
CERIAS Tech Report 2001-96
Protecting Against Data Mining through Samples

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

To appear in Proceedings of the Thirteenth Annual IFIP WG 11.3 Working
Conference on Database Security, July 26-28, Seattle, WA.

Chapter 1

PROTECTING AGAINST DATA MINING
THROUGH SAMPLES

Chris Clifton

Abstract Data mining introduces new problems in database security. The basic problem
of using non-sensitive data to infer sensitive data is made more difficult by the
“probabilistic” inferences possible with data mining. This paper shows how
lower bounds from pattern recognition theory can be used to determine sample
sizes where data mining tools cannot obtain reliable results.

1. INTRODUCTION

The problem of inference has received considerable attention in the database
security community. The basic problem is using non-sensitive, or “low”, data
to infer sensitive, or “high” facts. As an example, we may want to keep the
presence of a particular type of equipment (e.g., “super-secret aircraft” (SSA))
at a particular location (“Secret Base”, SB) secret. However, to support logistics
we want to make information about supplies needed by all bases available. The
inference problem occurs if parts that are only used for the SSA are ordered by
SB – from this we can infer that there must be a SSA at SB.

Most work in preventing inference in multi-level secure databases has con-
centrated on preventing such “provable” facts [Delugach and Hinke, 1996].
Recent work has extended this to capturing data-level, rather than schema-
level, functional dependencies [Yip and Levitt, 1998]. However, data mining
provides what could be viewed as probabilistic inferences. These are rela-
tionships that do not always hold true (are not a functional dependency), but
hold true substantially more often than would be expected in “random” data.
Preventing this type of inference detection is beyond existing methods.

As an example, what if there are no parts that are used only for the SSA? The
functional dependency inference problem no longer exists. However, there may
be some items that are used more heavily by the SSA than other aircraft (e.g.,
it uses a great quantity of fuel). Data mining could find such a relationship; for

1

2

example bases X, Y, and SB use an unusual quantity of fuel in relation to other
supplies. If we know that bases X and Y support the SSA, we can make a good
guess that SB does as well.

Hinke and Delugach [Hinke and Delugach, 1992, Hinke et al., 1997] give
a breakdown of inference into seven classes of problems. The first six rely on
combining known rules (e.g., Part A is only used on an SSA) with non-sensitive
data (Part A was suppled to base SB) to infer sensitive facts. Class 7 is the
inference of a sensitive rule. It is noted that this “represents a considerably
different target than the previous ones”, and as a result has received considerably
less attention in the database security community. However, one of the primary
focuses of data mining technology is inferring rules, with the rise of data mining
technology, this has become a recognizable problem.

What can we do about this, in particular when we don’t know what the
adversary will be looking for? (In cases where we know the inference we must
keep secret, like the example above, other techniques are available.[Johnsten
and Raghavan, 1999]) We can ensure that any results will be suspect. If we
can convince the adversary that any “guess” (inferred rule) gained from data
mining is no more likely to be a good guess than a random guess, the adversary
will not be able to trust any data mining results.

How do we do this? Inferences from data mining have some level of
confidence and support. We will show how to ensure that either:

1. The rules “discovered” may be incorrect (the levels of confidence and
support could be significantly off); or

2. It is likely that rules exist with higher confidence and support than those
found.

We propose to accomplish this by ensuring that the data available to the adver-
sary is only a sample of the data on which the adversary would like the rules
to hold (note that in some cases this “sample” may be an entire database, as
long as the “inferences” we wish to protect against apply to a larger population
than that reflected in the database). We show that we can draw a relationship
between the sample size and the likelihood that the rules are correct.

We base this on the fact that inference rules can be used to classify. Vapnik
[Vapnik, 1982] has shown error expectations in classification on samples. This
is due to expectations of a random sample of a population having a different
distribution with respect to any classification information than the population
as a whole. If we can show that a “best possible” classifier is likely to be
incorrect, we can work back to show that any rules (at best a “best possible”
classifier) will also likely be incorrect.

We divide this into two variations:

1. We are concerned with protecting a particular “object” (e.g., any rela-
tionship where the target is a single value for a given variable). Note that

Protecting Against Data Mining through Samples 3

Table 1.1 Base Order Database.

