

CERIAS Tech Report 2002-33

Petri-net Based Modeling for Verification
of RBAC Policies

by Basit Shafiq, James B. D. Joshi, Arif Ghafoor

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

 1

Petri-net Based Modeling for Verification of RBAC
Policies

Basit Shafiq, James B. D. Joshi, Arif Ghafoor

Center of Education and Research in Information Assurance and Security (CERIAS)
and

School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47906

Abstract

Role based access control has emerged as a promising new approach to security for advanced
applications because of the several benefits it provides. However, most of the research efforts in
this area has been focused towards the specification and modeling of RBAC systems. The crucial
issue of verification of role based access control policies has not been adequately investigated in
the literature. In this paper, we propose a colored Petri-net based policy specification and analysis
framework for an RBAC model. The Petri-net model can capture all the cardinality and
separation of duty constraints that have been previously identified in the literature. Moreover, the
model also allows specification of the precedence and dependency constraints that we introduce
in this paper. We use the Petri-net reachability analysis technique for verifying correctness of
RBAC policies. A set of consistency rules is used as the basis of detecting undesirable states
representing erratic behavior of the system due to the flaws in policy specification. The analysis
framework can be used by security administrators to generate correct specification iteratively.

This work was supported by the Center for Education and Research in Information

Assurance and Security (CERIAS) and NSF under grant IIS-0209111

 2

1 Introduction
Role based access control (RBAC) has emerged as a promising alternative to traditional
discretionary and mandatory access control (DAC and MAC) models, which have some inherent
limitations [Jos01a, Osb00]. Several beneficial features such as policy neutrality, support for least
privilege, efficient access control management, are associated with RBAC models [Jos01a,
San96]. The concept of role is associated with the notion of functional roles in an organization,
and hence RBAC models provide intuitive support for expressing organizational access control
policies [Fer93]. Hence, RBAC models are better suited for handling access control requirements
of diverse organizations and emerging, advanced applications such as e-commerce, healthcare-
systems, etc. [Jos01a]. Furthermore, use of role hierarchies and grouping of objects into object
classes based on responsibility associated with a role makes the management of permissions very
easy. RBAC constraints allow expressing user-specific access control policies, and DAC and
MAC policies, thus, increasing the applicability of RBAC models. In particular, many separation
of duty (SoD) constraint can be easily specified to cater to the access control needs of many
commercial applications [Ahn00, Nya99]. By configuring the assignment of the least set of
privileges from a role set assigned to a user when he activates the role, inadvertent damage can be
minimized in a system. RBAC models have also been found suitable for addressing security
issues in the Internet environment, and show promise for newer heterogeneous multi-domain
environments that raise serious concerns related to access control across domain boundaries
[Bar97, Jos01a, Jos01b].

RBAC has been widely researched, primarily because of its relevance and the benefits it provides
as mentioned above, and has been extended in by several researchers [San96, Nya99, Gav98].
One such crucial extension is an RBAC model with temporal constraints, which was proposed in
Temporal RBAC model [Ber01] and later generalized into Generalized-TRBAC [Jos01b].
GTRBAC distinguishes among various states of a role - such as disabled, enabled and active
states - and extends the notion of RBAC events introduced in TRBAC. An event-based of
TRBAC approach is particularly suitable for time-based access control requirements and for
dynamic access control models [Jos01b, Jos02].

Although RBAC has today reached a good level of maturity, there are still relevant RBAC-based
policy specification and analysis issues that have not been addressed adequately in the literature.
Koch et. al. [Koc02] present a graph based RBAC model aimed at the analysis of the RBAC
policies based on graph transformations. Nyanchama et. al. [Nya99] present a graph based RBAC
model and focuses primarily on the management of the role-graphs and conflicts among roles
using graph algorithms. Jaeger et. al. [Jae01] present a graphical approach to capture a generic
typed access control model and express RBAC as its special case. These approaches are primarily
static in nature and do not adequately take into account various authorization related RBAC
events that can be allowed in a system non-deterministically.

