
CERIAS Tech Report 2001-86
Semantic Integration in Heterogeneous Databases using neural networks

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Semantic Integration in Heterogeneous Databases
Using Neural Networks t

Wen-Syan Li Chris Clifton
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, Illinois, 60208-3118
(acura,clifton}@eecs.nwu.edu

Abstract

One important step in integrating heteroge-
neous databases is matching equivalent at-
tributes: Determining which fields in two
databases refer to the same data. The mean-
ing of information may be embodied within a.
database model, a conceptual schema, appli-
cation programs, or data contents. Integra-
tion involves extracting semantics, expressing
them as metadata, and matching semantically
equivalent data elements. We present a proce-
dure using a classifier to categorize attributes
according to their field specifications and data
values, then train a neural network to recog-
nize similar attributes. In our technique, the
knowledge of how to match equivalent data
elements is “discovered” from metadata , not
“pre-programmed”.

1 Introduction

One problem in developing federated databases is se-
mantic integration: determining which fields are equiv-
alent between databases. Attributes (classes of data
items) are compared in a pairwise fashion to deter-

tThis materialis based upon work supported by the National
Science Foundation under Grant No. CCR9210704.

Penn&on to copy without fee all or pari of this material’ir
granted provided that the copier are not made or dirtributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publicalion and itr date appear, and notice ir
given thai copying ia bg pennirrion of the Very Large Data Bare
Endowment. To copy otherwise, or to republish, reqrine a fee
and/or rpecial permirrion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

mine their equivalence. Manually comparing all pos-
sible pairs of attributes is an unreasonably large task,
especially since most pairs do not represent the same
information. Simple ad-hoc guesswork, on the other
hand, is likely to miss some attributes that should map
to the same global attribute. US West reports having
5 terabytes of data managed by 1,000 systems, with
customer information alone spread across 200 different
databases [DKM+93]. One group at GTE began the
integration process with 27,000 data elements, from
just 40 of its applications. It required an average of
four hours per data element to extract and document
matching elements when the task was performed by
someone other than the data owner [VH94]. Other
GTE integration efforts have found the elements over-
lapped or nearly matched in their database to be close
to 80% [VH94].
(DKM+93] pointed out some important aspects of se-
mantic heterogeneity: Semantics may be embodied
within a database model, a conceptual schema, ap-
plication programs, and the minds of users. Seman-
tic differences among components may be considered
inconsistencies or heterogeneity depending on the ap-
plication, so it is difficult to identify and resolve all
the semantic heterogeneity among components. Tech-
niques are required to support the re-use of knowledge
gained in the semantic heterogeneity resolution pro-
cess.
The goal of our research is to develop a semi-
automated semantic integration procedure which uti-
lizes the meta-data specification and data contents at
the conceptual schema and data content levels. Note
that this is the only information reasonably available
to an automated tool. Parsing application programs
or picking the brains of users is not practical. We want
the ability to determine the likelihood of attributes re-
ferring to the same real-world class of information from
the input data. We also desire to have the ability to

1

DBMS
Spccitic
PiUSMS
Exe&3
DiUhSC

Infrmnation

Chify

AmibllW
And
Galelate
Training
Da@

ciustu
centa

Tnin

i

NChVUkS

To
Recognize
P&tCmS

TlGL?d

NdWOIkS

Determine.

Similarity
Bctwecn
AtWibtltcs

Equivalent
AtbibtJtCS

and
Similarity

t-

Figure 1 Procedure of Semantic Integration Using Neural Networks

reuse or adapt the knowledge gained in the seman-
tic heterogeneity resolution process to work on similar
problems. We present a method where the knowledge
of how to determine matching data elements is dticou-
ered, not pre-programmed.
We start with the assumption that attributes in differ-
ent databases that represent the same real-world con-
cept will have similarities in structure and data values.
For example, employee salaries in two databases will
probably be numbers greater than 0 (which can be
determined from constraints, this is structural simi-
larity). The same can be said for daily gross receipts.
However, the range and distribution of data values will
be very different for salaries and gross receipts. From
this we can determine that two salary fields probably
represent the same real-world concept, but gross re-
ceipts are something different. Note that the assump-
tion is that there are similarities, not that we know
what those similarities are.
In Figure 1 we outline our method. In this process,
DBMS specific parsers extract information (schema or
data contents) from databases. We then use a classi-
fier that learns how to discriminate among attributes
in a single database. The classifier output, cluster cen-
ters, is used to train a neural network to recognize
categories; this network can then determine similar at-
tributes between databases.
As an example of how this system could be used, imag-
ine that we are planning university admissions. We
wish to make sure that we do not admit too many stu-
dents; to do this we need to check if classes are oversub-
scribed. We are used to using the Registrar’s database
which contains the number of students who took a
course and the room number (among other informa-
tion). However, it does not contain room size infor-
mation. After some checking, we are told that Build-
ing and Grounds maintains a database which contains
room size and we are given access to this database.
A first attempt is to issue the query (using a multi-
database query language such as [Lit89], or better yet
a database browser with multidatabase support):

Select sum(c.room#)
From Registrardb.classes c, B+G.rooms r
Where c .room# = r.room# and c.size >= r.size

However, we are given the surprising result of O!
We then remember to use the semantic integration
tool (using a pre-trained network); in seconds we are
given a list of likely matches which shows that r.seats
matches c&e much more closely than r.size. (Build-
ing and Grounds considers the size of a room to be
the size in square feet). We then reissue the query
(using r-seats instead of rsize) and are given the num-
ber of classes which filled their rooms. Note that the
main user effort involved is finding the appropriate
databases; the integration effort is low. The end user is
able to distinguish between unreasonable and reason-
able answers, and exact results aren’t critical. This
method allows a user to obtain reasonable answers re-
quiring database integration at low cost.
This paper is organized as follows. We first review ex-
isting work in this area. In Section 3 we discuss the
semantics available from databases. In Section 4 we
describe our technique of using a self-organizing map
classifier to categorize attributes and then train a net-
work to recognize input patterns and give degrees of
similarity. In Section 5 the experimental results of
testing our techniques on three pairs of real databases
are presented. Finally, in Section 6 we offer our con-
clusions.

