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Abstract 

One important step in integrating heteroge- 
neous databases is matching equivalent at- 
tributes: Determining which fields in two 
databases refer to the same data. The mean- 
ing of information may be embodied within a. 
database model, a conceptual schema, appli- 
cation programs, or data contents. Integra- 
tion involves extracting semantics, expressing 
them as metadata, and matching semantically 
equivalent data elements. We present a proce- 
dure using a classifier to categorize attributes 
according to their field specifications and data 
values, then train a neural network to recog- 
nize similar attributes. In our technique, the 
knowledge of how to match equivalent data 
elements is “discovered” from metadata , not 
“pre-programmed”. 

1 Introduction 

One problem in developing federated databases is se- 
mantic integration: determining which fields are equiv- 
alent between databases. Attributes (classes of data 
items) are compared in a pairwise fashion to deter- 
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mine their equivalence. Manually comparing all pos- 
sible pairs of attributes is an unreasonably large task, 
especially since most pairs do not represent the same 
information. Simple ad-hoc guesswork, on the other 
hand, is likely to miss some attributes that should map 
to the same global attribute. US West reports having 
5 terabytes of data managed by 1,000 systems, with 
customer information alone spread across 200 different 
databases [DKM+93]. One group at GTE began the 
integration process with 27,000 data elements, from 
just 40 of its applications. It required an average of 
four hours per data element to extract and document 
matching elements when the task was performed by 
someone other than the data owner [VH94]. Other 
GTE integration efforts have found the elements over- 
lapped or nearly matched in their database to be close 
to 80% [VH94]. 
(DKM+93] pointed out some important aspects of se- 
mantic heterogeneity: Semantics may be embodied 
within a database model, a conceptual schema, ap- 
plication programs, and the minds of users. Seman- 
tic differences among components may be considered 
inconsistencies or heterogeneity depending on the ap- 
plication, so it is difficult to identify and resolve all 
the semantic heterogeneity among components. Tech- 
niques are required to support the re-use of knowledge 
gained in the semantic heterogeneity resolution pro- 
cess. 
The goal of our research is to develop a semi- 
automated semantic integration procedure which uti- 
lizes the meta-data specification and data contents at 
the conceptual schema and data content levels. Note 
that this is the only information reasonably available 
to an automated tool. Parsing application programs 
or picking the brains of users is not practical. We want 
the ability to determine the likelihood of attributes re- 
ferring to the same real-world class of information from 
the input data. We also desire to have the ability to 
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Figure 1 Procedure of Semantic Integration Using Neural Networks 

reuse or adapt the knowledge gained in the seman- 
tic heterogeneity resolution process to work on similar 
problems. We present a method where the knowledge 
of how to determine matching data elements is dticou- 
ered, not pre-programmed. 
We start with the assumption that attributes in differ- 
ent databases that represent the same real-world con- 
cept will have similarities in structure and data values. 
For example, employee salaries in two databases will 
probably be numbers greater than 0 (which can be 
determined from constraints, this is structural simi- 
larity). The same can be said for daily gross receipts. 
However, the range and distribution of data values will 
be very different for salaries and gross receipts. From 
this we can determine that two salary fields probably 
represent the same real-world concept, but gross re- 
ceipts are something different. Note that the assump- 
tion is that there are similarities, not that we know 
what those similarities are. 
In Figure 1 we outline our method. In this process, 
DBMS specific parsers extract information (schema or 
data contents) from databases. We then use a classi- 
fier that learns how to discriminate among attributes 
in a single database. The classifier output, cluster cen- 
ters, is used to train a neural network to recognize 
categories; this network can then determine similar at- 
tributes between databases. 
As an example of how this system could be used, imag- 
ine that we are planning university admissions. We 
wish to make sure that we do not admit too many stu- 
dents; to do this we need to check if classes are oversub- 
scribed. We are used to using the Registrar’s database 
which contains the number of students who took a 
course and the room number (among other informa- 
tion). However, it does not contain room size infor- 
mation. After some checking, we are told that Build- 
ing and Grounds maintains a database which contains 
room size and we are given access to this database. 
A first attempt is to issue the query (using a multi- 
database query language such as [Lit89], or better yet 
a database browser with multidatabase support): 

Select sum(c.room#) 
From Registrardb.classes c, B+G.rooms r 
Where c .room# = r.room# and c.size >= r.size 

However, we are given the surprising result of O! 
We then remember to use the semantic integration 
tool (using a pre-trained network); in seconds we are 
given a list of likely matches which shows that r.seats 
matches c&e much more closely than r.size. (Build- 
ing and Grounds considers the size of a room to be 
the size in square feet). We then reissue the query 
(using r-seats instead of rsize) and are given the num- 
ber of classes which filled their rooms. Note that the 
main user effort involved is finding the appropriate 
databases; the integration effort is low. The end user is 
able to distinguish between unreasonable and reason- 
able answers, and exact results aren’t critical. This 
method allows a user to obtain reasonable answers re- 
quiring database integration at low cost. 
This paper is organized as follows. We first review ex- 
isting work in this area. In Section 3 we discuss the 
semantics available from databases. In Section 4 we 
describe our technique of using a self-organizing map 
classifier to categorize attributes and then train a net- 
work to recognize input patterns and give degrees of 
similarity. In Section 5 the experimental results of 
testing our techniques on three pairs of real databases 
are presented. Finally, in Section 6 we offer our con- 
clusions. 