Date Location Item

1/1/97 SB Fuel
1/1/97 X Fuel
1/2/97 Y Fuel
1/4/97 A Fuel
1/6/97 B Food

1/10/97 B Food
1/18/97 A Food
1/22/97 A Food
1/24/97 B Fuel
1/31/97 X Fuel
2/3/97 SB Fuel

we do not require predefining the value. We can reduce the problem of
learning a binary classifier to this.

2. We are concerned with a particular class of rules (e.g., inference rules
involving a single independent variable). This limits our space of possible
classifiers.

As we will show; these two variations lead to different solutions.

2. MOTIVATING EXAMPLE

In this section we will give a more detailed presentation of the “inference
through supply orders” example, along with a “proof by example” of how
providing only a sample of the data can be used to prevent data mining from
making the inference base SB is likely to support an SSA due to similar ordering
patterns to bases X and Y.

First, assume that the complete order database is as presented in Table 1.1.
If we develop an Item classifier using this table, we find the rules:

If Location=X then Item=Fuel (confidence 100%, support 29%)
If Location=Y then Item=Fuel (confidence 100%, support 14%)
If Location=SB then Item=Fuel (confidence 100%, support 29%)

Armed with this knowledge, we can search for reasons why X and Y order only
Fuel (other reasons that differentiate them from A and B). If we find a common
factor (e.g., they support the SSA), we can guess SB has this common factor.

Note that if we only have a sample of the database, we may develop a
different set of rules. If we use only the highlighted rows from Table 1.1 we
get a sample containing 70% of the complete database. The rules generated
from this sample are:

4

If Location=A then Item=Fuel (confidence 100%, support 17%)
If Location=X then Item=Fuel (confidence 100%, support 33%)
If Location=SB then Item=Fuel (confidence 100%, support 33%)

If we looked for common factors between Locations A and X (that differentiated
them from others), we would not find the “threatening” evidence that they both
support the SSA. Thus we have preserved the secrecy of the SSA at SB.

There are a number of problems with this example:

1. The support of the first rule is low. If the adversary were to ignore
rules with support below 20% (in both cases), it might still be possible
to obtain the desired information (although with less confidence, as the
presence of the base Y supporting the SSA, but not present in the rule,
would lessen the impact of this).

2. What if we chose a different sample? Some samples would improve the
rules, and increase the adversary’s ability to find the desired information.

3. Does this sample database still provide the desired information (e.g.,
an audit of order deliveries, or supporting the improvement of logistics
through better prediction of ordering needs)?

Problem 3 is difficult – we must know the intended purpose of the data to
determine if the sample is sufficient. Some purposes (such as prediction of
ordering needs) are particularly problematic: If we aim to prevent an adversary
from learning rules we don’t even know about, we will necessarily prevent
learning any rules. However, if the goal relies on specific data items, rather
than inferences among the data items (such as comparing specific orders with
their delivery traces), we need only ensure that the desired items are provided.
We must be careful, though, to avoid problem 2 by letting the adversary choose
the sample. Although not the focus of this paper, we discuss this issue later.

What we address is problem 1. If we can show that the rules with high
support or high confidence on the sample do not necessarily have high support
and confidence on the complete database, then the adversary cannot rely on
the rules produced from the sample. We don’t show that the rules obtained
on the sample are bad, but that they are likely to be bad. The goal of this
work is to show that we can convince the adversary of the likelihood of such a
failure, without knowing the problem the adversary wants to solve. Many data
mining techniques (including the production rules shown above) produce rules
or knowledge that can be used to classify items in the database. Vladimir Vapnik
has shown error limits in classification when the classification is learned from
a sample[Vapnik, 1982]. In Section 4., we will use an adaptation of Vapnik’s
work to show the difficulty of learning as a function of sample size.

To give an idea of how this would work in practice, we will use the results
derived later to demonstrate how large a sample would be reasonable for the
above example.