2 Related Work

A federated architecture for database systems was pro-
posed by McLeod and Heimbigner in [MH80]. A ba-
sic conceptual technique for integrating component
views into a “superview” was introduced by Motro and
Buneman pB81]. The Multibase project [SBU+81,
DH84] by the Computer Corporation of America in
the early 80’s first built a system for integrating pre-
existing, heterogeneous, distributed databases. The
process of schema generalization and integration, how-
ever, still needs the involvement of database designers
to find those objects that contain information of the
same domain or related data. This becomes a bot-
tleneck for schema integration when the size of the
database is large.
One approach for determining the degree of object
equivalence, proposed by Storey and Goldstein [SG88],
is to compare objects in a pairwise fashion by consult-

3

ing a lexicon of synonyms. It is assumed that some
classes or at least some of their attributes and/or rela-
tionships are assigned with meaningful names in a pre-
integration phrase. Therefore, the knowledge about
the terminological relationship between the names can
be used as an indicator of the real world correspon-
dence between the objects. In pre-integration, object
equivalence (or degree of similarity) is calculated by
comparing the aspects of each object and computing
a weighted probability of similarity and dissimilarity.
Sheth and Larson [SL90] noted that comparison of
the schema objects is difficult unless the related in-
formation is represented in a similar form in different
schemas.

2.1 Existing Approaches

In [DKM+93] it is noted that semantics are embod-
ied in four places: The database model, conceptual
schema, application programs and minds of users. An
automatic semantic integration procedure can only
make use of information contained in the first two. We
further break this into three parts: The names of at-
tributes (obtained from the schema); attribute values
and domains (obtained from the data contents); and
field specifications (from the schema,‘or in some cases
from automated inspection of the data). We detail
these approaches below.

2.1.1 Comparing attribute names

Systems have been developed to automate database
integration. One that has addressed the problem of at-
tribute equivalence is MUVIS (Multi-User View Inte-
gration System) [HR90]. MUVIS is a knowledge based
system for view integration. It assists database design-
ers in representing user views and integrating these
views into a global conceptual view. MUVIS deter-
mines the degree of similarity and dissimilarity of two
objects during a p-e-integmtion phrase l.
The similarity and dissimilarity in MUVIS is primarily
based on comparing the field names of the attributes.
Object equivalence is determined by comparing the as-
pects of each (such as class names, member names,
and attribute names) and computing a weighted value
for similarity and dissimilarity. A recommendation is
then produced as to how the integration should be per-
formed.
Most automated tools developed to assist designers in
establishing object correspondences by comparing at-
tribute names work well for homonyms (same name
for different data), as users are shown the false match.
However, different objects can have different synonyms

‘Since, in the real world, se-tics of terms may vary, the
relationship between two attributes is usually fuzzy. Therefore,
a degree of similarity and diasimikity has a strength of [O,l].

that are not easily detected by inspection. This shifts
the problem to building the synonym lexicon. Even
a synonym lexicon has limitations because it is diffi-
cult for database designers to define a field name by
using only the words that can be found in a dictio-
nary or abbreviations carrying unambiguous meanings
and in some cases, it is difficult to use a single word
rather than a phrase to name a field. These reasons
make it expensive to build a system of this approach.
Sheth and Larson [SL90] also pointed out that com-
pletely automatic determination of attribute relation-
ships through searching a synonym lexicon is not pos-
sible because it would require that all of the semantics
of schema be completely specified. Also, current se-
mantic (or other) data models are not able to capture
a real-world state completely and interpretations of
real-world state change over time.

2.1.2 Comparing attribute values and do-
mains using data contents

Another approach of determining attribute equiva-
lence is comparing attribute domains. Larson et. al.
[LNE89, NB86] and Sheth et. al. [SLCN88] discussed
how relationships and entity sets can be integrated pri-
marily based on their domain relationships: EQUAL,
CONTAINS, OVERLAP, CONTAINED-IN, and DIS-
JOINT. Determining such relationships can be time
consuming and tedious [SL90]. If each schema has
100 entity types, and an average of five attributes per
entity type, then 250,099 pairs of attributes must be
considered (for each attribute in one schema, a poten-
tial relationship with each attribute in other schemas
should be considered). Another problem with their
approach is poor tolerance of faults. Small amounts of
incorrect data may lead the system to draw a wrong
conclusion on domain relationships.
In the tool developed to perform schema integration
described in [SLCN88], a heuristic algorithm is given
to identify pairs of entity types and relationship types
that are related by EQUAL, CONTAINS, OVERLAP,
and CONTAINED-IN domain relationships. Sheth
and Gala [SG89] also argued that this task cannot
be automated, and hence we may need to depend on
heuristics to identify a small number of attribute pairs
that may be potentially related by a relationship other
than DISJOINT.

2.1.3 Comparing field specifications

In [NB86] the characteristics of attributes discussed
are uniqueness, cardinality, domain, semantic integrity
constraints, security constraints, allowable operations,
and scale. In our prior work [LC93], we presented
a technique which utilizes these field specifications to
determine the similarity and dissimilarity of a pair of

3

attributes. It is assumed that given a database de-
sign application, different designers should tend to
have similar schema and constraint design because
they should have the same technology and knowledge
about designing a “good” database. Thus informa-
tion about attributes; such as length, data types, and
constraints; can be used as “discriminators” to de-
termine the likelihood that two attributes are equiva-
lent. The experimental results show that characteris-
tics of schema information are very effective “discrim-
inators”. This technique can be used with the other
approaches, as a “first step” to eliminate clearly in-
compatible attributes. This allows the process of com-
paring attribute domain relationships, which is more
computationally expensive, to work on a smaller prob-
lem. It can also be used to co&m conclusions reached
using other approaches. However, this technique (as
well as other related techniques) needs a theoretical
basis for developing heuristics for degree of similarity
and dissimilarity. Another weakness is that schema
information may not be always available. We now
discuss the information we use to determine database
semantics. In Section 4 we present our integration
method.

