
CERIAS Tech Report 2001-84
The Gold Mailer

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

The Gold Mailer

Daniel Barbari
Chris Clifton$
Fred Douglis

Hector Garcia-Molina'
Stephen Johnson

Ben Kao*

Matsushita Information Technology Laboratory
182 Nassau Street, 3rd Floor

Princeton, N J 08542-7072 USA

Abstract

The goal of the Gold project is to implement a set
of tools t o interoperate with unstructured and semi-
structured data and services. W e have selected the
electronic mail domain ad the first scenario in which
t o implement and demonstrate some of the tools. This
paper describes the Gold Mailer, a system that pro-
vides w e r s wi th an integrated way t o send and re-
ceive messages wing different media (e-mail, fozes,
phones), ef iciently store and retrieve these messages,
and access a variety of sources of other w e f u l in-
formation. Our mailer solves the problems of infor-
mat ion overload, Organization of messages and mul-
tiple interfaces. B y providing good storage and re-
trieval facilities, it can be w e d ad a powerful informa-
t ion processing engine covering a range of w e f u l of-
fice information. Unlike some recent research efforta
([Ter90, K T 0 8 8 , L Y Y 8 9 1) which have implemented
mailers wi th relational-like query facilities, the Gold
mailer provides a database system interface that f i ts
more naturally. This document ezplains the current
implementation of the Gold mailer.

1 Introduction

The proliferation of electronic communication in-
cluding computer mail, faxes, and voice mail, has
led to a variety of disjoint applications and usage
paradigms. For example, in a typical office today, a
user might read and send electronic mail on a work-
station, communicate with a voice mail system using a
touch-tone keypad, and walk to another office to send
a fax. No single system allows a user to access all of
these forms of communication at once, or to intermix

'Current address: Stanford University, CS Dept., Stanford,

tCurrent address: University of Texss, Austin, CS Dept.,

t Current address: Northwestern University, EECS Dept.,

CA 94305

Austin, TX 78712

Evenston, IL 60208

Sharad Mehrotrat
Jens Tellefsen

Rosemary Walsh

them. Additionally, electronic mail (e-mail) is becom-
ing a central component of modern offices. More and
more interactions take place through e-mail, regard-
less of whether people are geographically separated or
not. Many people are finding it convenient to interact
with their secretaries or with a colleague next door
electronically simply to avoid constant interruptions
and to keep an organized record of tasks to be done.
At the same time, more and more important office
information is arriving electronically, either through
mailing lists, or news services such as USENET (net
news) [Hor] or bulletin boards. On the other hand,
as the storage capacity of modern computers has in-
creased substantially, allowing users to store more and
more messages for future reference.

Unfortunately, as the volume of messages grows,
the following problems arise:

0 There is an information overload: one cannot
cope with all the incoming messages. Many of
the messages are "junk" [Den821 and need to be
filtered out [LMY89]. Others are simply not rel-
evant at the moment, but could become so later.
However, the user is still forced to process them
in the order they show up, not in the order they
are needed.

0 Once they are processed, many messages need to
be stored or filed. Most mailers have primitive
filing facilities, and stored messages are seldom
found when needed. (A common question faced
by many e-mail users is: "In what file did I stash
away that message that came in last month?")

0 Users are forced to deal with multiple mail sys
tems. For instance, regular electronic messages
come in one way, and FAXes are received another
way.

In this paper we describe a new electronic mail Sy5
tem, the Gold mailer, that addresses these problems.
A primary goal of the Gold mailer is to develop a

92
1063-638U93 $03.00 0 1993 IEEE

system capable of sending and receiving messages us-
ing different media, and to store and retrieve mes-
sages efficiently. The system will treat all these media
in an integrated way. It is clear that some sort of
mail database is essential for storing large numbers of
messages and later finding them. Current research ef-
forts (e.g., [TerSO, KT088, LMY891) have provided
mailers with relational-like query facilities. Typically,
each stored message is viewed as a tuple with fixed
fields such as "from," "to," and "subject." Users can
then find messages that satisfy some conditions such
as "date > Jan 10" or "from = fred."