Protecting Against Data Mining through Samples 5

Assuming there are at most two food and/or fuel orders per month, and that
the adversary attempts to predict using the number of orders of each type per
month, e.g., a rule is of the form:

January(Fuel, 2)&January(Food, 0)&February(. . . ⇒ Supports SSA

Further assume that using a collection of such rules we can develop a “perfect”
classifier (one that will always give us the right result). If we are willing to
tolerate that with a 50% probability, the learned classifier can be expected to be
wrong 40% of the time, we can allow a sample size of over 175 billion where a
single sample is all of the orders for a single base for a year (based on Theorem
1; we will discuss how these numbers are derived in Section 4.1). This is large,
but the reason is that there are a great many possible rules (3 possible values
for each of food and fuel gives 9 possible values per month; or 912 possible
values a year). If the sample doesn’t contain an exact instance of a rule, the
classifier won’t know if it applies. Thus the need for a large sample size. This
is a problem with complex classifiers – they don’t generalize well.

If we assume that a simple correct classifier exists, and that the adversary
has the sense to look for a simple classifier, we have more serious constraints.
In particular, if we assume N (the number of possible classifiers) is 6: fuel
>> food, low total order for the year; fuel ≈ food, low total order; fuel <<
food, low total order; fuel >> food, high total order; fuel ≈ food, high total
order; fuel << food, high total order; we can only allow a sample size of
(6 − 1)/(4 ∗ .4) = 3 (again, a sample is complete information on a base for a
year, or 72 tuples from a complete version of Table 1.1.)

This assumes a perfect classifier exists, however with a simple classifier it
is unlikely that it can perfectly classify the data. If the best possible classifier
has some error, it is more difficult to state exactly what we mean by the error of
the classifier learned from the sample. We will now give some more detail on
error estimation. In Section 4. we discuss the specific theorems that allow us
to determine these bounds; we will then return to discussion of this example.

3. BASIC IDEAS OF ERROR ESTIMATION

Our purpose in this section is to show how we can control the expected
error of a classifier by limiting sample size. Figure 1.1 gives an idea of
the problem. We want to control (by varying the sample size) the error D
between the classifier the adversary can expect to learn from the sample and
the “best possible” (Bayes) classifier. Note that the space of possible classifiers
C may not include the Bayes classifier. Therefore the error is composed of
two components: The approximation error Da between the best classifier LC

available in C and the Bayes classifier L∗, and the estimation error De between
the classifier Ln learned from the sample and LC . The difficulty is that there

6

Space of possible
classifiers

on entire data
Best classifier

on sample
Best classifier

Best possible

classifier

De

Lc

Ln

Da
L*

classifiers

on sample
Best classifier

Ln

Best classifier
on entire data

Space of possible

Lc

ε

Figure 1.1 Distance between best classifier
on sample and best classifier on data.

Figure 1.2 Error of best classifier on sample
Ln worse than best classifier LC by more than
ε.

are many possible “best classifiers” Ln depending on the sample. Thus our
goal is to analyze the expected value E{D} of the error given the sample size.

There are actually three types of error:

Bayes Error: This is the expected error of the “best possible” classifier on the
entire database. If the output is a function of the input, this is 0. This
is entirely dependent on the data, and as such we can say little without
knowing specifically what we want to protect against.

Approximation Error: This is the difference between the expected error of
the best classifier from the types of classifiers we are considering, e.g.,
decision trees, and the Bayes classifier. The more complex the classifier,
the lower the expected approximation error.

Estimation Error: This is the difference in expected error between a classifier
learned from a sample and the best classifier available. This is what we
can control by varying the sample size.

There are various things we might like to say:

1. Given an error estimate, that error estimate will be off (different from the
Bayes error) by some amount ε with probability δ.

2. The expected difference between a learned classifier and the Bayes error
is at least ε with probability δ.

3. Given a sample, the error of the learned classifier can be expected to
differ from the best classifier of that type by ε with probability δ.

Protecting Against Data Mining through Samples 7

4. Given a type of classifier, we can expect the best possible classifier of
that type to differ from the Bayes error by ε with probability δ.

Item 1 gives a lower bound – it says that even if the adversary “guesses”
a great classifier, the adversary’s estimate of how good the classifier is (using
the sample) will likely be off. However, this is not likely to be a tight bound
on the actual problem: what the adversary can learn. Likewise 4 isn’t all that
interesting; it says how good a classifier is possible, but nothing about what
can be learned from the sample.