3 Semanticp of Databases

We have described some of the information available
to an automated semantic integration method. In this
section we describe the specific pieces information we
use as “discriminators”. Note that this is not an ex-
haustive list; it is simply the information we believe to
be readily available and useful. One advantage of our
method is that the relative usefulness of these discrim-
inators is discovered automatically; it does not hurt to
provide “extra” discriminators that do not provide a
good basis for comparing attributes. For input to the
classifier, this information is mapped to a vector of
values in the range [O,l] 2 , where each item in the
vector represents one discriminator. The choice of dis-
criminators (and the software to extract them) need
be done only on a per-DBMS basis, and the technique
presented allows the use of discriminators other than
those we discuss. One piece of information we do not
use is attribute names. This has been well studied,
and is complementary to our method. Integrating a
comparison of attribute names with this method is an
area for future work.

3.1 Field Specifications

The characteristics of field specifications in the schema
level we use are: data types, length, and “supplemen-

lWithout normalization, the effect of one node with analog
input may be much more significant than the effect of other
nod- with binary input as ‘Uisuimhmtor”.

tal data types” such as format specifications (exam-
ples are the IBM AS/400 EDTWRD and EDTCDE
specifications3); and the existence of constraints (pri-
mary keys, foreign keys, candidate keys, value and
range constraints, disallowing null values, and access
restrictions). It is not difficult to extract these char-
acteristics from databases. Many relational databases
store this information in tables, allowing SQL queries
to extract the information. As another example, the
schema definition tiles of IBM AS/400 use a fixed for-
mat. Thus we can develop a set of DBMS-specific
parsers to obtain this information. We map some of
this information to binary values (e.g. key field or not)
and others to a range [O,l] (e.g. field length is mapped
using the function f(Iength) ‘= 2 + (l/(1 + k-‘engfh) -
0.5) 4. Category information such as data types re-
quires special treatment. For example, if we convert
data types to a range [O,l] and assign the values 1,0.5,
and 0 to data types date, numeric, and character, then
we are saying a date is closer to a numeric field than
a character. We do not “pre-judge” such information,
but let the classifier determine if this is true. Instead
we convert this category input to a vector of binary
values (e.g. l,O,O for date type, O,l,O for numeric type,
and O,O,l for character type).

3 In some cases (such as flat-file data) we may not have
an accessible schema definition. Many of the above
characteristics can be determined by inspecting the
data. This need not be a manual process, commercial
tools such as DBStar are available that can automati-
cally extract schema information from flat files.

3.2 Data Contents

The data contents of different attributes tend to be dif-
ferent even though their schema designs, such as data
type and length, are. the same. This is because their
data patterns, value distributions, grouping or other
characteristics are different. For example, YISN” and
“Account balance” can all be designed as nine-digit nu-
merical fields; they may not be distinguishable based
solely on their schema and constraint design charac-
teristics. However, their data contents are different,
and therefore their data patterns, value distributions,
and averages are all different. Thus, examining data
contents, the technique used in the content level, can
correct or enhance the accuracy of the outcomes from
the dictionary level and the schema level.
Note that this is not the same as the domain anal-

3EDTWRD (edit word) is used to specify for a particular
field. EDTCDE (edit code) provides specificformatsfor numeric
fields.

‘For nchema information, we use k = i.1. This provides
reasonable dis&mina tion for the range [0,50]. We use the fimc-
tion f(z) = l/(1 + k-=). for normalising numeric ranges, with
k = 1.01. Varying k compensates for rounding errors.

4

ysis of Larson et. al. [LNE89, NB86] and Sheth et.
al. [SLCN88]. Domain analysis compares the com-
plete contents of each pair of attributes. We instead
perform a one-time analysis of each attribute to ob-
tain a set of characteristics that describe that data.
We divide these characteristics into two types: Char-
acter and Numeric. Types that do not map into these
(such as binary fields or user-defined types) are rare
enough that other information should be sufficient to
discriminate them from other types.

Data patterns for character fields

1.

2.

3.

The ratio of the number of numerical characters to
the total number of characters. For example, the
ratio of numbers to characters in License Plate
for different states are different. This ratio of
Last-Name or First-Name should be zero. But
for the field Stud-Id whose data type is designed
as character (e.g. 999-99-9999), this ratio is 9/11.
For the field Address, this ratio should be lower.

Ratio of white-space characters to total charac-
ters: A Last-Name or First-Name field will con-
tain few white-space characters. An Address field
will normally contain some white-space.

Statistics on length: In addition to the simple
maximum length of a field, we compare the av-
erage, variance, and coefficient of variance of the
“used” length relative to the maximum length.
An ID field will typically use the full field all the
time, while a name field will use less and vary
more.

Data patterns for numeric fields

For numeric fields, we can use statistical analysis of
the data as a discriminator. The statistics we use are:

1.

2.

3.

Average (Mean): Average is one of the charac-
teristics for those objects whose data types are
number. For example, the Savings Accounts and
Checking Accounts will likely have different aver-
age balances. The average weights for Ships and
Cars should be different also.

Variance: The variance is defined as the expecta-
tion (or average) of the mean deviations squared.
The variance is a statistic for measuring the vari-
ability of a set of numbers. It places higher
weights on observations which are far away from
the mean because it squares the mean deviations.

Coefficient of variation (CV): This is the square
root of variance (standard deviation) divided by
average (mean). CV is a scaled measure of vari-
ability. Comparing the CV of two fields can clarify
some structural incompatibility such as:

4.