Instead, Gold views messages as unstructured and
semi-structured sequences of words. Queries can look
for messages containing certain words (e.g., find mes-
sages with "fat" and "cat"). Queries can also spec-
ify proximity searches (e.g., "fat" within z words of
"cat"). In this paper we will argue that this unstruc-
tured model is more appropriate for message searches
and can also encompass a wider variety of message
formats, even unknown formats.

Our goal is to find out how this data should be man-
aged. The traditional "database approach" would be:
"here is the standard interface for data management
(e.g., relations and SQL); let the user figure out how
to use it." Our approach instead is to start from the
application , and design a database system interface
that fits naturally. Hence , our work can be thought
of as "database interface" research.

A secondary goal is to allow use of existing inter-
faces for electronic mail. (The current prototype of the
Gold mailer is upwards compatible with ME , a previ-
ous prototype was compatible with the BSD Mailer.)
For Gold we decided to work with existing mailers and
add functionality to them. (For instance, adding the
possibility of handling multimedia mail.) All old fea-
tures remain, and users can migrate to the new func-
tionality as they need it. A more modern graphical
interface to the Gold mailer is also provided for users
who prefer it.

Once a mailer has good storage and retrieval facili-
ties, it can be used as a powerful information process-
ing engine. For example, messages from news services
and bulletin boards can be automatically stored in the
database, without having the user see them. When the
user requires information of a given type, he can query
the database for relevant messages. This is the same
approach followed by systems such as WAIS [Kah89]
and the Community Information System [GLB85], ex-
cept that now a single user interface provides access
to both electronic mail and news messages.

The mailer database can also be extended to cover
other useful office information. For example, Gold can
store "address cards" that contain addresses, phone
numbers, and e-mail addresses, and other information.
From within the mailer, a user can query these cards
in exactly the same way he would search for old mes-

sages. For instance, a user can look for the e-mail
address of someone at "Computer," "Science," and
"Berkeley." The answer will then appear as a set of
"virtual" messages that the user can examine. Reply-
ing to one of these found cards is equivalent to sending
a message to the desired e-mail address. Hence, the
entire operation of looking up an address and sending
e-mail is done entirely within the mailer, with almost
no need for new commands. To achieve this fusion of
information (messages, address cards, and other types
to be described), it is important that the mailer pro-
vide a flexible model for stored objects. This is an-
other reason why we favored our unstructured object
approach as opposed to making messages structured
with predetermined fields such as "to" and "from."

The environment for which Gold is being developed
consists primarily of workstations connected to local-
area Networks on the Internet. Workstations handle
electronic mail and other data, which may be stored
locally or on shared file servers. In addition, phone
lines connect devices like phones, faxes and modems.
Some of the workstations have interfaces to the phone
lines via a fax board or a phone board. These inter-
faces provide the user with the capability to send and
receive faxes and phone calls. Scanners allow the user
to input printed documents into his/her system to be
handled by the system. Other computers may act as
repositories of other sources of information (e.g., arti-
cles in NetNews, DowJones activity, library catalogs.)
The user will also be able to access these sources using
the mailer interface.

The paper is written as follows. In Section 2, we de-
scribe our approach and goals. In Section 3 we address
the indexing issues that rise in designing the mailer.
Finally Section 4 offers conclusions and sketches future
goals.

2 Approach

The architecture of the Gold system is given in Fig-
ure 1. Users interact with the front end, issuing com-
mands to read new mail messages and retrieve others
from the database. When a user decides to store a
new message, the front end gives it to the preproces-
sor; it breaks it up into tokens and gives it to the
index engine. The preprocessor can also receive mes-
sages directly from a news feed, for automatic index-
ing. The preprocessor produces a canonical file that
is used by the index engine to create the appropri-
ate data structures. Messages are stored in an object
store or database (currently, each message is stored as
a separate UNIX file). The front end also submits
queries to the index engine. After a search, the engine
gives the front end a list of the matching objects (file
identifiers in our case). The front end retrieves the
objects for displaying. An index engine, in general,

'UNM is a trademark of UNIX Systun;r Laborstoriu.

93

news feed

users

3 keyword documentid position
subject d o c s 55
time d o c s 55
for docrxx 55

in/out
messages

header
no-header
no-header
no-header

object Kl
Figure 1: Gold mailer architecture.

can receive queries and storage requests from several
front ends, including those on other machines. The im-
plementation of concurrency control issues that arise
once multiple front-ends are permitted is ongoing (see
Section 3).