2 Related Work 

A federated architecture for database systems was pro- 
posed by McLeod and Heimbigner in [MH80]. A ba- 
sic conceptual technique for integrating component 
views into a “superview” was introduced by Motro and 
Buneman pB81]. The Multibase project [SBU+81, 
DH84] by the Computer Corporation of America in 
the early 80’s first built a system for integrating pre- 
existing, heterogeneous, distributed databases. The 
process of schema generalization and integration, how- 
ever, still needs the involvement of database designers 
to find those objects that contain information of the 
same domain or related data. This becomes a bot- 
tleneck for schema integration when the size of the 
database is large. 
One approach for determining the degree of object 
equivalence, proposed by Storey and Goldstein [SG88], 
is to compare objects in a pairwise fashion by consult- 
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ing a lexicon of synonyms. It is assumed that some 
classes or at least some of their attributes and/or rela- 
tionships are assigned with meaningful names in a pre- 
integration phrase. Therefore, the knowledge about 
the terminological relationship between the names can 
be used as an indicator of the real world correspon- 
dence between the objects. In pre-integration, object 
equivalence (or degree of similarity) is calculated by 
comparing the aspects of each object and computing 
a weighted probability of similarity and dissimilarity. 
Sheth and Larson [SL90] noted that comparison of 
the schema objects is difficult unless the related in- 
formation is represented in a similar form in different 
schemas. 

2.1 Existing Approaches 

In [DKM+93] it is noted that semantics are embod- 
ied in four places: The database model, conceptual 
schema, application programs and minds of users. An 
automatic semantic integration procedure can only 
make use of information contained in the first two. We 
further break this into three parts: The names of at- 
tributes (obtained from the schema); attribute values 
and domains (obtained from the data contents); and 
field specifications (from the schema,‘or in some cases 
from automated inspection of the data). We detail 
these approaches below. 

2.1.1 Comparing attribute names 

Systems have been developed to automate database 
integration. One that has addressed the problem of at- 
tribute equivalence is MUVIS (Multi-User View Inte- 
gration System) [HR90]. MUVIS is a knowledge based 
system for view integration. It assists database design- 
ers in representing user views and integrating these 
views into a global conceptual view. MUVIS deter- 
mines the degree of similarity and dissimilarity of two 
objects during a p-e-integmtion phrase l. 
The similarity and dissimilarity in MUVIS is primarily 
based on comparing the field names of the attributes. 
Object equivalence is determined by comparing the as- 
pects of each (such as class names, member names, 
and attribute names) and computing a weighted value 
for similarity and dissimilarity. A recommendation is 
then produced as to how the integration should be per- 
formed. 
Most automated tools developed to assist designers in 
establishing object correspondences by comparing at- 
tribute names work well for homonyms (same name 
for different data), as users are shown the false match. 
However, different objects can have different synonyms 

‘Since, in the real world, se-tics of terms may vary, the 
relationship between two attributes is usually fuzzy. Therefore, 
a degree of similarity and diasimikity has a strength of [O,l]. 

that are not easily detected by inspection. This shifts 
the problem to building the synonym lexicon. Even 
a synonym lexicon has limitations because it is diffi- 
cult for database designers to define a field name by 
using only the words that can be found in a dictio- 
nary or abbreviations carrying unambiguous meanings 
and in some cases, it is difficult to use a single word 
rather than a phrase to name a field. These reasons 
make it expensive to build a system of this approach. 
Sheth and Larson [SL90] also pointed out that com- 
pletely automatic determination of attribute relation- 
ships through searching a synonym lexicon is not pos- 
sible because it would require that all of the semantics 
of schema be completely specified. Also, current se- 
mantic (or other) data models are not able to capture 
a real-world state completely and interpretations of 
real-world state change over time. 

2.1.2 Comparing attribute values and do- 
mains using data contents 

Another approach of determining attribute equiva- 
lence is comparing attribute domains. Larson et. al. 
[LNE89, NB86] and Sheth et. al. [SLCN88] discussed 
how relationships and entity sets can be integrated pri- 
marily based on their domain relationships: EQUAL, 
CONTAINS, OVERLAP, CONTAINED-IN, and DIS- 
JOINT. Determining such relationships can be time 
consuming and tedious [SL90]. If each schema has 
100 entity types, and an average of five attributes per 
entity type, then 250,099 pairs of attributes must be 
considered (for each attribute in one schema, a poten- 
tial relationship with each attribute in other schemas 
should be considered). Another problem with their 
approach is poor tolerance of faults. Small amounts of 
incorrect data may lead the system to draw a wrong 
conclusion on domain relationships. 
In the tool developed to perform schema integration 
described in [SLCN88], a heuristic algorithm is given 
to identify pairs of entity types and relationship types 
that are related by EQUAL, CONTAINS, OVERLAP, 
and CONTAINED-IN domain relationships. Sheth 
and Gala [SG89] also argued that this task cannot 
be automated, and hence we may need to depend on 
heuristics to identify a small number of attribute pairs 
that may be potentially related by a relationship other 
than DISJOINT. 

