint8 t Type of connection (same values as fddata)

p1 uint16 t Primary �eld to sort on (port number or memory address)

p2 uint16 t Secondary �eld to sort on (port number or memory ad-

dress)

rev uint8 t Set to 1 if p1 and p2 were reversed because p2 > p1

addr uint32 t IP address of Internet domain socket

A.4 Internal Interface Functions

walk ptree

in pid t pid

struct procdata *pdbase

int *stat

out struct procdata *

desc walk ptree() takes a PID (pid) as an argument and saves process state

data about it. It saves data into a procdata linked list for pid and its parent

processes until it reaches the top of the process tree or until it reaches a

process that already exists in pdbase. It returns the linked list of procdata

structures of processes that were analyzed. Upon error, it sets stat to 1

and returns NULL. When it has seen all of the processes it returns NULL

and sets stat to 0.

�nd proc

in void *goal

char type

pid t *pids

int size

out int

desc The find proc() function �nds processes that have a certain �le descriptor

trait. The type of �le descriptor to �nd is speci�ed by type and the contents

of goal are platform and type speci�c. Processes that are found to have

this trait are placed in pids, which has size size. The number of processes

found is returned, or -1 on error.

92

resolve lcl

in struct procdata *pdhead

out struct procdata *

desc resolve lcl() takes a list of procdata structures (pdhead) and searches

them for methods of IPC that need to be resolved. It resolves them using
find proc() and adds the new processes to the tail of pdhead. The full

pdhead list is returned or NULL on error.

93

B. Daemon Sample Outputs

B.1 Simple Process Structure Report

- BEGIN -

HOST INFORMATION

Name: host-2.cerias.purdue.edu

Boot: Fri Feb 02 00:56:23 2001

OS: OpenBSD 2.8 rev 200012

OpenBSD 2.8 (HOST-2) #1: Thu Jan 11 22:52:49 EST 2001

REQUEST INFORMATION

Date: Sun Apr 1 12:01:00 2001

Remote: 3.3.3.3:23

Local: 2.2.2.2:968

Requester: 3.3.3.3

Type: SV

PROCESS INFORMATION

Primary Processes

1: telnet [8339]

priority: 0 parent: 8338

ruid: user1 (1000) euid: user1 (1000)

device: ttyp1

Sockets:

INET_TCP: 2.2.2.2:968 -> 3.3.3.3:23

2: csh [8339]

priority: 0 parent: 8337

ruid: user1 (1000) euid: user1 (1000)

3: sshd [8337]

priority: 0 parent: 8000

ruid: root (0) euid: root (0)

Sockets:

INET_TCP: 2.2.2.2:22 <- 1.1.1.1:616

INET_TCP: localhost:6012 <- any

4: sshd [8000]

priority: 0 parent: 1

ruid: root (0) euid: root (0)

Sockets:

INET_TCP: localhost:22 <- any

94

5: init [1]

priority: 0 parent: 0

ruid: root (0) euid: root (0)

6: swapper [0]

priority: 0 parent: 0

ruid: root (0) euid: root (0)

ADDITIONAL USER INFORMATION

user1 (1000)

ttyp1 host-1.cerias.pu Sun Apr 1 12:00:00 2001

- END -

B.2 Complex Process Structure Report

- BEGIN -

HOST INFORMATION

Name: host-2.cerias.purdue.edu

Boot: Fri Feb 02 00:56:23 2001

OS: OpenBSD 2.8 rev 200012

OpenBSD 2.8 (HOST-2) #1: Thu Jan 11 22:52:49 EST 2001

REQUEST INFORMATION

Date: Sun Apr 1 01:01:00 2001

Remote: 3.3.3.3:9010

Local: 2.2.2.2:8526

Requester: 3.3.3.3

Type: SV

PROCESS INFORMATION

Primary Processes

1: resolve [26776]

priority: 0 parent: 22614

ruid: root (0) euid: root (0)

Sockets:

INET_TCP: 2.2.2.2:8526 -> 3.3.3.3:9010

Pipes:

E07F2600 -> E08CA780

2: resolve [22614]

priority: 0 parent: 1

ruid: root (0) euid: root (0)

3: init [1]

priority: 0 parent: 0

ruid: root (0) euid: root (0)

95

4: swapper [0]

priority: 0 parent: 0

ruid: root (0) euid: root (0)

Resolved Processes

5: resolve [25697]

priority: 0 parent: 7226

ruid: root (0) euid: root (0)

Pipes:

E08CA780 -> E07F2600

E08CAE80 -> E0801880

6: resolve [7226]

priority: 0 parent: 23690

ruid: root (0) euid: root (0)

Pipes:

E0801C00 -> E0801400

7: resolve [23690]

priority: 0 parent: 26776

ruid: root (0) euid: root (0)

8: resolve [10236]

priority: 0 parent: 7226

ruid: root (0) euid: root (0)

Pipes:

E0801880 -> E08CAE80

9: resolve [324]

priority: 0 parent: 10861

ruid: root (0) euid: root (0)

Pipes:

E0801400 -> E0801C00

10: resolve [10861]

priority: 0 parent: 26776

ruid: root (0) euid: root (0)

11: resolve [12596]

priority: 0 parent: 18587

ruid: root (0) euid: root (0)

Pipes:

E08CA780 -> E07F2600

E08CA380 -> E07E8080

96

12: resolve [18587]

priority: 0 parent: 22614

ruid: root (0) euid: root (0)

Sockets:

INET_TCP: localhost:8012 <- any

INET_TCP: 127.0.0.1:8012 <- 127.0.0.1:32145

Pipes:

E07E8080 -> E08CA380

13: resolve [11995]

priority: 0 parent: 1

ruid: root (0) euid: root (0)

Sockets:

INET_TCP: localhost:8011 <- any

INET_TCP: 127.0.0.1:8011 <- 127.0.0.1:39352

INET_TCP: 127.0.0.1:32145 -> 127.0.0.1:8012

14: resolve [26780]

priority: 0 parent: 1

ruid: root (0) euid: root (0)

Sockets:

INET_TCP: localhost:8010 <- any

INET_TCP: 2.2.2.2:8010 <- 1.1.1.1:1874

INET_TCP: 127.0.0.1:39352 -> 127.0.0.1:8011

ADDITIONAL USER INFORMATION

root (0)

- END -

B.3 Reverse Telnet Report

- BEGIN -

HOST INFORMATION

Name: host-3.cerias.purdue.edu

Boot: Fri Feb 9 23:16:22 2001

Linux version 2.2.17 (herbert@arnor) (gcc version 2.95.2 20000313

(Debian GNU/Linux)) #1 Sun Jun 25 09:24:41 EST 2000

REQUEST INFORMATION

Date: Sun Apr 1 02:01:00 2001

Remote: 1.1.1.1:8000

Local: 2.2.2.2:1885

Requester: 3.3.3.3

Type: SV_REC

PROCESS INFORMATION

97

Primary Processes

1: /usr/bin/telnet [10212]

priority: 0 parent: 9818

start time: Sun Apr 1 02:00:00 2001

ruid: nobody (65534) euid: nobody (65534)

Sockets:

INET_TCP: 2.2.2.2:1885 <> 1.1.1.1:8000

Pipes:

0 -> 38AB64

2: server [9818]

priority: 0 parent: 1

start time: Fri Feb 9 23:18:00 2001

ruid: nobody (65534) euid: nobody (65534)

Sockets:

INET_TCP: localhost:80 <> any

3: /sbin/init [1]

priority: 0 parent: 0

start time: Fri Feb 9 23:16:22 2001

ruid: root (0) euid: root (0)

4: sched [0]

priority: 0 parent: N/A

start time: Fri Feb 9 23:16:22 2001

ruid: root (0) euid: root (0)

Resolved Processes

5: /bin/sh [10213]

priority: 0 parent: 9818

start time: Sun Apr 1 02:00:00 2001

ruid: nobody (65534) euid: nobody (65534)

Pipes:

0 -> 38AB64

0 -> 38AB65

6: /usr/bin/telnet [11715]

priority: 0 parent: 6818

start time: Sun Apr 1 02:00:00 2001

ruid: nobody (65534) euid: nobody (65534)

Sockets:

INET_TCP: 1.1.1.1:1886 <> 2.2.2.2:8001

Pipes:

0 -> 38AB65

ADDITIONAL USER INFORMATION

98

nobody (65534)

- END -

99

C. Benchmark Code

#include <stdlib.h>

#include <stdio.h>

#include <sys/time.h>

#include <time.h>

#define SIEVEL 1000000

#define ROUNDS 10

#define LOOPS 1000 /* ~100 per minute */

int main() {

float a, b, c;

int i, j, l;

float sieve[SIEVEL];

struct timeval st, fin;

time_t tim;

unsigned long sum = 0;

signed long usum = 0;

double tmp;

/* make sure every run is the same */

srandom (123456);

a = 0.1029384756;

b = 9753124680.1470258369;

c = 1627.384950;

printf("Rounds: %d Loops per Round: %d\n", ROUNDS, LOOPS);

tim = time(NULL);

for (l=0; l<ROUNDS; l++) {

gettimeofday(&st, NULL);

for (i=0; i<LOOPS; i++) {

a *= b;

a /= c;

b = a - b;

a *= 22.123456789123456789;

100

for (j=0; j<SIEVEL; j++) {

sieve[j] =

b * (float)j / 710.9638642 + sieve[(j+2121) % SIEVEL];

}

for (j=0; j<20000; j++) {

sieve[random() % SIEVEL] *=

(sieve[random() % SIEVEL] / 88442211.99);

}

}

gettimeofday(&fin, NULL);

sum += (fin.tv_sec - st.tv_sec) ;

usum += (fin.tv_usec - st.tv_usec) ;

}

/* total time */

tmp = ((double)sum + (double) usum / (double) 1000000);

printf("Total seconds: %f\n", tmp);

/* time per round */

tmp /= (double)ROUNDS;

printf("Ave sec/round %f\n", tmp);

/* time per loop */

tmp /= (double)LOOPS;

printf("Ave sec/lookup %f\n", tmp);

return 0;

}

LIST OF REFERENCES

101

LIST OF REFERENCES

[Abe00] Vic Abell. lsof v4.52. available at: http://vic.cc.purdue.edu, November
8, 2000.