2.1 Supporting Mail Message Data

A mail message commonly have two pieces of data:

0 Headers, i.e., value pairs such as "subject: time
for lunch" or "from: joe."

e The body of the message

The user may view the mail message simply as a
collection of words, where each word is at a given 10-
cation in the original message or document. Alter-
natively, the user may want to view the message as a
semi-structured object with separate components such
ae "subject," "from" and the actual body of the mea-
sage. Notice that the types of queries that one may
ask vary in the two views. For instance, in the first
one the user can enquire about the relative position of
two words regardless of where they are in the message.
In the second, the relative positions of words are likely
to refer to the name segment of the message. (Words
"time" and "lunch" within the header "subject.")

One of the key design decisions in Gold involves
our handling of structured fragments within a docu-
ment. The key is to be ae flexible as possible in the
index engine and let the preprocessor decide about the
strategy. One can think about the data stored in the
index engine as a relation with the following schema:

0 keyword I documentid I position I header a
n I I I n
The attribute documentid points to the indexed

object (e.g., message, address card). The attribute
position signals the position in which the keyword oc-
curs within the document. The header attribute is
provided to support headers if the application decides
there is a need for it. In the general case, this attribute
can receive a default value (noheader). Two points
are worth noticing here:

0 This relation is just a way of viewing the data
supported by the index engine. The query lan-
guage does not make use of the attribute names
mentioned above.

0 The values of attributes in this relation do not
have to be atomic. This gives a lot of flexibility
to the engine. This fact is indeed exploited in the
current implementation of the mailer, as we will
see shortly.

To support the first view of a mail message (simply
a collection of words), a preprocessor can recognize
a colon as a special delimiter between a header and
its value, and report the position of the header and
what follows in a line as identical. For example, if
the "s" in "subject: time for lunch" is a t byte 55 in
the original message, then the preprocessor will report
that the words "subject," "time," "for," and "lunch"
are all at position 55. If a mer wishes to find messages
with keywords "lunch" and "time," then any message
with both these words will be retrieved, regardless of
whether they are in the subject line or not. If instead a
user wishes to search for "lunch" and "time" appearing
in a "subject" line, then a query is submitted looking
for those three words occurring at exactly the same
position (i.e., distance between them is zero). This last
query will not retrieve messages that simply contain
the words "subject," "lunch," and "time" somewhere
in them. However, it will retrieve a message with the
line "time: lunch subject ... " or "subject: lunch for
time." This can be viewed ae the following instance

[Xinch I d o c s I 55 I no-header 1
Alternatively, a mail message may be considered as

a collection of labeled fragments. Thus, the preproces-
sor will report the word "subject" as the label for the
words "time," "for," and "lunch", and provide byte
ofbets of the words within the fragment resulting in
the following instance of the relation:

94

keyword documentid position header
time doc- 0 subject
for doc- 1 subject ~.

. lunch doc_xxx 2 subject

the same application that handled the preprocessing,
there will be no confusion. Using non-atomic values
for the headers allows the engine to be more efficient
in searches. To see that, think that a search for the ad-
dress card containing the name "Smith" would involve
a join operation if the two headers were not encoded
in the same attribute. If we want to avoid the join o p
erations and still have atomic values, we would have
to have separate attributes for each possible header.
Since we want to deal with different kinds of mail for-
mats and do not know beforehand how many different
kinds of headers there will be, simply letting the pre-
processor decide about the encoding allows us to use
always the same view supported by the engine.

The Gold mailer supports the feature of message
annotation. When a new message is to be stored, the
front end allows the user to enter additional words for
indexing. For instance, the user may want to associate
the words "budget" and "sales" with a message, even
though these two words do not appear in the message
itself. The front end essentially appends these added
index words at the end of the mesaage, and the in-
dex engine does not treat them differently from other
words in the message. Mailers usually provide the ca-
pability of defining folders. A folder is a "bin" with
a name in which messages can be collected for future
reference. The Gold mailer uses annotation to im-
plement folders, by adding fragments such as "folder:
inbox" to the original message.