4

Units: Different databases use different units
for the same data element (e.g. weight in
tons or in kg).
Granularity: Data elements representing
measurements differ in granularity levels,
e.g., sales per month or annual sales.

Relative measures of variability, like the coeffi-
cient of variation, are very useful for comparing
numbers of vastly different units or different gran-
ularity levels because these measures are based on
percentage.
Even though different databases use measures in
different units or in different granularity levels for
the same data item, the coefficients of variation of
this data item should be similar. A coefficient of
variation of a data item can be used as an effective
indicator for finding the fields which are structural
incompatible in units or granularity levels.

Grouping: In many cases, the data of a field can
be sorted into several groups. For example, Zip
Code (first five digits), Phone-Number (area code
or first three digits), Social Security Number (first
three digits), City Name, and State Name.

Semantic Integration Method

The discriminators provide a good deal of informa-
tion to characterize attributes. However, it is difficult
to determine just which discriminators will be help-
ful, and which will be little more than “noise”. Pro-
grammed computing is best used in those situations
where the processing to be accomplished can be de-
fined in terms of a known procedure or a known set of
rules. Clearly, there is no perfect procedure or known
set of rules which solves the problems of determin-
ing the semantic equivalence of attributes in hetero-
geneous databases since the relationships between at-
tributes are fuzzy and availability of database infor-
mation varies.
Neural networks have emerged as a powerful pattern
recognition technique. Neural networks can learn the
similarities among data directly from instances of data
and empirically infer solutions from data without prior
knowledge of regularities. We use them as a bridge
over the gap between individual examples and gen-
eral relationships. The advantages of using neural net-
works for determining attribute equivalence over meth-
ods with fixed rules are

1. Neural networks can perform a task such as clas-
sification and generalization without being given
rules since neural networks are trained, not pro-
grammed. They are therefore easier to adapt to
new problems and can infer relationships unrec-
ognized by the programmers.

5

2. The weights assigned can bp adjusted dynamically
according to the input data. The weights can also
be readjusted according to new input data.

3. Neural networks can generalize because of their
ability to respond coriectly to data not used in
training. Generalization is important since the
input data; the names, the field specifications,
and the values of attributes in heteiogeneous
databases; is often “noisy” and incomplete.

First, the available information from an individual
database (discussed in Section 3) is used as input data
for a self-organizing map algorithm to categorize at-
tributes. Second, the output of classifier (tagged with
a target result) is used as the training data for a cate-
gory learning and recognition algorithm. The trained
recognition algorithm then determines the similarity
between attribute pairs in different databases. We will
first present an overview of self-organization and cat-
egory learning and recognition algorithms. The com-
plete procedure is given in detail in Section 4.3.

4.1 Self-Organizing Map Algorithm

Input layer Output layer

Value +J&
constraint

’ -g- Average

Cl Acldres

cz Name

CM Tclphonc#

N tindes Mnudes

Figure 2: Self-Organizing Map Network Architecture

The self-organizing map algorithm [Koh87] is an O~SU-
pervised learning algorithm. It categorizes input pat-
terns into M groups, where M is set by users. In the
semantic integration process we want to control how
similar the patterns are in a categoiy, not how many
categories are formed. Therefore, we have adapted it
so that users/can determining how fine these categories
are by setting the radius of clusters (threshold) and
create a new cluster when a new pattern is not close
to any existing cluster.
It serves as a clustering algorithm to classify pat-
terns, represented by arbitrary sequences of both ana-
log input (e.g. field length) and binary input (e.g.

+--------+--------------- +----------------------+
ICategoryIPattern numbersICluster center veightsl
+--------+--------------- +----------------------+
I I IO 6 7 I 1 0.133 0.0 0 0 0.5 I
+--------+---------------+----------------------+
I2 II 8 I 1 0.750 0.0 0 0 0.5 I
+--------+---------------+----------------------+
I3 12 23 24 I 0 0.100 0.0 0 0 1.0 I
+--------+--------------- +----------------------+

I4 I3 4 1 0 0.067 b.0 0 0 0.0 I
+--------+---------------+----------------------+

IS I5 9 IO I 1 0.017 0.2 0 0 0.5 I
+--------+---------------+----------------------+

I6 Ill 12.13 14 15 I 1 0.833 0.0 0 0 0.5 I
I II6 17 18 19 20 I I
+--------+---------------+----------------------+
I7 121 22 40 I 0 0.167 0.0 0 0 0.5 l
+--------+---------------+----------------------+

18 125 26 27 28 29 I 1 0.250 0.0 0 0 0.5 I
I 130 31 32 33 34 I I
I 135363738 I I
+--------+---------------+----------------------+

I9 139 I 1 0.050 0.0 0 0 0.5 I
+--------+---------------+----------------------+

Figure 3: Output of Classifier for an AS/400 Field
Reference File with Threshold of 0.1

key field or not), into different categories. Figure 2
shows a typical self-organizing map network architec-
ture, with one input layer of N nodes on the left side
and one output layer of M nodes on the right side.
N is the number of discriminators compared and M
is the number of the categories established. Ideally
M is the number of distinct attributes. This is the
only “human effort” needed in the categorization pro-
cess. A “first guess” for M can be determined for
some DBMS’s using primary key/foreign key relation-
ships: A4 = totaLattributes - f oreigwkeyattributes.
It views patterns as points in N-dimensional feature
space. Patterns that are similar in some respect clus-
ter closer to one another in the N-dimensional space
than whose patterns that are dissimilar. For the de-
tails of the algorithm, please see [Koh87].
For example, in Figure 2, we may use field specifi-
cations such as length, key field or not, value con-
straint, data type, and statistics of data contents such
as average as input characteristics of patterns. Ac-
cording to these input characteristics, the classifier
clusters patterns into M clusters. “Employee.id#“,
“Dept .employee”, and “PayrolLSSN” are clustered
into one category since their input characteristics (and
real world meanings) are close to each other.
Figure 3 is the classifier output for an IBM AS/400
field reference file. The values of cluster center weights
on the right stand for data type 5, length, value

5AS/400 only supports decimal/non-decimal as data types;
we map this to a binary diwriminator.