2.1.3 Comparing field specifications 

In [NB86] the characteristics of attributes discussed 
are uniqueness, cardinality, domain, semantic integrity 
constraints, security constraints, allowable operations, 
and scale. In our prior work [LC93], we presented 
a technique which utilizes these field specifications to 
determine the similarity and dissimilarity of a pair of 
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attributes. It is assumed that given a database de- 
sign application, different designers should tend to 
have similar schema and constraint design because 
they should have the same technology and knowledge 
about designing a “good” database. Thus informa- 
tion about attributes; such as length, data types, and 
constraints; can be used as “discriminators” to de- 
termine the likelihood that two attributes are equiva- 
lent. The experimental results show that characteris- 
tics of schema information are very effective “discrim- 
inators”. This technique can be used with the other 
approaches, as a “first step” to eliminate clearly in- 
compatible attributes. This allows the process of com- 
paring attribute domain relationships, which is more 
computationally expensive, to work on a smaller prob- 
lem. It can also be used to co&m conclusions reached 
using other approaches. However, this technique (as 
well as other related techniques) needs a theoretical 
basis for developing heuristics for degree of similarity 
and dissimilarity. Another weakness is that schema 
information may not be always available. We now 
discuss the information we use to determine database 
semantics. In Section 4 we present our integration 
method. 

3 Semanticp of Databases 

We have described some of the information available 
to an automated semantic integration method. In this 
section we describe the specific pieces information we 
use as “discriminators”. Note that this is not an ex- 
haustive list; it is simply the information we believe to 
be readily available and useful. One advantage of our 
method is that the relative usefulness of these discrim- 
inators is discovered automatically; it does not hurt to 
provide “extra” discriminators that do not provide a 
good basis for comparing attributes. For input to the 
classifier, this information is mapped to a vector of 
values in the range [O,l] 2 , where each item in the 
vector represents one discriminator. The choice of dis- 
criminators (and the software to extract them) need 
be done only on a per-DBMS basis, and the technique 
presented allows the use of discriminators other than 
those we discuss. One piece of information we do not 
use is attribute names. This has been well studied, 
and is complementary to our method. Integrating a 
comparison of attribute names with this method is an 
area for future work. 

3.1 Field Specifications 

The characteristics of field specifications in the schema 
level we use are: data types, length, and “supplemen- 

lWithout normalization, the effect of one node with analog 
input may be much more significant than the effect of other 
nod- with binary input as ‘Uisuimhmtor”. 

tal data types” such as format specifications (exam- 
ples are the IBM AS/400 EDTWRD and EDTCDE 
specifications3); and the existence of constraints (pri- 
mary keys, foreign keys, candidate keys, value and 
range constraints, disallowing null values, and access 
restrictions). It is not difficult to extract these char- 
acteristics from databases. Many relational databases 
store this information in tables, allowing SQL queries 
to extract the information. As another example, the 
schema definition tiles of IBM AS/400 use a fixed for- 
mat. Thus we can develop a set of DBMS-specific 
parsers to obtain this information. We map some of 
this information to binary values (e.g. key field or not) 
and others to a range [O,l] (e.g. field length is mapped 
using the function f(Iength) ‘= 2 + (l/(1 + k-‘engfh) - 
0.5) 4. Category information such as data types re- 
quires special treatment. For example, if we convert 
data types to a range [O,l] and assign the values 1,0.5, 
and 0 to data types date, numeric, and character, then 
we are saying a date is closer to a numeric field than 
a character. We do not “pre-judge” such information, 
but let the classifier determine if this is true. Instead 
we convert this category input to a vector of binary 
values (e.g. l,O,O for date type, O,l,O for numeric type, 
and O,O,l for character type). 

3 In some cases (such as flat-file data) we may not have 
an accessible schema definition. Many of the above 
characteristics can be determined by inspecting the 
data. This need not be a manual process, commercial 
tools such as DBStar are available that can automati- 
cally extract schema information from flat files. 

3.2 Data Contents 

The data contents of different attributes tend to be dif- 
ferent even though their schema designs, such as data 
type and length, are. the same. This is because their 
data patterns, value distributions, grouping or other 
characteristics are different. For example, YISN” and 
“Account balance” can all be designed as nine-digit nu- 
merical fields; they may not be distinguishable based 
solely on their schema and constraint design charac- 
teristics. However, their data contents are different, 
and therefore their data patterns, value distributions, 
and averages are all different. Thus, examining data 
contents, the technique used in the content level, can 
correct or enhance the accuracy of the outcomes from 
the dictionary level and the schema level. 
Note that this is not the same as the domain anal- 

3EDTWRD (edit word) is used to specify for a particular 
field. EDTCDE (edit code) provides specificformatsfor numeric 
fields. 

‘For nchema information, we use k = i.1. This provides 
reasonable dis&mina tion for the range [0,50]. We use the fimc- 
tion f(z) = l/(1 + k-=). for normalising numeric ranges, with 
k = 1.01. Varying k compensates for rounding errors. 
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ysis of Larson et. al. [LNE89, NB86] and Sheth et. 
al. [SLCN88]. Domain analysis compares the com- 
plete contents of each pair of attributes. We instead 
perform a one-time analysis of each attribute to ob- 
tain a set of characteristics that describe that data. 
We divide these characteristics into two types: Char- 
acter and Numeric. Types that do not map into these 
(such as binary fields or user-defined types) are rare 
enough that other information should be sufficient to 
discriminate them from other types. 

Data patterns for character fields 

1. 

2. 

3. 

The ratio of the number of numerical characters to 
the total number of characters. For example, the 
ratio of numbers to characters in License Plate 
for different states are different. This ratio of 
Last-Name or First-Name should be zero. But 
for the field Stud-Id whose data type is designed 
as character (e.g. 999-99-9999), this ratio is 9/11. 
For the field Address, this ratio should be lower. 

Ratio of white-space characters to total charac- 
ters: A Last-Name or First-Name field will con- 
tain few white-space characters. An Address field 
will normally contain some white-space. 