In this paper, we combine the event-based approach taken in GTRBAC with the Petri-net based
modeling approach to develop a framework for modeling and analysis of non-temporal RBAC
policies. The approach is particularly novel because of the intuitive way in which Petri-nets
capture both system states and events, thus allowing state-based analysis for policy verification
and assisting in deriving an event based execution model of an RBAC system in order to ensure
safety. Furthermore, several formal tools and techniques are available for Petri-nets that can be
utilized to carry out relevant analysis for correctness verification of specification.

 3

An essential feature of RBAC is that it allows specification of various SoD constraints that are
needed in many commercial applications [Ahn00, Fer93]. SoD constraints aim at eliminating any
possibility of users committing a fraud in a system by preventing a user from acquiring enough
access privileges to commit fraud. Several SoD constraints have been identified in the literature.
In this paper, we propose some new SoD, precedence and dependency constraints.

The paper is organized as follows. In section 2, we present relevant background on RBAC models
on which we build our Petri-net framework. In section 3, we provide a classification of
consistency rules. The colored Petri-net model of RBAC and the policy analysis framework are
presented in section 4. In section 5, we discuss related work. Section 5 concludes the paper and
provides future directions.

2 Overview of Role Based Access Control
In this section, we provide relevant background on the RBAC and GTRBAC models that we refer
to in this paper. The RBAC model as proposed by Sandhu et. al. in [San96], currently being used
as the basis for the NIST RBAC model, consists of the following four basic components: a set of
users Users, a set of roles Roles, a set of permissions Permissions, and a set of sessions
Sessions. A user is a human being or a process within a system. A role is a collection of
permissions associated with a certain job function within an organization. A permission is an
access mode that can be exercised on a particular object in the system. A session relates a user to
possibly many roles. When a user logs in the system he establishes a session by activating a set of
enabled role that he is entitled to activate at that time. If the activation request is satisfied, the user
issuing the request obtains all the permissions associated with the role he has requested to activate.
On Roles, a hierarchy is defined, denoted by ≥. If ri ≥ rj, ri, rj ∈ Roles then ri inherits the
permissions of rj. In such a case, ri is a senior role and rj a junior role.

The RBAC model does not explicitly model different states of a role and hence do not capture
various events that are typical of an RBAC system. Such event based approach was used by
Bertino et. al. in TRBAC model [Ber01] and later extended by Joshi et. al. in GTRBAC [Jos01b],
primarily to capture the different transitional actions needed in the context of temporal constraints.
The GTRBAC model provides a temporal framework for specifying an extensive set of temporal
constraints and uses a language-based framework [Jos01b]. GTRBAC allows various types of
temporal constraints such as temporal constraints on role enabling/disabling, temporal
constraints on user-role and role-permission assignments/de-assignments, role activation-time
constraints, etc. These constraints are useful in capturing the dynamic behavior of systems that
employ RBAC.

Fig. 1 highlights four key components of GTRBAC model that include user-role assignment/de-
assignment, role-permission assignment/de-assignment, role enabling/disabling, and role
activation/deactivation. The latter two events allows one to define fine-grained access constraints
based on system events as well as states. Such events, in particular, are useful in describing
various precedence and dependency constraints. For instance, a role can be enabled only if some
other roles are enabled, defining a precedence relation between them. Traditional RBAC model
does not explicitly capture such events and hence is not convenient for expressing such
precedence and other dependency constraints.

In this paper, we use an event based approach to model RBAC. This event based RBAC model
corresponds to a selected set of temporal constraints of GTRBAC. The motivations for this are
two fold:

 4

1. Such an event-based realization of traditional RBAC system allows capturing the dynamic
properties of the system that can be used to verify the correctness of an RBAC specification.
For example, as we show later, although we start with a consistent initial specification, it is
possible that as users are assigned and de-assigned (assignment and de-assignment events) to
roles and their requests for activating roles granted, we may reach an undesirable state,
indicating some potential flaw in the initial specification or weakness in policy specification
with respect to the set of consistency properties for the system.

2. Our future goal is to extend the proposed Petri-net modeling framework to model the
GTRBAC system and then, to develop techniques for validating and verifying the correctness
properties of GTRBAC Policies pertaining to the four components of Fig. 1.