6

constraint, range constraint, foreign key constraint,
and EDTCDE/EDTWRD specification. The classi-
fier placed 41 attributes (pattern numbers from 0 to
40 as shown in the middle column) into 9 categories
(numbers from 1 to 9) according to their schema infor-
mation. For example, the patterns (attributes) 1 and
8 both record the telemarketing activity descriptions,
so they are clustered together as category 2. In Figure
4, the weights of the cluster centers have been tagged
with target results (category numbers) into training
data. This is the training data for the category learn-
ing and recognition algorithm.

1 0.133 0.0 0 0 0.5 --> Cluster center I
100000000 --> Target result
1 0.750 0.0 0 0 0.5 --> Cluster center 2
010000000 --> Target result

1 0.050 0.0 0 0 0.5 --> Cluster center 9
000000001 --> Target result

Figure 4: Training Data for Back-Propagation Net-
work for an AS/400 Field Reference File

4.2 Category Learning and Recognition Algo-
rithm

0.12 Nam

0.72

N nodes in the input layer on the left, each of which
represents a discriminator. The hidden layer consists
of (N+M)/2 ‘I nodes in the middle. The output layer
(on the right side) is composed of M nodes (M cate-
gories). The tagged data generated by the classifier
(Figure 4) is used as training data.
During training, the network changes the weights of
connections between nodes so that each node in the
output layer generates its target result (corresponding
category number). The forward propagation (gener-
ating output), error calculation (co,mputing the dif-
ference between the actual output and target output),
and backward propagation (changing weights based on
the errors calculated) continue until the errors in the
output layer are less than the threshold.
For the AS/400 field reference 6le training data shown
in Figure 4, we train the network do the following:
when we present “1 0.133 0.0 0 0 0.5” (cluster center
weights of category l), the network outputs “1 0 0 0 0
0 0 0 0”, the target result, which indicates category 1.
When we present “1 0.750 0.0 0 0 0.5” (cluster center
weights of category 2), the network outputs “0 10 0 0 0
0 0 0”, which indicates category 2. After training, the
network encodes data by matching each input pattern
to the closest output node and giving the similarity
between the input pattern (of another database) and
each category (we use to train the network).
As an example take the result of the classifier in Figure
2 that clustered “Employee.id#“, “Dept.employee”,
and “PayrollSSN” into one category. The weights
of these cluster centers are then tagged to train the
network in Figure 5. After the back-propagation net-
work is trained, we present it with a new pattern of
N characteristics, attribute “healthPlan.Insured#“.
This network determines the similarity between the
input pattern and each of the M categories. In Fig-
ure 5, the network shows that the input pattern “In-
sured#” is closest to the category 3 (id numbers) (simi-
larity=O.92), and then category M (telephone#) (sim-
ilarity=O.72). It also shows the input pattern is not
similar to either the category 1 (Address), or category
2 (Name) since the similarity is low (0.05 and 0.12).

Figure 5: Back-Propagation Network Architecture

The back-propagation learning algorithm is a super- 4.3 Semantic Integration Procedure

vtied learning algorithm, in which target results are
provided. It has been used for various tasks such as
pattern recognition, control, and classification. Here
we use it as the training algorithm to train a network
to recognize input patterns and give degrees of simi-
larity. Figure 5 shows a three-layer neural network *
for recognizing M categories of patterns. The struc-
ture of the network is designed as follows: There are

6The computing time will increase as more. layers are added.

Figure 6 shows the diagram of our semantic integration
procedure. Note the only human input is to give the
threshold for the classifiers (once per database) and to
examine and confirm the output results (similar pairs
of attributes and the similarity between them).

‘The number of nodes in the hidden layer can be arbitrary.
However, (N+M)/2 nodes gave the shortest training time in our
experiments.

7

Nmnrliaed
.wma DBMS aurac4cMticr CLtrifvd

’ Tniniq
Mwork

Data. Ccetcne
. SW

Aal satisliw Dam
DabbaA -

. Tnini~M , Tnbiq

Pam Prnc&d

schunr
DBMS Ad

DsIlckmImls
. spxiflc StltLtiu shiblily

DltIbeB -
Plrsef Pmctsl

Figure 6: Semantic Integration Procedure

Step 1: Use DBMS specific parsers s to get infor-
mation from the databases to be integrated. The
system transforms this information into a com-
mon format. The output of these parsers include
schema information, statistics of data values, and
types of characteristics available. This is done
once per database.

Step 2: The system creates a self-organizing map net-
work with N nodes at the input layer (as shown
in Figure 2). Use information of database A as
input for the self-organizing network just created.
This network classifies the attributes in database
A to M categories. M is not pre-determined; the
number of categories (clusters) created depends
on the threshold set by the system trainer (e.g.
the DBA of that database). Note that M (with
su&ient distinguishing data) should be the num-
ber of distinct attributes in the databases, that
is the attributes that do not have a foreign key
relationship to other attributes in the database.
The output for this step (as shown in Figure 3)
is the number of categories (M) and the weights
of cluster centers (M vectors of N weights). The
weights of the cluster centers are then tagged as
training data (as shown in Figure 4) to train the
network created in the step 3.

Step 3: The system creates a three-layer back-
propagation learning network with N nodes at the
input layer, M nodes at the output layer, and
(N+M)/2 nodes at the hidden layer (as shown
in Figure 5). During the training, the network
changes its weights so that each node in the out-
put layer represents a cluster. Note that the steps
l-3 must be performed only once per database.
We can then integrate with multiple DB’s with-
out retraining.

8We are currently developing parsem which extract infor-
mation from Ingres, Oracle, and IBM AS/400 databases. The
schema specification and data content statistics mud in thin pa-
per were extracted msnually.