Notice that the usage of message annotation helps
to create a "virtual folder" of messages containing the
keywords used for the annotation. However, the user
does not get exactly the same functionality as folders.
Notice that, for instance, querying the system for all
the messages that contain the keyword "databases"
will not only retrieve messages annotated by that key-
word, but also messages that contain the keyword
somewhere in the text. Using both folders and an-
notation, the user has a lot of flexibility in organizing
the messages.

1 keyword I docid
J Smith I doc-yyy I 55 I name#add-card 1

I pos. I header 1

2.2 Supporting Multi-media Documents

The Gold Mailer deals with information coming
from media other than electronic mail. In particular,
we can receive and store information coming from fax
machines. Faxes are first received by a fax board (this
board can be connected to any machine in the local
area network), where a daemon process sen& them to
an optical character recognition server (OCR). This
software, with the help of an online dictionary, recog-
nizes as many words as possible in the fax and creates
a file with these keywords. These words will be used to
index the document in the index engine. Notice that
perfect OCR is not necessary for this application, and
even low hit rates are good enough to produce a hand-
ful of keywords. If the addressee is recognised by the

95

OCR, a message is sent to the user in an electronic
mail format containing pointers both to the fax image
and to the file that contains the keywords. If it is not
possible to recognize the recipient, the daemon sends
the message to a predetermined "faxmaster" who will
read the fax and reroute it to its final destination.
Both the fax electronic image and the keyword file
are stored in a fax directory (a directory in the local
file system), but only the addressee has reading rights
to it. Storing the fax images in a directory allows for
easy sharing of faxes when we have multiple recipients,
while saving storage space. The same is valid if the
user wants to forward the fax to other users. This is
true as long as the users are in the same local-area net-
work. (We assume that all the machines in the local
area network share a common file system. Of course,
if the fax is to be sent electronically to a user not
in the local system, a copy should be included in the
message.) Faxes are displayed using the X-Windows
library. Gold also allows the user to send messages via
fax. The user simply composes the message in the ter-
minal and selects fax as the media. The fax number
is retrieved from the address card of the recipient.

The Gold Mailer also supports the ability to com-
pose and receive messages that contain different kinds
of types, e.g., textual data, images, etc. This is par-
ticularly important, for instance, when the user is try-
ing to send a fax to a recipient that does not share a
common file system with the sender. In order to im-
plement this, Gold supports the multimedia mail for-
mat, MIME (Multipurpose Internet Mail Extensions),
which extends the established RFC-822 Mail [Cro82]
and Bulletin Board Internet message protocols.

2.3 Query Language Examples

Our goal was to develop a query language that was
a simple and flexible as the message model. The sim-
pler and more common a query is, the easier it should
be to specify. We also want the language to be com-
patible with common mailer interfaces. Let us illus-
trate with examples. (Complete details can be found
in [BJM92].) A common command to send mail to
users z and y is:

mail z y
Gold provides a new type of mail command that is
search based, e.g.,

It searches through the database for objects with the
keywords "friend" and "Princeton." This will locate
one or more address cards for people that have both
these keywords associated with them. (The user can
then send mail to the selected addresses, or to subsets
of them.) The command

mail friend, Princeton Joe, Berkeley
searches for cards with either "friend" and "Prince-
ton" o r "Joe" and "Berkeley" in them. Thus, the

mail friend, Princeton

space between terms indicates an "or" to match the
syntax of the original mail command (where a space
means that messages should go to both recipients).
We use the comma then to indicate a logical "and" of
the terms. The actual character used for delimiting is
not critical (it can be easily changed); the key point
here is that it is important to match the query syntax
to that of the mailer commands.

Since we expect most queries not to involve proxim-
ity searches, this should be the default. Thus, in the
query above, "Joe" and "Berkeley" can appear any-
where in the address card. If proximity is required
for the match, it can be specified by grouping to-
gether the terms involved. The notation "[Joe, Berke-
leyI(25)" means the words should be within 25 words
of each other. (When the number is left out, a user-
changeable default is used. We do not expect most
users to care strongly if two terms are within 25 in-
stead of 26 bytes.)