Statistics on length: In addition to the simple 
maximum length of a field, we compare the av- 
erage, variance, and coefficient of variance of the 
“used” length relative to the maximum length. 
An ID field will typically use the full field all the 
time, while a name field will use less and vary 
more. 

Data patterns for numeric fields 

For numeric fields, we can use statistical analysis of 
the data as a discriminator. The statistics we use are: 

1. 

2. 

3. 

Average (Mean): Average is one of the charac- 
teristics for those objects whose data types are 
number. For example, the Savings Accounts and 
Checking Accounts will likely have different aver- 
age balances. The average weights for Ships and 
Cars should be different also. 

Variance: The variance is defined as the expecta- 
tion (or average) of the mean deviations squared. 
The variance is a statistic for measuring the vari- 
ability of a set of numbers. It places higher 
weights on observations which are far away from 
the mean because it squares the mean deviations. 

Coefficient of variation (CV): This is the square 
root of variance (standard deviation) divided by 
average (mean). CV is a scaled measure of vari- 
ability. Comparing the CV of two fields can clarify 
some structural incompatibility such as: 

4. 

4 

Units: Different databases use different units 
for the same data element (e.g. weight in 
tons or in kg). 
Granularity: Data elements representing 
measurements differ in granularity levels, 
e.g., sales per month or annual sales. 

Relative measures of variability, like the coeffi- 
cient of variation, are very useful for comparing 
numbers of vastly different units or different gran- 
ularity levels because these measures are based on 
percentage. 
Even though different databases use measures in 
different units or in different granularity levels for 
the same data item, the coefficients of variation of 
this data item should be similar. A coefficient of 
variation of a data item can be used as an effective 
indicator for finding the fields which are structural 
incompatible in units or granularity levels. 

Grouping: In many cases, the data of a field can 
be sorted into several groups. For example, Zip 
Code (first five digits), Phone-Number (area code 
or first three digits), Social Security Number (first 
three digits), City Name, and State Name. 

Semantic Integration Method 

The discriminators provide a good deal of informa- 
tion to characterize attributes. However, it is difficult 
to determine just which discriminators will be help- 
ful, and which will be little more than “noise”. Pro- 
grammed computing is best used in those situations 
where the processing to be accomplished can be de- 
fined in terms of a known procedure or a known set of 
rules. Clearly, there is no perfect procedure or known 
set of rules which solves the problems of determin- 
ing the semantic equivalence of attributes in hetero- 
geneous databases since the relationships between at- 
tributes are fuzzy and availability of database infor- 
mation varies. 
Neural networks have emerged as a powerful pattern 
recognition technique. Neural networks can learn the 
similarities among data directly from instances of data 
and empirically infer solutions from data without prior 
knowledge of regularities. We use them as a bridge 
over the gap between individual examples and gen- 
eral relationships. The advantages of using neural net- 
works for determining attribute equivalence over meth- 
ods with fixed rules are 

1. Neural networks can perform a task such as clas- 
sification and generalization without being given 
rules since neural networks are trained, not pro- 
grammed. They are therefore easier to adapt to 
new problems and can infer relationships unrec- 
ognized by the programmers. 
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2. The weights assigned can bp adjusted dynamically 
according to the input data. The weights can also 
be readjusted according to new input data. 

3. Neural networks can generalize because of their 
ability to respond coriectly to data not used in 
training. Generalization is important since the 
input data; the names, the field specifications, 
and the values of attributes in heteiogeneous 
databases; is often “noisy” and incomplete. 

First, the available information from an individual 
database (discussed in Section 3) is used as input data 
for a self-organizing map algorithm to categorize at- 
tributes. Second, the output of classifier (tagged with 
a target result) is used as the training data for a cate- 
gory learning and recognition algorithm. The trained 
recognition algorithm then determines the similarity 
between attribute pairs in different databases. We will 
first present an overview of self-organization and cat- 
egory learning and recognition algorithms. The com- 
plete procedure is given in detail in Section 4.3. 

4.1 Self-Organizing Map Algorithm 

Input layer Output layer 

Value +J& 
constraint 

’ -g- Average 

Cl Acldres 

cz Name 

CM Tclphonc# 

N tindes Mnudes 

Figure 2: Self-Organizing Map Network Architecture 

The self-organizing map algorithm [Koh87] is an O~SU- 
pervised learning algorithm. It categorizes input pat- 
terns into M groups, where M is set by users. In the 
semantic integration process we want to control how 
similar the patterns are in a categoiy, not how many 
categories are formed. Therefore, we have adapted it 
so that users/can determining how fine these categories 
are by setting the radius of clusters (threshold) and 
create a new cluster when a new pattern is not close 
to any existing cluster. 
It serves as a clustering algorithm to classify pat- 
terns, represented by arbitrary sequences of both ana- 
log input (e.g. field length) and binary input (e.g. 