User-Role
Assignment/

De-assignment

Permission-
Role

Assignment/
De-assignment

Role enabling/
Disabling

Role Activation/
Deactivation

User-Role
Assignment/

De-assignment

Permission-
Role

Assignment/
De-assignment

Role enabling/
Disabling

Role Activation/
Deactivation

 Figure 1 Components corresponding to event set of GTRBAC

3 A verification model for RBAC
Our main objective in this paper is to model RBAC using a Petri net based framework and then
use this framework to verify the correctness of the underlying security policies.

3.1 Policy considerations in RBAC
A policy is a set of rules that defines the expected behavior of the system employing that policy.
The system is said to be in conformance with the underlying policy if every state of the system
can be deduce from the set of rules/axioms comprising the policy. An inconsistent state or erratic
system behavior can be attributed to a potential flaw in the policy specification. This flaw may be
because of inconsistency in the policy itself or because of incompleteness. An inconsistent policy
is the one in which two or more rules from a given set of rules comprising the policy contradict
each other. Incompleteness implies that the given set of rules defining the policy is not sufficient
to capture all states of the system. In this context, security verification can be stated as the process
of proving that the properties or rules specified in a security policy are enforced in the
information system.

 5

Gavrila et. al. [Gav98] state a set of consistency rules for information systems employing RBAC
as an access control mechanism. These rules are defined as consistency rules because the
information system is expected to satisfy these rules in all possible states it may take. These
consistency rules although specify most of the constraints for the traditional RBAC model
[Gav98], do not capture the constraints required in modeling event-based systems. For example
precedence and dependency constraints cannot be modeled using the consistency rules specified
in [Gav98]. For an RBAC system constraints can be grouped into following classes: 1) cardinality
constraints, 2) separation of duties (SoD) constraints, 3) inheritance constraints, and 4)
precedence and dependency constraints.

Cardinality, inheritance and SoD constraints are addressed in literature for traditional RBAC
[Gav98], however these approaches are primarily static in nature and do not take into account
various authorization related RBAC events allowed in a system non-deterministically. These
events include user-role assignment enabling/disabling of a role, and activation/deactivation of a
role as described in [Jos01b]. A SoD constraint in an event-based environment may prohibit two
conflicting roles to be enabled at the same time, or inhibit two conflicting users of some role to
activate that role concurrently. Similarly, inheritance and cardinality constraints have new
semantics in this (event-based) environment that may not be captured by static approaches.
Precedence and dependency conditions are required to model the relative ordering of events. The
following two examples describe situations where precedence and dependency constraints are
required:
1. A junior employee of an office is allowed to activate the Junior_Employee role in the

system only if the manager of the office has activated the Manager role. This condition can
be modeled by the precedence constraint.

2. A trainee doctor is authorized to activate his/her role only in presence of a senior doctor. In
this case the senior doctor cannot deactivate his/her role if there is an active trainee doctor
role. This example represents a dependency constraint.

3.1.1 Consistency Rules for RBAC
In the following, we list a set of consistency rules which are major extensions of consistency rules
defined by Gavrila in [Gav98]. This extended set of rules allows modeling of various constraints
of RBAC with an event-based approach. This set of rules mainly covers the cardinality,
inheritance, SoD and precedence and dependency constraints. The correctness of a system state is
verified in the context of these consistency rules. The functions and predicates used in defining
these consistency rules are listed in Table 1 and 2.

P1. Cardinality constraints:

(a) The number of authorized users for any role does not exceed the authorization
cardinality of that role. Formally:

).(__|)(_|, rcardroleionauthorizatrusersetauthorizedROLESr ≤∈∀

(b) The number of roles authorized for any user does not exceed the maximum number
of roles the user is entitled to acquire (authorization user cardinality).

).(__|)(_|, ucarduserionauthorizaturolesetauthorizedUSERSu ≤∈∀

(c) The number of roles activated by any user u does not exceed the maximum number
of roles the user is entitled to activate at any time(activation user cardinality).

).(__|)(_|, ucarduseractivationurolesetactiveUSERSu ≤∈∀

 6

Table 1 Functions used in defining consistency properties for RBAC

assigned_roleset(u) returns the set of active (currently assumed) roles of user u in his/her
sessions

,active_roles_insessionset(u,s) returns the set of active (currently assumed) roles of user u in session s.
active_userset(r) returns the set of users who have activated a given role r in an ongoing

session.
active_sessionset(u) returns the set of sessions activated by user u.
authorized_roleset(u) returns the roles authorized for a given user. We say that a role r is

authorized for a user u if either r is assigned to u, or r is inherited by
another role that is assigned to u.

authorized_userset(u) returns the users authorized for a given role
prec_su_assignset(ry) defines the assignment time precedence constraint with same user for

role ry. Refer to property P18 of section 3.1.1.
prec_au_assignset(ry) defines the assignment time precedence constraint with any user for ry.