The command
find subject:lunch

is the way to find messages that contain the word
"lunch" labeled by the header "subject" (as shown in
one of the tables of Section 2.1), while the command

is the way to find messages that contain the keywords
"subject" and "lunch" in the same position (as shown
in the other table of Section 2.1).

We have developed a graphical front end for the
standard MH mailer in both X11 windows for ma-
chines running UNIX (or a compatible operating sys-
tem) and in the NeXT application developer. The
same set of commands can be invoked graphically or
via the extended version of MH. Figure 2 is the main
screen presented to the user when the Gold mailer is
invoked. The interface allows the user to incorporate
new messages, send messages using the information
stored in address cards, edit address cards, and pose
queries to the database to retrieve messages.

find [subject, lunch](O)

3 Indexing

In this section, we describe the indexing issues in-
volved in the Gold mailer. For the purpose of efficient
query evaluation, the index engine keeps suitable in-
dex information about the documents. The index en-
gine basically consists of three components- server,
engine, and the cache manager. The server attends
requests from the front-end (mailer) at a given UNIX
port. The mailer communicates with the server using
UNIX sockets. The engine maintains the information
corresponding to the messages on the stable storage
(the disk) and supports the basic operations of the
index engine. The cache manager keeps a cache of
the data structures in main memory. Several main
memory blocks are allocated to the cache manager
when the index engine is invoked. The cache man-

96

C u m l Fddu : inbox

Figure 2: Main Screen

ager brings the blocks containing the data from the
secondary storage (the disk) on demand into these
main memory blocks and replaces them using the LRU
strategy.

As mentioned previously, the information stored by
the index engine may be viewed as a set of records
(k , d , p , h) , where L is the keyword, d the document
identifier, p the position, and h the header. The index
engine supports the following three operations:

1. insert d: This command instructs the index en-
gine to insert all the records for a document d.

2 . delete d: This command instructs the engine to
delete all the records corresponding to the docu-
ment d .

3 . retrieve query: This command instructs the en-
gine to find all the documents that satisfy the
query and return the list of names to the mailer.

Note that the response time for the evaluation of
the queries is critical for the acceptable performance
of the mailer. The index structure chosen for the in-
dex engine allows for the efficient evaluation of the
queries. Although the Gold mailer has the flavor of
an information retrieval system (IRS), there are ba-
sic differences that influence our design of the index
engine. Those are:

0 In an IRS, the insertions are usually done at night,
when the workload is low. The index gets re-
constructed once a day and the new documents
are not visible until that happens. In the mailer,
however, depending upon the nature of the docu-
ment, the user may expect to see a newly inserted
document immediately.

0 In an IRS deletions are never performed. In the
mailer, a user might decide that a message is no
longer of interest and therefore, should be deleted.
Thus, deletions are an issue for the index engine.

In the remainder of this section we will provide an
overview of the internal data structures maintained
by the engine and the algorithms it uses to handle the
requests made by the users. The complete details can
be found in [BJM92].

3.1 File Organization and Data Struc-
t ures

Our choice of the organization of the files and the
data structures is dictated by basically two factors:
the nature of the queries permitted in the system and
the space requirements to store the information. Note
that our query language only permits certain types of
queries. The following points about the nature of the
queries are noteworthy:

0 The queries involve searches for message identi-
fiers that contain a given set of keywords. A t y p
ical example of a query is to retrieve the set of
message identifiers (names) such that the message
contains keywords "mitl" and "gold".

0 Most of the queries will not be range queries. For
example, we do not expect to query the index en-
gine for message identifiers of the messages that
contain a keyword between "cat" and "dog". This
will largely dictate our choice of the index struc-
ture.

Since the queries require the index engine to per-
form keyword searches, we index the records based
on keywords. Further, since we do not expect range
queries, we store the records as a harhed file [U1188],
hashed on the keywords. Thus, the records corre-
sponding to a keyword are kept contiguously on disk
blocks resulting in minimal disk access during re-
trieval. Instead of keeping a separate record for each
position at which the keyword appears in the docu-
ment, for each unique document and header combina-
tion, a list of positions in which the keyword appears
is kept. This results in substantial space compaction
without degradation in performance. The set of posi-
tions corresponding to records in the same bucket are
also kept contiguously in disk blocks.