+--------+--------------- +----------------------+ 
ICategoryIPattern numbersICluster center veightsl 
+--------+--------------- +----------------------+ 
I I IO 6 7 I 1 0.133 0.0 0 0 0.5 I 
+--------+---------------+----------------------+ 
I2 II 8 I 1 0.750 0.0 0 0 0.5 I 
+--------+---------------+----------------------+ 
I3 12 23 24 I 0 0.100 0.0 0 0 1.0 I 
+--------+--------------- +----------------------+ 

I4 I3 4 1 0 0.067 b.0 0 0 0.0 I 
+--------+---------------+----------------------+ 

IS I5 9 IO I 1 0.017 0.2 0 0 0.5 I 
+--------+---------------+----------------------+ 

I6 Ill 12.13 14 15 I 1 0.833 0.0 0 0 0.5 I 
I II6 17 18 19 20 I I 
+--------+---------------+----------------------+ 
I7 121 22 40 I 0 0.167 0.0 0 0 0.5 l 
+--------+---------------+----------------------+ 

18 125 26 27 28 29 I 1 0.250 0.0 0 0 0.5 I 
I 130 31 32 33 34 I I 
I 135363738 I I 
+--------+---------------+----------------------+ 

I9 139 I 1 0.050 0.0 0 0 0.5 I 
+--------+---------------+----------------------+ 

Figure 3: Output of Classifier for an AS/400 Field 
Reference File with Threshold of 0.1 

key field or not), into different categories. Figure 2 
shows a typical self-organizing map network architec- 
ture, with one input layer of N nodes on the left side 
and one output layer of M nodes on the right side. 
N is the number of discriminators compared and M 
is the number of the categories established. Ideally 
M is the number of distinct attributes. This is the 
only “human effort” needed in the categorization pro- 
cess. A “first guess” for M can be determined for 
some DBMS’s using primary key/foreign key relation- 
ships: A4 = totaLattributes - f oreigwkeyattributes. 
It views patterns as points in N-dimensional feature 
space. Patterns that are similar in some respect clus- 
ter closer to one another in the N-dimensional space 
than whose patterns that are dissimilar. For the de- 
tails of the algorithm, please see [Koh87]. 
For example, in Figure 2, we may use field specifi- 
cations such as length, key field or not, value con- 
straint, data type, and statistics of data contents such 
as average as input characteristics of patterns. Ac- 
cording to these input characteristics, the classifier 
clusters patterns into M clusters. “Employee.id#“, 
“Dept .employee”, and “PayrolLSSN” are clustered 
into one category since their input characteristics (and 
real world meanings) are close to each other. 
Figure 3 is the classifier output for an IBM AS/400 
field reference file. The values of cluster center weights 
on the right stand for data type 5, length, value 

5AS/400 only supports decimal/non-decimal as data types; 
we map this to a binary diwriminator. 
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constraint, range constraint, foreign key constraint, 
and EDTCDE/EDTWRD specification. The classi- 
fier placed 41 attributes (pattern numbers from 0 to 
40 as shown in the middle column) into 9 categories 
(numbers from 1 to 9) according to their schema infor- 
mation. For example, the patterns (attributes) 1 and 
8 both record the telemarketing activity descriptions, 
so they are clustered together as category 2. In Figure 
4, the weights of the cluster centers have been tagged 
with target results (category numbers) into training 
data. This is the training data for the category learn- 
ing and recognition algorithm. 

1 0.133 0.0 0 0 0.5 --> Cluster center I 
100000000 --> Target result 
1 0.750 0.0 0 0 0.5 --> Cluster center 2 
010000000 --> Target result 

1 0.050 0.0 0 0 0.5 --> Cluster center 9 
000000001 --> Target result 

Figure 4: Training Data for Back-Propagation Net- 
work for an AS/400 Field Reference File 

4.2 Category Learning and Recognition Algo- 
rithm 

0.12 Nam 

0.72 

N nodes in the input layer on the left, each of which 
represents a discriminator. The hidden layer consists 
of (N+M)/2 ‘I nodes in the middle. The output layer 
(on the right side) is composed of M nodes (M cate- 
gories). The tagged data generated by the classifier 
(Figure 4) is used as training data. 
During training, the network changes the weights of 
connections between nodes so that each node in the 
output layer generates its target result (corresponding 
category number). The forward propagation (gener- 
ating output), error calculation (co,mputing the dif- 
ference between the actual output and target output), 
and backward propagation (changing weights based on 
the errors calculated) continue until the errors in the 
output layer are less than the threshold. 
For the AS/400 field reference 6le training data shown 
in Figure 4, we train the network do the following: 
when we present “1 0.133 0.0 0 0 0.5” (cluster center 
weights of category l), the network outputs “1 0 0 0 0 
0 0 0 0”, the target result, which indicates category 1. 
When we present “1 0.750 0.0 0 0 0.5” (cluster center 
weights of category 2), the network outputs “0 10 0 0 0 
0 0 0”, which indicates category 2. After training, the 
network encodes data by matching each input pattern 
to the closest output node and giving the similarity 
between the input pattern (of another database) and 
each category (we use to train the network). 
As an example take the result of the classifier in Figure 
2 that clustered “Employee.id#“, “Dept.employee”, 
and “PayrollSSN” into one category. The weights 
of these cluster centers are then tagged to train the 
network in Figure 5. After the back-propagation net- 
work is trained, we present it with a new pattern of 
N characteristics, attribute “healthPlan.Insured#“. 
This network determines the similarity between the 
input pattern and each of the M categories. In Fig- 
ure 5, the network shows that the input pattern “In- 
sured#” is closest to the category 3 (id numbers) (simi- 
larity=O.92), and then category M (telephone#) (sim- 
ilarity=O.72). It also shows the input pattern is not 
similar to either the category 1 (Address), or category 
2 (Name) since the similarity is low (0.05 and 0.12). 

Figure 5: Back-Propagation Network Architecture 

The back-propagation learning algorithm is a super- 4.3 Semantic Integration Procedure 

vtied learning algorithm, in which target results are 
provided. It has been used for various tasks such as 
pattern recognition, control, and classification. Here 
we use it as the training algorithm to train a network 
to recognize input patterns and give degrees of simi- 
larity. Figure 5 shows a three-layer neural network * 
for recognizing M categories of patterns. The struc- 
ture of the network is designed as follows: There are 

6The computing time will increase as more. layers are added. 