[BDKS00] Florian Buchholz, Thomas Daniels, Benjamin Kuperman, and Clay
Shields. Packet tracker �nal report. Technical Report 2000-23, CERIAS,
Purdue University, 2000.

[Bel00] Steven Bellovin. ICMP traceback messages. Technical Report draft-
bellovin-itrace-00.txt, IETF Internet draft, March 2000.

[BS01] Florian Buchholz and Clay Shields. Providing process origin information
to aid in network traceback. Technical Report 2001, CERIAS, Purdue
University, April 2001.

[BY97] Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs.
Technical report, Computer Science and Engineering Department, Uni-
versity of California at San Diego, November 1997.

[Eri00] Peter Eriksson. pidentd ident daemon v3.0.12. available at:
http://www2.lysator.liu.se/~pen/pidentd/, December 3, 2000.

[Gol96] Dave Goldsmith. ident-scan. Email post to bugtraq mailing list. Available
at: http://lists.insecure.org/bugtraq/1996/Feb/0024.html, February 13,
1996.

[Hob96] Hobbit. netcat v1.10. available at: http://www.l0pht.com/ weld/netcat/,
March 20, 1996.

[JKS+93] Hyun Tae Jung, Hae Lyong Kim, Yang Min Seo, Ghun Choe, Sang Lyul
Min, Chong Sang Kim, and Kern Koh. Caller identi�cation system in the
Internet environment. In Proceedings USENIX UNIX Security Symposium
IV, 1993.

[Joh85] M. St. Johns. Authentication server. RFC 931, TPSC, January 1985.

[Joh93] M. St. Johns. Identi�cation protocol. RFC 1413, US Department of
Defense, February 1993.

[lin00] Debian Linux operating system v2.2. available at: www.debian.org, Au-
gust 14, 2000.

[MBKQ96] Marshall McKusick, Keith Bostic, Michael Karels, and John Quarter-
man. The Design and Implementation of the 4.4 BSD Operating System.
Addison Wesley, 1996.

[McC00] Ryan McCabe. oidentd ident daemon v1.7.1. available at:
http://ojnk.sourceforge.net/, October 22, 2000.

102

[MM01] Jim Mauro and Richard McDougall. Solaris Internals: Core Kernel Ar-
chitecture. Sun Microsystems Press, 2001.

[Mor98] R. Morgan. S/ident: Security extensions for the ident protocol. draft-
morgan-ident-ext-04.txt, Stanford University, March 1998.

[Ope00] OpenBSD operating system v2.8. available at: www.openbsd.org, De-
cember 1, 2000.

[PL01] K. Park and W. Lee. On the e�ectiveness of probabilistic packet marking
for IP traceback under denial of service attack. In Proceedings of the
IEEE INFOCOM01, Anchorage, Alaska, 2001.

[Pos81] J. Postel. Internet protocol. RFC 791, ISI, September 1981.

[RP92] J. Reynolds and J. Postel. Assigned numbers. RFC 1340, ISI, July 1992.

[SCH95] Stuart Staniford-Chen and L. Todd Heberlein. Holding intruders account-
able on the Internet. In Proceedings IEEE Symposium on Security and
Privacy, 1995.

[sen] Sendmail. available at: www.sendmail.org.

[SHA93] Secure hash standard. National Institute of Standards and Technology,
FIPS PUB 180, May 1993.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer
forensics. ACM Transactions on Information and System Security, 1(3),
1999.

[SMK01] Joel Scambray, Stuart McClure, and George Kurtz. Hacking Exposed,
pages 319 { 321. Osborne: McGraw Hill, 2 edition, 2001.

[sol] Sun Solaris operating system v2.7. available at: www.sun.com.

[SP01] D. Song and A. Perrig. Advanced and authenticated marking schemes
for IP traceback. In Proceedings of the IEEE INFOCOM01, Anchorage,
Alaska, April 2001.

[Ste93] W. Richard Stevens. Advanced Programming in the UNIX Environment.
Addison-Wesley, 1993.

[SWKA00] Stefan Savage, David Wetherall, Anna R. Karlin, and Tom Anderson.
Practical network support for ip traceback. In SIGCOMM, pages 295{
306, 2000.

[Vah96] Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, 1996.

[Ven92] Wietse Venema. TCP wrapper: Network monitoring, access control, and
booby traps. In Proceedings USENIX UNIX Security Symposium III,
1992.

[YE00] Kunikazu Yoda and Hiroaki Etoh. Finding a connection chain for tracing
intruders. In Proceedings 6th ESORICS, 2000.

103

[YKS+93] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. Ssh
protocol architecture. draft-ietf-secsh-architecture-04, Network Working
Group, June 1993.

[ZP00] Yin Zhang and Vern Paxson. Detecting stepping stones. In Proceedings
10th USENIX Security Symposium, 2000.