97

Instead of keeping the name of the documents along
with the records in the bucket, a list of documents
referred to as the document list is maintained. This
is done to improve the response time for the deletion
requests as will become clear later. Finally, the records
corresponding to a document in the hashed file are
chained together forming a list, referred to as the nezt
key list for the document. A pointer to the head of
this list is stored with the entry for the document in
the document list. The next key list is used to locate
records corresponding to a document when deleting
the entries of a document from the hashed file.

3.2 Engine Operations

In this section we briefly describe our implementa-
tion of the basic engine operations, that is, the insert,
delete and retrieve operations.

Insert: If we were to insert the records for a docu-
ment directly into the hashed file, we will need to ac-
cess disk blocks on the order of the number of distinct
keywords in the message which will be very costly, ea-
pecially for large message databases. Thus, in order
to improve performance and keep disk activity to a
minimum during the time the user is requesting o p
erations from the system, we perform the insert o p
eration differently. The records corresponding to a
document are inserted into the overflow lists. Over-
flow lists, one per keyword, exist only in main memory.
To insert the records of a document into the overflow
lists, a block (or more depending upon the size of the
message) of main memory is claimed from the cache
manager. For each keyword in the document the cor-
responding record is placed in the acquired block(s)
and the record is inserted to the tail of the overflow
list. Thus, the records for a document in the various
overflow lists are kept contiguously in main memory
blocks, unlike the way records are kept in the buck-
ets (in the buckets the records belonging to the same
keyword and not the same document are kept con-
tiguously). This makes the deletion of blocks from
the overflow list after they are reflected into the disk
very simple- we can simply return the blocks occupied
by the records of the message to the cache manager.
Further, it reduces the number of main memory blocks
required for maintaining overflow lists (else a message
with n keywords may have required us to request for
up to n main memory blocks for the various overflow
lists!).

We call a process that implements the above in-
sert algorithm a Mark Insert (MI) process. After the
termination of the MI process, the control can be re-
turned to the user executing an insert operation. The
insertion is periodically reflected in the disk image by
invoking an I process that makes the updates corre-
sponding to a document to the disk.

Delete: A deletion involves finding every keyword in
the document and deleting the corresponding entry. If
the records for the document are in the ovedow list
(and thus in main memory), then deletion can be effi-
ciently performed. However, if the records have been
inserted into the hashed file on the disk, then simi-
lar to the case of insert, deletion of the records for a
message requires accesses to various disk blocks which
if done online will substantially increase the response
time to the deletion request. For this reason, if the
records for the document are not on the overflow list,
then the entry for the document in the document list
is marked as "deleted" and the prompt returned to
the user. We call a process that implements the above
actions as a Mark Delete (MD) process. As in the
case of insert, the index engine periodically updates
the disk image by actually deleting the entries in the
hashed file. We call a process that implements the ac-
tual deletion a D process.

Retrieve: To retrieve the message names that sat-
isfy a query, the engine traverses the buckets in the
hashed file. Note that since we keep the records in
a bucket contiguously in the disk blocks, the amount
of disk access during retrieve is reduced. To retrieve
documents for a query, the buckets and the overflow
list corresponding to each keyword that appears in the
query are traversed. Due to space restrictions we do
not discuss our query optimization algorithms details
of which can be found in [BJM92]. When returning
the answer to the mailer, the engine follows the pointer
into the document list to retrieve the name of the doc-
ument. If a document is marked as deleted, its name
is not returned in the target list. We refer to a process
that performs a retrieve as an R process.

3.3 Concurrency Control and Recovery

Even though the Gold mailer is a single user system,
processes executing concurrently share the data struc-
tures and the records stored by the index engine. This
is due to the presence of the I and D processes that
may be executing in the background along with the
other user requested MI, MD, R processes. Presence
of concurrent processes sharing common data struc-
tures may result in a violation of the consistency of
the database and may further result in the user re-
trieving erroneous data (see [BJM92]).

One way to prevent inconsistency from occurring is
to execute each operation sequentially. This, however,
is unacceptable since it may require that the user-
requested RI MI or MD process be delayed until the
termination of an I or a D process (in case an I or
a D process began execution before the arrival of the
user-requested process). We, therefore, modify our al-
gorithms for the R, MI, MD, I and D processes to

98

obtain locks in such a fashion that inconsistent sce-
nario does not result. Locks in our algorithms are
obtained at the page level.