We will address 3, the estimation error. Figure 1.2 gives an idea of the
goal: given a circle of radius ε, we want to choose a sample size such that with
probability δ, the best classifier on the sample Ln will be outside the circle. If
Ln is outside the circle, then at least ε percent of the time Ln gives the “wrong”
answer, even though a classifier LC exists that gives the right answer.

We will also see that the formulas for estimation error are dependent on
approximation error, giving a way of estimating 2.

4. LIMITS BASED ON SAMPLE COMPLEXITY

The sample complexity of a problem is the size of sample needed to ensure
that the expected error of a classifier learned from the sample is within given
bounds. What we can show is the following: Given a “best estimation error”
that we will tolerate, and a minimum probability that the adversary will not be
able to do better than that error, what is the largest sample we can allow?

Formally, we are determining the sample complexity N(ε, δ), defined as the
smallest integer n such that

sup
(X,Y)∈X

P{L(gn)− LC ≥ ε} ≤ δ

where LC is the best classifier in C:

LC
def
= inf

φ∈C
P{φ(X) 6= Y }.

and L(gn) is the classifier selected based on the training data:

L(gn) = P{gn(X) 6= Y |((X1, Y1), . . . , (Xn, Yn))}

This states that there is a distribution of the data such that if the sample size
n < N(ε, δ), then with probability at least δ, a classifier exists that outperforms
the chosen one by at least ε. The key factor here is that there is a distribution
of the data where this holds. This doesn’t mean a specific choice of the sample
is necessary; the dependence is instead on the characteristics of the data as a
whole. There exists a distribution of the data such that the bounds will hold on
average across all random samples of the data. (One such distribution is skewed

8

based on the classifier: most of the data conforms to a single rule left-hand side.
This is not an unreasonable distribution to expect in practice. For example, if
we assume that the information leading to a sensitive inference is a relatively
small part of the database, we are likely to have this type of distribution.)

We begin with two definitions of Vapnik-Chervonenkis theory[Vapnik, 1982]
(notation from [Devroye et al., 1996]): First we define the shatter coefficient
of the classifier:

Definition 1 Let A be a collection of measurable sets. For (z1, . . . , zn) ∈
{<d}n, let NA(z1, . . . , zn) be the number of different sets in

{{z1, . . . , zn}
⋂

A;A ∈ A}.

The n-th shatter coefficient of A is

s(A, n) = max
(z1,...,zn)∈{<d}n

NA(z1, . . . , zn).

That is, the shatter coefficient is the maximal number of different subsets of n
points that can be picked out by the class of sets A.

Definition 2 Let A be a collection of sets with |A| ≥ 2. The largest integer
k ≥ 1 for which s(A, k) = 2k is denoted by VA, and it is called the Vapnik-
Chervonenkis dimension (or vc dimension) of the class A. If s(A, n) = 2n

for all n, then by definition, VA = ∞.

We can see that the shatter coefficient of the classifier must be less than
or equal to the number of distinct rule sets = 2number of rules . (Actually
mnumber of rules , where m is the number of possible output values.) Since
the vc-dimension is the largest k such that the shatter coefficient = 2k, we
can see that the vc-dimension for binary decision rules is the number of dis-
tinct rules. (For non-binary, it works out to k s.t. 2k = mnumber of rules ,
or k = log2(m

number of rules) = number of rules log2(m).) Looking back
at the example of Section 2., if we say that we are trying to learn if a
base supports the SSA based on the number of fuel and food orders in a
year, and we assume at most two orders of each type per month, we can
see that for a year there are 24 ∗ 24 possible rules, so the vc dimension
= 576. If we were to allow a more complex classifier, say the number
of orders per month for each month (e.g., this would be useful if the SSA
only flew in good weather), we would have (possible food orders per month ∗
possible fuel orders per month)number of months = 16777216 possible rules.

We address this in two separate cases: Where a perfect classifier exists in
C, and where one does not. In the first case, what we are bounding is the total
error (since there is no approximation error). There is a formula for this that
holds for all δ ≤ 1/2:

Protecting Against Data Mining through Samples 9

200
400

600

800

10000.1

0.2

0.3

0.4

0

1000

2000

200
400

600

800

1000

Untitled-1.ma 1

0
0.1

0.2
0.3

0.4

0.5

200000

400000

600000

800000

 6
1. 10

0

20

40

60

0
0.1

0.2
0.3

0.4

0.5

Untitled-1.ma 1

Figure 1.3 Value of n (vertical scale) where
probability δ = 1/2 that there is error ε, as
function of error V (left scale) and ε (right
scale), when a perfect classifier is available.