Step 4: The input for the network trained in the step
3 is the attribute information of another database
(database B). The network then gives the similar-
ity between the input attribute of database B and
each category of database A.

Step 5: System users check and confirm the output
results of the trained network. The, output results
include lists of similar attributes and the similar-
ity between them. This is the only human input
required on subsequent integrations with other
databases.

The are several reasons for using the classifier as the
first step of this semantic integration system:

1. Ease of training. Ideally M can be determined
from the DBMS using foreign key relationships.
Classification lowers the number of nodes in the
back propagation network output layer. It re-
duces the computational complexity as well as the
training time.

2. After the attributes of database A are classified
into M categories, the attributes of database B
are compared with these cluster centers instead of
each attribute of database A, which is less com-
putationally expensive.

3.

8..

Networks can not be trained with a training set in
which there are two identical answers to a ques-
tion and one is correct while another is not (more
discussion in section 5.4). This happens when the
discriminating information does not distinguish
two attributes (for example, employee.id# and
payroll.SSN, which represent the ,same informa-
tion). The classifier detects cases where this is
true, and groups them to one cluster. Otherwise,
the network can not be trained to point out they
are different.

5 Experimental Results

We tested this technique using three pairs of existing
databases. One pair were transaction data of British
pound call options and put options from March 2,
1983 to June 27, 1985. The available information
for these databases is only data contents. However,
we extracted some schema specification information
from the contents. The second pair were IBM AS/400
databases; we used the field reference llles to obtain
schema information (the data contents were not avail-
able.) The third pair were Sybase databases, for which
we also had only schema information. Q We would like
to test integration of databases from different DBMS’s,
however we have not been able to obtain suitable test
databases. We tested our system on integrating one
IBM AS/400 database with another Sybase database
(which contain no common information). The average
similarity is 0.006 and the maximal similarity is 0.021.
The result shows that attributes of these two databases
are totally different (as expected). However, we do not
know if similar attributes in different DBMS’s would
be detected; we need additional data to test this.

5.1 Transaction Data of British Pound Call
Option and Put Option

The option transaction data used in this experiment
was the British pound call option and put option price
quotes at the Philadelphia Exchange between March
2, 1983 and June 27, 1985. There are nine attributes
in each database (Figure 7). The schema information
we used includes data types, the number of decimals,
field length, and existence of null value. The numer-
ical statistics we used were maximum value (MAX),
minimum value (MIN), coefficient of variance (CV),
standard deviation (SD), and average. Figure 7 shows
a sample output of similarity between an attribute,
call option spot bid price, and each attribute of the
put option database. As we can see, the call option
spot bid price is similar to both put option spot bid
price (similarity = 0.953933) and spot ask price (simi-
larity = 0.949726). Spot bid prices and attribute spot
ask prices are actually very similar, generally moving
in “lock step”.
The difference between using schema information and
using data contents to determine degrees of similarity
is that the data contents may change over time. In
the British pound option databases we used in this ex-
periment, the spot bid prices, ask prices, and volumes
traded changed over time. Besides, there were some
abnormal trades during the first few weeks of data (the
British pound option trade started at the Philadelphia

9These two pairs of databases were used in our prior work
[LC93]. The remltehere are eubetautiallybetterthanthe pre-
vious work .

File: Call-Option File: Put-Option
Attribute: Spot-bid-price

The normalized input:
------------------__--

Char type: 0.000000
Numeric type: 1.000000

Date type: 0.000000
Time type: 0.000000

Length: 0.681892
Decimal: 0.400000

null: 0.000000
Average: 0.503130

Hsx: 0.503993
Hin: 0.502583

SD: 0.500305
CV: 0.524235

The output similarity:
___--__---_----_----------
*Spot-bid-price: 0.953933
*Spot-ask-price: 0.949726

Expiration-price:0.047791
Option-price: 0.015392
Volume: 0.001423
Transaction-tiue:O.000383
Transaction-date:O.000229
Haturity,date: 0.000017
Symbol: 0.000001

Figure 7: The Similarity between Call Option Spot
Bid Price and all categories of Put Option Database

Exchange in March 1983). This phenomenon holds
true in many databases. When a database is just
established, the data may be transferred from other
databases or input manually. The amount of data in-
serted is higher than normal amount. Also, faulty data
may happen more often because of the huge amount of
manually inserted initial data or the process of trans-
ferring data from one database to another database.
We are pleased by the result that our system can
discriminate “expiration-price” from “bid-price” and
“ask-price”. Without the statistics of data con-
tents, we would not able to do it since their schema
specifications are the same. With the statistics of
data contents, we discriminate “expiration-price” from
“bid-price” and “ask-price” by their different averages,
MAX, MIN, coefficient of variance (CV), and stan-
dard deviation (SD). The average price of “expira-
tion-price” is lower and “expirationprice” is more sta-
ble than “spot-bid-price” and “spotask-price”. Table
1 shows the average, maximum, and minimum similar-
ities for both the attributes we determined are similar
(should be merged) such as “call expiration-price” and
“put expiration-price”, and those that aren’t equiva-
lent (such as “transaction date” and “maturity date”).
In this table we have classified the (arguably equiva-
lent) bid and ask prices into the same cluster; given
this there is a clear break between the two groups. In

Table 1: Statistics of Similarity for British Pound Op-
tion Transaction Databases

JZquivalent pairs Avg Max Min
Degree of similarity: 0.96921 0.98869 0.93299
Non-equivalent pairs Avg Max Min
Degree of similarity: 0.00623 0.05989 0.0000

9

this experiment, if we simply trust that all attributes
with similarity less than 0.1 are different, and all with
a single match with similarity greater than 0.9 are the
same, we would be left with only the bid and ask prices
to manually inspect.