Figure 6 shows the diagram of our semantic integration 
procedure. Note the only human input is to give the 
threshold for the classifiers (once per database) and to 
examine and confirm the output results (similar pairs 
of attributes and the similarity between them). 

‘The number of nodes in the hidden layer can be arbitrary. 
However, (N+M)/2 nodes gave the shortest training time in our 
experiments. 
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Figure 6: Semantic Integration Procedure 

Step 1: Use DBMS specific parsers s to get infor- 
mation from the databases to be integrated. The 
system transforms this information into a com- 
mon format. The output of these parsers include 
schema information, statistics of data values, and 
types of characteristics available. This is done 
once per database. 

Step 2: The system creates a self-organizing map net- 
work with N nodes at the input layer (as shown 
in Figure 2). Use information of database A as 
input for the self-organizing network just created. 
This network classifies the attributes in database 
A to M categories. M is not pre-determined; the 
number of categories (clusters) created depends 
on the threshold set by the system trainer (e.g. 
the DBA of that database). Note that M (with 
su&ient distinguishing data) should be the num- 
ber of distinct attributes in the databases, that 
is the attributes that do not have a foreign key 
relationship to other attributes in the database. 
The output for this step (as shown in Figure 3) 
is the number of categories (M) and the weights 
of cluster centers (M vectors of N weights). The 
weights of the cluster centers are then tagged as 
training data (as shown in Figure 4) to train the 
network created in the step 3. 

Step 3: The system creates a three-layer back- 
propagation learning network with N nodes at the 
input layer, M nodes at the output layer, and 
(N+M)/2 nodes at the hidden layer (as shown 
in Figure 5). During the training, the network 
changes its weights so that each node in the out- 
put layer represents a cluster. Note that the steps 
l-3 must be performed only once per database. 
We can then integrate with multiple DB’s with- 
out retraining. 

8We are currently developing parsem which extract infor- 
mation from Ingres, Oracle, and IBM AS/400 databases. The 
schema specification and data content statistics mud in thin pa- 
per were extracted msnually. 

Step 4: The input for the network trained in the step 
3 is the attribute information of another database 
(database B). The network then gives the similar- 
ity between the input attribute of database B and 
each category of database A. 

Step 5: System users check and confirm the output 
results of the trained network. The, output results 
include lists of similar attributes and the similar- 
ity between them. This is the only human input 
required on subsequent integrations with other 
databases. 

The are several reasons for using the classifier as the 
first step of this semantic integration system: 

1. Ease of training. Ideally M can be determined 
from the DBMS using foreign key relationships. 
Classification lowers the number of nodes in the 
back propagation network output layer. It re- 
duces the computational complexity as well as the 
training time. 

2. After the attributes of database A are classified 
into M categories, the attributes of database B 
are compared with these cluster centers instead of 
each attribute of database A, which is less com- 
putationally expensive. 

3. 

8.. 

Networks can not be trained with a training set in 
which there are two identical answers to a ques- 
tion and one is correct while another is not (more 
discussion in section 5.4). This happens when the 
discriminating information does not distinguish 
two attributes (for example, employee.id# and 
payroll.SSN, which represent the ,same informa- 
tion). The classifier detects cases where this is 
true, and groups them to one cluster. Otherwise, 
the network can not be trained to point out they 
are different. 



5 Experimental Results 

We tested this technique using three pairs of existing 
databases. One pair were transaction data of British 
pound call options and put options from March 2, 
1983 to June 27, 1985. The available information 
for these databases is only data contents. However, 
we extracted some schema specification information 
from the contents. The second pair were IBM AS/400 
databases; we used the field reference llles to obtain 
schema information (the data contents were not avail- 
able.) The third pair were Sybase databases, for which 
we also had only schema information. Q We would like 
to test integration of databases from different DBMS’s, 
however we have not been able to obtain suitable test 
databases. We tested our system on integrating one 
IBM AS/400 database with another Sybase database 
(which contain no common information). The average 
similarity is 0.006 and the maximal similarity is 0.021. 
The result shows that attributes of these two databases 
are totally different (as expected). However, we do not 
know if similar attributes in different DBMS’s would 
be detected; we need additional data to test this. 

5.1 Transaction Data of British Pound Call 
Option and Put Option 

The option transaction data used in this experiment 
was the British pound call option and put option price 
quotes at the Philadelphia Exchange between March 
2, 1983 and June 27, 1985. There are nine attributes 
in each database (Figure 7). The schema information 
we used includes data types, the number of decimals, 
field length, and existence of null value. The numer- 
ical statistics we used were maximum value (MAX), 
minimum value (MIN), coefficient of variance (CV), 
standard deviation (SD), and average. Figure 7 shows 
a sample output of similarity between an attribute, 
call option spot bid price, and each attribute of the 
put option database. As we can see, the call option 
spot bid price is similar to both put option spot bid 
price (similarity = 0.953933) and spot ask price (simi- 
larity = 0.949726). Spot bid prices and attribute spot 
ask prices are actually very similar, generally moving 
in “lock step”. 
The difference between using schema information and 
using data contents to determine degrees of similarity 
is that the data contents may change over time. In 
the British pound option databases we used in this ex- 
periment, the spot bid prices, ask prices, and volumes 
traded changed over time. Besides, there were some 
abnormal trades during the first few weeks of data (the 
British pound option trade started at the Philadelphia 

9These two pairs of databases were used in our prior work 
[LC93]. The remltehere are eubetautiallybetterthanthe pre- 
vious work . 