Figure 1.4 Value of n (vertical scale) below
which error ε > .1 with probability δ > .1
as a function of L (left scale) and V (right
scale).

Theorem 1 [Devroye and Lugosi, 1995, Devroye et al., 1996]. Let C be a
class of discrimination functions with vc dimension V ≥ 2. Let X be the set
of all random variables (X,Y) for which LC = 0. For δ ≤ 1/2 and ε < 1/2,

N(ε, δ) ≥
V − 1

4ε
.

What this comes down to is the following. If a perfect classifier exists, and
we have seen an example to which a rule applies, then we will always get that
rule right. If we are asked to classify something where the training data didn’t
contain a similar sample (similar in the sense that a rule left-hand side matches),
we will just be guessing. Thus, as the number of rules (V) goes up, the sample
size needed does as well.

Figure 1.3 shows the minimum n needed for various values of ε and V . Note
that the high values of V are likely to be more relevant in practice, as it is
unlikely a perfect classifier will exist if the classifier is simple.

More interesting is what happens when there isn’t a perfect classifier (the
approximation error is greater than 0).

Theorem 2 [Devroye and Lugosi, 1995, Devroye et al., 1996]. Let C be a
class of discrimination functions with vc dimension V ≥ 2. Let X be the set
of all random variables (X,Y) for which for fixed L ∈ (0, 1/2),

L = inf
g∈C

P{g(X) 6= Y }.

Then for every discrimination rule gn based on X1, Y1, . . . , Xn, Yn,

N(ε, δ) ≥
L(V − 1)e−10

32
×min

(

1

δ2
,

1

ε2

)

,

10

0.1

0.15

0.2

0.250.05

0.1

0.15

0.2

0

2.5

5

7.5

10

0.1

0.15

0.2

0.25

Untitled-1.ma 1

0.05

0.1

0.15

0.2

0.250.05

0.1

0.15

0.2

0

10

20

30

40

0.05

0.1

0.15

0.2

0.25

Untitled-1.ma 1

Figure 1.5 Value of n (vertical scale) below
which a guarantee of error within 0.1 impos-
sible as a function of L (left scale) and d (right
scale).

Figure 1.6 Value of n (vertical scale) below
which a guarantee of error within 0.05 im-
possible as a function of L (left scale) and d
(right scale).

and also, for ε ≤ L ≤ 1/4,

N(ε, δ) ≥
L

4ε2
log

1

4δ
.

Note that this gives us two bounds. One is dependent on L, V , ε, and δ
(although for practical purposes we would let ε = δ when using this); the
second is only dependent on L, ε, and δ.

Some sample values for the first, based on ε = δ = .1 (10% of being wrong
at least 10% of the time) are given in Figure 1.4. Intuitively, this is based on
the probability of choosing the wrong rule to use; this gives a sample size if
our primary concern is how the adversary chooses a given outcome rather than
their ability to predict the outcome. In other words, the knowledge is in the
rule, not in the application of the rule.

The second formula is intuitively based on guessing the wrong outcome for a
given rule. Sample values are given in Figures 1.5 (ε ≥ 0.1) and 1.6 (ε ≥ 0.05).

Note that these give small sample sizes. However, they allow us to make a
strong statement: No matter how good the adversary’s data mining technology,
there are circumstances under which they can expect the results to be poor.

4.1 BACK TO THE EXAMPLE

The figures given in Section 2. are based on Theorem 1. This is appropriate
for the complex classifier case (a perfect classifier is likely), and due to the
huge vc-dimension (912) of such a classifier we end up with a sample size
N(.4, .5) = (912 − 1)/(4 ∗ .4) > 175 billion.