5.2 AS/400 Databases

The second pair of sample databases were provided
by M.I.S. Systems, Chicago, Illinois. They are two
field reference files running on IBM AS/400. The
characteristics available for us to use are data type,
length, range and value constraints, and EDTCDE and
EDTWHD specifications lo. There are 10 fields in a
database that record general marketing activity infor-
mation and 41 fields in a database that record tele-
marketing activity information. Thus, there are 410
pairs of fields being compared.
Here we first used the classifier to classify the database
with 41 fields into 9 categories (as shown in Figure 3)
by setting the threshold to 0.1. .9 is the number of
distinct categories (M) in the database (e.g. one cate-
gory with attributes recording dates to call customers
and one category with attributes recording the types
of telemarketing activities). We then used the back-
propagation learning algorithm to train a three-layer
network with 6 nodes in the input layer, 7 nodes in the
hidden layer, and 9 nodes in the output layer, to recog-
nize these categories. After the network was trained,
the database with 10 attributes was presented to this
trained network. The network then determined the
similarity between these 10 fields and the 9 categories.
Thus, there are only 90 comparisons needed instead of
410 comparisons without using a classifier.
Table 2 shows the average similarity for equivalent
attributes is 0.98905 while the average similarity for
non-equivalent is 0.00161. The network is very effec-
tive in recognizing equivalent attributes and discrim-
inating non-equivalent attributes. These results are
much better than the results in [LC93]. This is be-
cause the probability values of similarity are not pre-
programmed, but are determined for that d&be by
training.

Table 2: Statistics of Similarity for AS/400 Databases

JSquivalent pairs Aw Max Min
Degree of simihity: 0.98905 0.99591 0.98360

Non-equivalent pahs Avg Max Mii
Degree of similarity: 0.00161 0.00801 0.00000

loThe IBM AS/400 databaaea have all the design information
described in Section 3 available on the nyyrtem. However, some
of thk information was not available to WI.

5.3 Sybase databases

The third pair of databases were Sybase databases
provided by Reuters Information Systems in Oak
Brook, Illinois. The available characteristics of these
databases include data type, length, key, value and
range constraints, file access restrictions, foreign key
constraints, and null value constraints. There are 7
attributes in the database that record project doc-
ument information and 6 attributes in the database
record project meeting information. Thus, there are
42 pairs of fields being compared. In the pattern recog-
nition network, there are 13 nodes in the input layer,
10 nodes in the hidden layer, 6 nodes (6 categories,
1 attribute in each category since they present differ-
ent meanings) in the output layer. Again, the network
is very effective in both discriminating pairs of non-
equivalent attributes (average similarity = 0.00924)
and matching equivalent pairs of attributes (average
similarity = 0.93254). In this experiment, the trained
neural network shows its ability of generalization to
correctly response to patterns not used to trained it.
Note that one pair of equivalent attributes is given
similarity of 0.87616 while another pair of equivalent
is given 0.98892 (the second row in Table 3). This
pair of equivalent attributes of similarity of 0.87616
represent the same real-world meaning even though
their schema specifications are slightly different. The
network is still able to identify this pair of equivalent
attributes.
The maximal similarity for non-equivalent pairs is
0.07240; that is, some similarity between some pairs
of non-equivalent attributes. The gap between min-
imal similarity of equivalent attributes (0.87616) and
maximal similarity of non-equivalent pair (0.07240) in-
dicates the effectiveness of our technique.

Table 3: Statistics of Similarity for Sybase Databases

Epuivalent pairs Avg Max Mia
Degree of similarity: 0.93254 0.98892 0.87616

Non-equivalent pairs Avg Max Mi
Degree of simikity: 0.00924 0.07240 0.00000

5.4 System Performance

This system is implemented in C; our tests were run
on an IBM BS/6000 model 220. CPU time needed
for the classification or recognition processes finished
in under 0.1 second. The training in our experiments
always took less than 7 seconds of CPU time when we
set the thresholds to 0.01. .The training time can be
reduced as larger thresholds are used. For the British
pound option transaction databases, the training time

10

Table 4: System Performance and Human Effort Needed

Process CPU time Human effort
Extract information from databases Varies Little (once per DBMS)
Classify attributes into categories < 0.1 second Little (give threshold, once per database)
Train networks < 7.0 seconds None
Deter&e similarity < 0.1 second Some (check results)

is 2.2 seconds CPU time (704 epochs 11) with a clas-
sifier. Without a classifier to group similar attributes
into a single cluster, the training time needed would
be much longer (11642 epochs and 33.6 seconds CPU
time). The reason is that networks can not be trained
with a training set in which there are two different
expected output for the same input pattern (two dif-
ferent attributes with the same characteristics). This
is also the reason why training takes much longer using
two very similar input patterns.

6 Conclusions and Future Work

In this paper we show a system in which the human ef-
fort needed for semantic integration is minimized. We
use a self-organizing classifier algorithm to categorize
attributes and then use a back-propagation learning al-
gorithm to train a network to recognize input patterns
and determine similarity between attributes. The ex-
perimental results show the effectiveness and efficiency
of our technique.
From Table 4, we learn that the only potentially
slow process is extracting information from databases,
which can be done as a “batch” process once per
DBMS. The rest of the method is fast enough to be
done interactively. After the ihformation is extracted,
system users can “interact” with the system (pro-
vide the threshold during the classification process and
check and confirm the results: similar attributes iden-
tified by the system) to integrate databases. Based on
the three experiments we presented, a user could sim-
ply follow the rule “if the similarity is less than 0.1,
the attributes are different; if there is one cluster with
similarity greater than 0.8 then the attribute matches
that cluster”. The only “manual inspection” needed
would be for the spot bid price and spot ask price in
the British pound option databases, and even here fol-
lowing the closest match would give the proper result.
F’urther experiments are needed to determine exactly
what this rule should be, and how often users will need
to inspect the results. To this end we have made this
tool available (as C source code) via anonymous ftp
from eecs.nwu.edu in directory /pub/semint. We are
developing parsers for the IBM AS/400, Ingres, and
flat files; we will develop more as time and resources

l1 One cycle of forward-propagation, backward-propagation,
and weight-update is called one epoch.