File: Call-Option File: Put-Option 
Attribute: Spot-bid-price 

The normalized input: 
------------------__-- 

Char type: 0.000000 
Numeric type: 1.000000 

Date type: 0.000000 
Time type: 0.000000 

Length: 0.681892 
Decimal: 0.400000 

null: 0.000000 
Average: 0.503130 

Hsx: 0.503993 
Hin: 0.502583 

SD: 0.500305 
CV: 0.524235 

The output similarity: 
___--__---_----_---------- 
*Spot-bid-price: 0.953933 
*Spot-ask-price: 0.949726 

Expiration-price:0.047791 
Option-price: 0.015392 
Volume: 0.001423 
Transaction-tiue:O.000383 
Transaction-date:O.000229 
Haturity,date: 0.000017 
Symbol: 0.000001 

Figure 7: The Similarity between Call Option Spot 
Bid Price and all categories of Put Option Database 

Exchange in March 1983). This phenomenon holds 
true in many databases. When a database is just 
established, the data may be transferred from other 
databases or input manually. The amount of data in- 
serted is higher than normal amount. Also, faulty data 
may happen more often because of the huge amount of 
manually inserted initial data or the process of trans- 
ferring data from one database to another database. 
We are pleased by the result that our system can 
discriminate “expiration-price” from “bid-price” and 
“ask-price”. Without the statistics of data con- 
tents, we would not able to do it since their schema 
specifications are the same. With the statistics of 
data contents, we discriminate “expiration-price” from 
“bid-price” and “ask-price” by their different averages, 
MAX, MIN, coefficient of variance ( CV), and stan- 
dard deviation (SD). The average price of “expira- 
tion-price” is lower and “expirationprice” is more sta- 
ble than “spot-bid-price” and “spotask-price”. Table 
1 shows the average, maximum, and minimum similar- 
ities for both the attributes we determined are similar 
(should be merged) such as “call expiration-price” and 
“put expiration-price”, and those that aren’t equiva- 
lent (such as “transaction date” and “maturity date”). 
In this table we have classified the (arguably equiva- 
lent) bid and ask prices into the same cluster; given 
this there is a clear break between the two groups. In 

Table 1: Statistics of Similarity for British Pound Op- 
tion Transaction Databases 

JZquivalent pairs Avg Max Min 
Degree of similarity: 0.96921 0.98869 0.93299 
Non-equivalent pairs Avg Max Min 
Degree of similarity: 0.00623 0.05989 0.0000 

9 



this experiment, if we simply trust that all attributes 
with similarity less than 0.1 are different, and all with 
a single match with similarity greater than 0.9 are the 
same, we would be left with only the bid and ask prices 
to manually inspect. 

5.2 AS/400 Databases 

The second pair of sample databases were provided 
by M.I.S. Systems, Chicago, Illinois. They are two 
field reference files running on IBM AS/400. The 
characteristics available for us to use are data type, 
length, range and value constraints, and EDTCDE and 
EDTWHD specifications lo. There are 10 fields in a 
database that record general marketing activity infor- 
mation and 41 fields in a database that record tele- 
marketing activity information. Thus, there are 410 
pairs of fields being compared. 
Here we first used the classifier to classify the database 
with 41 fields into 9 categories (as shown in Figure 3) 
by setting the threshold to 0.1. .9 is the number of 
distinct categories (M) in the database (e.g. one cate- 
gory with attributes recording dates to call customers 
and one category with attributes recording the types 
of telemarketing activities). We then used the back- 
propagation learning algorithm to train a three-layer 
network with 6 nodes in the input layer, 7 nodes in the 
hidden layer, and 9 nodes in the output layer, to recog- 
nize these categories. After the network was trained, 
the database with 10 attributes was presented to this 
trained network. The network then determined the 
similarity between these 10 fields and the 9 categories. 
Thus, there are only 90 comparisons needed instead of 
410 comparisons without using a classifier. 
Table 2 shows the average similarity for equivalent 
attributes is 0.98905 while the average similarity for 
non-equivalent is 0.00161. The network is very effec- 
tive in recognizing equivalent attributes and discrim- 
inating non-equivalent attributes. These results are 
much better than the results in [LC93]. This is be- 
cause the probability values of similarity are not pre- 
programmed, but are determined for that d&be by 
training. 

Table 2: Statistics of Similarity for AS/400 Databases 

JSquivalent pairs Aw Max Min 
Degree of simihity: 0.98905 0.99591 0.98360 

Non-equivalent pahs Avg Max Mii 
Degree of similarity: 0.00161 0.00801 0.00000 

loThe IBM AS/400 databaaea have all the design information 
described in Section 3 available on the nyyrtem. However, some 
of thk information was not available to WI. 