Protecting Against Data Mining through Samples 11

However, the simple classifier had a vc-dimension of 6. This gives a sample
size of 3 if a perfect classifier exists. Theorem 2 handles the case where no
perfect classifier exists. The first formula depends on large vc-dimension V (it
is really only useful when V > 15, 000). However, the second form gives us
something to work with. If we start by assuming that such a simple classifier
can be correct at most 75% of the time (L = .25), and we want the adversary
to be forced to accept an error of 10% (in other words, they can expect to be
right only 65% of the time, even though they could do as well as 75%) with
probability δ = 0.15, gives us our allowed sample of 3 years of data.

Note that this is the same as the LC = 0 (perfect classifier exists) case with
ε = 0.4 and δ = 0.5. This seems strange; it appears easier to learn a good
classifier when a perfect one doesn’t exist. Intuitively, we can say that the
learning problem is harder if a perfect answer exists.

4.2 EFFECT ON A SINGLE RULE

We have determined what the expected error is for a set of rules. The next
question is, what confidence can the adversary have in a single inference rule?

The preceding section gives an answer to this question. Since what we have
determined is the probability of the learned classifier failing to perform as well
as the best possible classifier on a given input, it follows that a failure means
that the rule that applied gave the wrong output. Thus it is the probability that
for any given rule left-hand side (input), the output is “backwards” (since this
is a binary classifier).

This, in a sense, is a worst case error: We have a rule that gives exactly the
opposite of the proper result. Although the probability of this happening may
seem small (.05 or .1), the result is still significant.

5. CONCLUSIONS AND FURTHER WORK

Pattern recognition theory gives us tools to deal with security and privacy
issues in data mining. Limiting the sample size that can be mined allows us to
state clear limits on what can be learned from the sample. These limits are in
the form of expected error on what is learned. What they allow us to do is tell
an adversary, “Here is a sample you may mine, but you can expect any result
you get will be wrong ε% of the time with probability δ, no matter how good
your data mining is”. It gives us sample sizes where we can expect that the
sample may be misleading.

One advantage of this approach is that the method can be open. The adversary
cannot use knowledge of how we restrict sample size to improve the data mining
process. In fact, the knowledge that results from mining the sample cannot be
trusted may discourage the adversary from making the attempt.

12

These sample sizes tend to be small (10s or 100s of tuples). However,
for certain purposes this is reasonable. For example, providing samples of
actual data to be used for development of new systems to operate in a secured
environment. These formulas give us the ability to state “this is a safe amount
of data to release”, without worrying about the specific inferences that may be
drawn. This is independent of the external knowledge available to the adversary
(except for the database contents not included in the sample).

Another thing we gain is the ability to analyze the effect of a given sample
size. This is useful when data is released unintentionally; we can analyze the
potential impact of the release both in terms of the direct inferences that can be
made, and the “probabilistic inferences” that can be determined by data mining.
Again, this is independent of the technology or external knowledge available
to the adversary.

There are various ways we can extend this work. One is in the realm of
support to a data security administrator; an “operations manual” for determin-
ing how much data to release. The primary effort required is determining
appropriate parameters for a classifier. One solution would be to use clustering
techniques on the database (e.g., self-organizing maps [Kohonen, 1990] with
thresholds on nearest neighbor) to give a likely value for the vc-dimension of a
reasonable classifier. This idea is based on grouping the potential rule left-hand
sides into similar groups, with the idea that similar inputs would likely lead
to similar outputs. A classifier on extremely diverse data is likely to be more
complex than one on simple data. This needs more work to establish limits on
the probabilities involved.

Another area for extension is that this work assumes the sample obtained
by the adversary is randomly distributed. However, many applications will
produce non-random samples. An example of this would be a system that
allows queries to a database (access to individual information), but tries to
protect correlations among items through limiting the volume of data available.
In such a system the adversary controls the sample distribution. What can we
say about such an environment?

There are a number of possibilities:

The sample is random with respect to a correlation discovered. In this
case, the fact that the sample is not random with respect to some criteria
is irrelevant.

A discovered correlation involves the selection criteria. The problem is
that we cannot say if the correlation is unique to the selection criteria: It
may or may not be independent of the selection criteria.

A correlation exists between the selection criteria and some other field
in the data. The previous case prevents our discovering this correlation,
however does the non-randomness of the sample allow us to discover

Protecting Against Data Mining through Samples 13

other correlations between the “other field” and other items? Or does
this reduce to the previous case?