allow. We would appreciate feedback on the effective-
ness of this tool.
Our method does have one problem when dealing with
multiple types of Database Management Systems. In
order to ease the presentation of the method we have
glossed over this, however we must note that the back-
propagation algorithm requires that input patterns
have the same discriminators used in the training. We
may not be able to obtain the same list of discrim-
inators from two different DBMSs (for example, the
data types supported may be different). In this case,
we must train a new network using the intersection
of the available discriminators. However, the inter-
section/filtering process can be automated, and the
expected result of the classifier (M) is the same re-
gardless of the discriminators provided. Thus no extra
human effort is needed to train multiple networks (pro-
vided the intersection of the discriminators is sufficient
to distinguish the attributes in a single database). We
are investigating alternatives to back propagation that
will allow us to use a single network regardless of the
discriminators available.
We have concentrated on matching attributes (the ,
heterogeneity of organizational models problem
of pie93J). W e are .&I investigating use of this tech-
nique in uncertain data query and join operations by
attacking some of the other levels of heterogeneity de-
scribed in [Wie93]. We want to extend these research
results to more general areas such as intelligent inte-
gration of information (13). The I3 objective requires
the establishment of a conceptual information system
architecture, so that many participants and technolo-
gies can contribute wie93]. Automation becomes im-
portant as the volume of accessible data increases. The
ability to “discover” heuristics in our technique makes
it favorable for automation. Our technique can also
be combined with (DeM89] to support operations over
partially matched domain and uncertain data queries
[TC93] in heterogeneous databases.

References

[DeM89] Linda G. DeMichiel. Performing opera-
tions over mismatched domains. In Pro-
ceedings in the 5th International Confer-

[DH84]

[DKM+93]

[HR90]

[Koh87]

[LC93]

[Lit891

[LNE89]

[MB811

[MH80]

ence on Data Engineering, pages 36-45.
IEEE, May 1989.

Umeshwar DayaI and Hai-Yann Hwang.
View definition and generalization for
database integration in multidatabase sys-
tem. tinsactions on the Software En-
gineering, SE10(6):628-644, November
1984.

P. Drew, R. King, D. McLeod,
M. Rusinkiewicz, and A. Silberschatz. Re-
port of the workshop on semantic het-
erogeneity and interoperation in multi-
database systems. SIGMOD Record, pages
47-56, September 1993.

Stephen Hayne and Sudha Ram. MuIti-
user view integration system (MUVIS): An
expert system for view integration. In Pm-
ceedings in the 6th International Confer-
ence on Data Engineering, pages 402-409.
IEEE, February 1990:

Teuvo Kohonen. Adaptive, associative,
and self-organizing functions in neural
computing. Applied Optics, 26:491&4918,
1987.

Wen-Syan Li and Chris Clifton. Using
field specification to determine attribute
equivalence in heterogeneous databases.
In Third International Workshop on Re-
search Issues on Data Engineering:
INTEROPERABILITY IN MULTI-
DATABASE SYSTEMS, pages 174-177,
Vienna, Austria, April 18-20 1993. IEEE.

Witold Litwin. MSQL: A Multidatabase
Language. Elsevier Science Publishing,
1989.

James A. Larson, Shamkant B. Navathe,
and Ramez EImasri. A theory of at-
tribute equivalence in database with ap-
plication to schema integration. tinsac-
tion on Software Engineering, 15(4):449-
463, April 1989.

Amihai Motro and Peter Buneman. Con-
structing superviews. In Proceeding of
the SIGMOD International Conference on
Management of Data, pages 56-64, Ann
Arbor, Michigan, April 1981. ACM.

Dennis McLeod and Dennis Heimbigner.
A federated architecture for database sys-
tem. In Proceedings of the National Com-

[NB86]

[SBU+81]

[SG89]

[SW

[SLCN88]

[TC93]

[VH94]

[Wie93]

puter Conference, pages 283289, Ana-
heim, CA, May 1980. AFIPS.

S. Navathe and Peter Buneman. Integrat-
ing user views in database design. Com-
puters, 19(1):50-62, January 1986.

J. M. Smith, P. A. Bernstein, U.DayaI,
N.Goodman, T. Landers, T. Lin, and
E.Wang. Multibase - integrating hetero-
geneous distributed database systems. In
Proceeding of the National Computer Con-
ference, pages 487-499. AFIPS, 1981.

V. C. Storey and R. C. Goldstein. Creat-
ing user views in database design. tin+
actions on Database Systems, pages 305-
338, September 1988.

Amit Sheth and Sunit K. Gala. Attribute
relationships: An impediment in automat-
ing schema integration. In Proceedings
of the NSF Workshop on Heterogeneous
Database Systems, Evanston, IL, Decem-
ber 1989.

Amit Sheth and James Larson. Feder-
ated database systems for managing dis-
tributed heterogeneous, and autonomous
databases. Computer Surveys, 22(3):183-
236, September 1990.

Amit Sheth, James Larson, A. CorneIio,
and S. B. Navathe. A tool for integrat-
ing conceptual schemas and user views. In
Proceedings of the 4th International Con-
ference on Data Engineering, Los Angeles,
CA, February 1988. IEEE.

Pauray SM. Tsai and Arbee L.P. Chen.
Querying uncertain data in heteroge-
neous databases. In Third Intewza-
tionaJ Workshop on Research Issues on
Data Engineering: INTEROPERABIL-
ITY IN MULTIDATABASE SYSTEMS,
pages 161-168, Vienna, Austria, April 18-
20 1993. IEEE.

Vincent Ventrone and Sandra Heiler.
Some advice for dealing with semantic
heterogeneity in federated database sys-
tems. Submitted to International Journal
of Computer-Aided Engineering, 1994.

Gio Wiederhold. Intelligent integration of
information. SIGMOD Record, pages 434-
437, May 1993.

12