Another issue in the index engine is that of ensur-
ing atomicity of the processes in presence of system
crashes and process failures. To ensure atomicity, in
presence of failures, the effects of the partially exe-
cuted MI, and the MD processes are undone. How-
ever, since I and D processes are background pro-
cesses, and undoing them may result in a substantial
loss of work, they are restarted from the point they
were a t immediately before the crash. For the pur-
pose of recovery, the engine performs both physical
logging at the page level, as well as logical logging at
the level of the operations (e.g., insert, delete from a
bucket).

Due to space limitations, we are not able to describe
in details our concurrency control and recovery algo-
rithms, the details of which can be found in [BJM92].
The concurrency control and recovery mechanisms are
being added to Gold at this time.

4 Conclusions
We have designed and implemented a system that

allows users to store and retrieve their messages ef-
ficiently. The retrieval is content-based, thus freeing
the user from having to browse in their previously de-
fined folders (a usually burdensome task). Addition-
ally, users can select the preferred media of communi-
cation to their peers, without having to remember the
specific details such as phone or fax numbers or e-mail
addresses. The system is currently in use at MITL.

In the process of designing this system, we have de-
veloped an efficient indexing software (the Index En-
gine) , which incorporates issues such as concurrency
control and recovery. This piece of software will be a
cornerstone for the development of other stages of the
Gold project. Due to its simplicity, it can be made to
index objects other than files (e.g., databases, library
catalogs, etc.).

The mailer corresponds to the first stage of the
Gold project. A second stage, currently under de-
velopment focuses on the notion of accessing other in-
formation sources other than the local "database" or
e-mail messages. The notion is an extension of the
work in [GJSJSl], in which information retrieval tech-
niques are used to allow access to the file system. We
intend to use our query language and indexing tech-
niques to let the user find information in a vast array
of sources. A long term goal of the project is to con-
sider all these sources as a very large, heterogeneous,
multimedia database in which the user will want to
run transactions simply and effectively.

The design and implementation of the index
engine. Technical Report MITL-TR-3492,
M.I.T.L, 1992.

[Cro82] D. Crocker. Standard for the Format of
Arpa Internet Text Messages. Technical Re-
port RFC-822, Network Information Cen-
ter, August 1982.

P.J. Denning. Electronick Junk. Communi-
cations of the ACM, 25(3):163-165, March
1982.

[GJSJSl] D. Gifford, P. Jouvelot, M. Sheldon, and
J. O'Toole Jr. Semantic File Systems. In
Proceedings of 13th ACM Symposium on
Operating Systems Principl ea, pages 16-
25. Association for Computing Machinery
SIGOPS, October 1991.

[GLB85] D. Gifford, J.M. Lucassen, and S.T. Berlin.
The application of digital broadcast com-
munication to large scale information sya-
tems. IEEE .loumcrl on Selected ARM of
Communication, May 1985.

M. Horton. How to Read the Network News.
Technical Report UNIX Documentation.

[Den821

[Hor]

[Kah89] B. Kahle. Wide area information server
concepts. Technical Report Anonymous
FTP from t hink.com: /public/wab/w&&
aXX.tar.2, 1989.

[KT0881 J. Kent, D. Terry, and W.S. Orr. Brows-
ing electronic mail: Experiences interfacing
a mail system to a DBMS. In Proceedings of
the Fourteenth International Conference on
Very Large Databases, Loa Angeles, pages

Ob
ject Lens: A "Spreadsheet" for Coopera-
tive Work. ACM l+ansactions on Ofice In-
formation Systems, 6(4):332-353, October
1989.

D. B. Terry. 7 Steps to a Better Mail Sya-
tem. Technical Report CSL-90-12, Xerox
Palo Alto Research Center, 1990.

[U11881 J. D. Ullman. Databaae and Knowledge-
Base Systems. Volume I. Computer Science
Press, 1988.

323-336, August 1988.

[LMY89] K. Lai, T.W. Malone, and K. Yu.

[TergO]

References

[BJM92] D. Barbar&, S. Johnson, and S. Mehrotra.

99