The adversary has multiple samples based on different selection criteria.
One obvious sub-case of this is a random sample and a non-random
sample. Does this allow us to discover correlations with respect to the
selection criteria that we would not expect to discover with a random
sample?

This is related to work in privacy problems from data aggregation [Cox,
1996, Chowdhury et al., 1996]. The statistical database inference problem deals
with identifying individual data values from one or more summary queries. It is
the converse of the problem of this paper; instead of protecting against learning
data items from aggregates, we are protecting against learning aggregates from
individual items. Although the basic problem is quite different, as we move
toward non-random samples the two areas may overlap. Of particular note is
work on random sampling queries [Denning, 1980]; this may provide tools to
implement policies governing the creation of non-random samples.

Another possible starting point for this is artificial intelligence work on selec-
tion of training data [Cohen et al., 1995, Yang and Honavar, 1998]. Preventing
the adversary from selecting a “good” set of training data (while still allowing
some queries, and those non-random release of data) would support this work.

What we have shown is that for reasonably small random samples, we can
be confident that the threat posed by data mining is minor.

References

[Chowdhury et al., 1996] Chowdhury, S. D., Duncan, G. T., Krishnan, R.,
Roehrig, S., and Mukherjee, S. (1996). Logical vs. numerical inference
on statistical databases. In Proceedings of the Twenty-Ninth Hawaii Inter-
national Conference on System Sciences, pages 3–10.

[Cohen et al., 1995] Cohen, D. M., Kulikowski, C., and Berman, H. (1995).
DEXTER: A system that experiments with choices of training data using
expert knowledge in the domain of DNA hydration. Machine Learning,
21:81–101.

[Cox, 1996] Cox, L. H. (1996). Protecting confidentiality in small population
health and environmental statistics. Statistics in Medicine, 15:1895–1905.

[Delugach and Hinke, 1996] Delugach, H. S. and Hinke, T. H. (1996). Wizard:
A database inference analysis and detection system. IEEE Transactions on
Knowledge and Data Engineering, 8(1).

[Denning, 1980] Denning, D. E. (1980). Secure statistical databases with
random sample queries. ACM Transactions on Database Systems, 5(3):291–
315.

14

[Devroye et al., 1996] Devroye, L., Györfi, L., and Lugosi, G. (1996). A Prob-
abilistic Theory of Pattern Recognition. Springer-Verlag, New York.

[Devroye and Lugosi, 1995] Devroye, L. and Lugosi, G. (1995). Lower
bounds in pattern recognition and learning. Pattern Recognition, 28:1011–
1018.

[Hinke and Delugach, 1992] Hinke, T. H. and Delugach, H. S. (1992). Aerie:
An inference modeling and detection approach for databases. In Thurais-
ingham, B. and Landwehr, C., editors, Database Security, VI, Status and
Prospects: Proceedings of the IFIP WG 11.3 Workshop on Database Secu-
rity, pages 179–193, Vancouver, Canada. IFIP, Elsevier Science Publishers
B.V. (North-Holland).

[Hinke et al., 1997] Hinke, T. H., Delugach, H. S., and Wolf, R. P. (1997).
Protecting databases from inference attacks. Computers and Security,
16(8):687–708.

[Johnsten and Raghavan, 1999] Johnsten, T. and Raghavan, V. (1999). Impact
of decision-region based classification algorithms on database security. In
Proceedings of the Thirteenth Annual IFIP WG 11.3 Working Conference
on Database Security.

[Kohonen, 1990] Kohonen, T. (1990). The self organizing map. IEEE Trans-
actions on Computers, 78(9):1464–1480.

[Vapnik, 1982] Vapnik, V. N. (1982). Estimation of dependences based on
empirical data. Springer-Verlag, New York.

[Yang and Honavar, 1998] Yang, J. and Honavar, V. (1998). Feature sub-
set selection using a genetic algorithm. IEEE INTELLIGENT SYSTEMS,
13(2):44–49.

[Yip and Levitt, 1998] Yip, R. and Levitt, K. (1998). The design and imple-
mentation of a data level database inference detection system. In Proceed-
ings of the Twelfth Annual IFIP WG 11.3 Working Conference on Database
Security.