5.3 Sybase databases 

The third pair of databases were Sybase databases 
provided by Reuters Information Systems in Oak 
Brook, Illinois. The available characteristics of these 
databases include data type, length, key, value and 
range constraints, file access restrictions, foreign key 
constraints, and null value constraints. There are 7 
attributes in the database that record project doc- 
ument information and 6 attributes in the database 
record project meeting information. Thus, there are 
42 pairs of fields being compared. In the pattern recog- 
nition network, there are 13 nodes in the input layer, 
10 nodes in the hidden layer, 6 nodes (6 categories, 
1 attribute in each category since they present differ- 
ent meanings) in the output layer. Again, the network 
is very effective in both discriminating pairs of non- 
equivalent attributes (average similarity = 0.00924) 
and matching equivalent pairs of attributes (average 
similarity = 0.93254). In this experiment, the trained 
neural network shows its ability of generalization to 
correctly response to patterns not used to trained it. 
Note that one pair of equivalent attributes is given 
similarity of 0.87616 while another pair of equivalent 
is given 0.98892 (the second row in Table 3). This 
pair of equivalent attributes of similarity of 0.87616 
represent the same real-world meaning even though 
their schema specifications are slightly different. The 
network is still able to identify this pair of equivalent 
attributes. 
The maximal similarity for non-equivalent pairs is 
0.07240; that is, some similarity between some pairs 
of non-equivalent attributes. The gap between min- 
imal similarity of equivalent attributes (0.87616) and 
maximal similarity of non-equivalent pair (0.07240) in- 
dicates the effectiveness of our technique. 

Table 3: Statistics of Similarity for Sybase Databases 

Epuivalent pairs Avg Max Mia 
Degree of similarity: 0.93254 0.98892 0.87616 

Non-equivalent pairs Avg Max Mi 
Degree of simikity: 0.00924 0.07240 0.00000 

5.4 System Performance 

This system is implemented in C; our tests were run 
on an IBM BS/6000 model 220. CPU time needed 
for the classification or recognition processes finished 
in under 0.1 second. The training in our experiments 
always took less than 7 seconds of CPU time when we 
set the thresholds to 0.01. .The training time can be 
reduced as larger thresholds are used. For the British 
pound option transaction databases, the training time 
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Table 4: System Performance and Human Effort Needed 

Process CPU time Human effort 
Extract information from databases Varies Little (once per DBMS) 
Classify attributes into categories < 0.1 second Little (give threshold, once per database) 
Train networks < 7.0 seconds None 
Deter&e similarity < 0.1 second Some (check results) 

is 2.2 seconds CPU time (704 epochs 11) with a clas- 
sifier. Without a classifier to group similar attributes 
into a single cluster, the training time needed would 
be much longer (11642 epochs and 33.6 seconds CPU 
time). The reason is that networks can not be trained 
with a training set in which there are two different 
expected output for the same input pattern (two dif- 
ferent attributes with the same characteristics). This 
is also the reason why training takes much longer using 
two very similar input patterns. 

6 Conclusions and Future Work 

In this paper we show a system in which the human ef- 
fort needed for semantic integration is minimized. We 
use a self-organizing classifier algorithm to categorize 
attributes and then use a back-propagation learning al- 
gorithm to train a network to recognize input patterns 
and determine similarity between attributes. The ex- 
perimental results show the effectiveness and efficiency 
of our technique. 
From Table 4, we learn that the only potentially 
slow process is extracting information from databases, 
which can be done as a “batch” process once per 
DBMS. The rest of the method is fast enough to be 
done interactively. After the ihformation is extracted, 
system users can “interact” with the system (pro- 
vide the threshold during the classification process and 
check and confirm the results: similar attributes iden- 
tified by the system) to integrate databases. Based on 
the three experiments we presented, a user could sim- 
ply follow the rule “if the similarity is less than 0.1, 
the attributes are different; if there is one cluster with 
similarity greater than 0.8 then the attribute matches 
that cluster”. The only “manual inspection” needed 
would be for the spot bid price and spot ask price in 
the British pound option databases, and even here fol- 
lowing the closest match would give the proper result. 
F’urther experiments are needed to determine exactly 
what this rule should be, and how often users will need 
to inspect the results. To this end we have made this 
tool available (as C source code) via anonymous ftp 
from eecs.nwu.edu in directory /pub/semint. We are 
developing parsers for the IBM AS/400, Ingres, and 
flat files; we will develop more as time and resources 

l1 One cycle of forward-propagation, backward-propagation, 
and weight-update is called one epoch. 

allow. We would appreciate feedback on the effective- 
ness of this tool. 
Our method does have one problem when dealing with 
multiple types of Database Management Systems. In 
order to ease the presentation of the method we have 
glossed over this, however we must note that the back- 
propagation algorithm requires that input patterns 
have the same discriminators used in the training. We 
may not be able to obtain the same list of discrim- 
inators from two different DBMSs (for example, the 
data types supported may be different). In this case, 
we must train a new network using the intersection 
of the available discriminators. However, the inter- 
section/filtering process can be automated, and the 
expected result of the classifier (M) is the same re- 
gardless of the discriminators provided. Thus no extra 
human effort is needed to train multiple networks (pro- 
vided the intersection of the discriminators is sufficient 
to distinguish the attributes in a single database). We 
are investigating alternatives to back propagation that 
will allow us to use a single network regardless of the 
discriminators available. 
We have concentrated on matching attributes (the , 
heterogeneity of organizational models problem 
of pie93J). W e are .&I investigating use of this tech- 
nique in uncertain data query and join operations by 
attacking some of the other levels of heterogeneity de- 
scribed in [Wie93]. We want to extend these research 
results to more general areas such as intelligent inte- 
gration of information (13). The I3 objective requires 
the establishment of a conceptual information system 
architecture, so that many participants and technolo- 
gies can contribute wie93]. Automation becomes im- 
portant as the volume of accessible data increases. The 
ability to “discover” heuristics in our technique makes 
it favorable for automation. Our technique can also 
be combined with (DeM89] to support operations over 
partially matched domain and uncertain data queries 
[TC93] in heterogeneous databases. 
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