Refer to property P19 of section 3.1.1.
prec_enableset(ry) defines the enabling time precedence constraint for role ry. Refer to

property P17 of section 3.1.1.
prec_suss_activeset(ry) defines the activation time precedence constraint with same user and

same session for role ry. Refer to property P20 of section 3.1.1.
 prec_suas_activeset(ry) defines the activation time precedence constraint with same user and

any session for ry. Refer to property P21 of section 3.1.1.
prec_auas_assignset(ry) defines the activation time precedence constraint with any user and any

session for role ry. Refer to property P22 of section 3.1.1.
dep_su_assignset(ry) returns the set of roles dependent on a given role ry for user to role

assignment. Refer to property P24 of section 3.1.1.
dep_au_assignset(ry) returns the set of roles dependent on a given role ry for user to role

assignment. Refer to property P25 of section 3.1.1.
dep_enableset(ry) returns the set of roles dependent on a given role ry for role enabling.

Refer to property P23 of section 3.1.1.
dep_suss_activeset(ry) returns the set of roles dependent on a given role ry for role activation

by same user in same session. Refer to property P26 of section 3.1.1.
dep_suas_activeset(ry) returns the set of roles dependent on a given role ry for role activation

by same user in any session. Refer to property P27 of section 3.1.1.
dep_auas_activeset(ry) returns the set of roles dependent on a given role ry for role activation

by any user in any session. Refer to property P28 of section 3.1.1.
conflicting_role_assignset(ry) returns the set of roles that conflict with a given role ry for user role

assignment.
conflicting_role_enableset(ry) returns the set of roles that conflict with a given role ry for role

enabling.
conflicting_role_activeset(ry) returns the set of roles that conflict with a given role ry for role

activation.

conflicting_user_assignset(ry) returns the set of users that are assignment time conflicting users for a
given role ry.

conflicting_user_activeset(ry) returns the set of users that are activation time conflicting users for a
given role ry.

role_authorization_card(ry) denotes the authorization cardinality of role ry, i.e., the maximum
number of users authorized for ry.

role_activation_card(ry) denotes the activation cardinality of role ry, i.e., the total number of
times role ry can be activated concurrently.

user_authorization_card(u) denotes the authorization cardinality of user u, i.e., the maximum
number of roles user u is entitled to acquire.

user_activation_card(u) denotes the activation cardinality of user u, i.e., the maximum number
of roles user u is entitled to activate concurrently.

 7

Table 2 Predicates used in CPN modeling of RBAC

role_assigned(ry,uz) evaluates true if ry ∈ assigned_roleset(uz).
role_enabled(ry) evaluates true role ry is in enable state; otherwise.
role_active(ry,uz) evaluatess true if ry ∈ active_roleset(uz).
role_active_insession(ry,,uz,sk) evaluates true if ry ∈ active_roles_insessionset(uz,sk).
prec_su_assign(ry,R) evaluates true if R∈ prec_su_assignset(ry).
prec_au_assign(ry,R) evaluates true if R∈ prec_au_assignset(ry).
prec_enable(ry,R) evaluates true if R∈ prec_enableset(ry).
prec_suss_active(ry,,R) evaluates true if R∈ prec_suss_activeset(ry).
prec_suas_active(ry,R) evaluates true if R∈ prec_suss_activeset(ry).
prec_auas_active(ry,R) evaluates true if R∈ prec_auas_activeset(ry).
dep_su_assign(ry,r) evaluates true if r∈ dep_su_assignset(ry).
dep_au_assign(ry,r) evaluates true if r∈ dep_au_assignset(ry).
dep_enable(ry,r) evaluates true if r∈ dep_enableset(ry).
dep_suss_active(ry,r) evaluates true if r∈ dep_suss_activeset(ry).
dep_suas_active(ry,r) evaluates true if r∈ dep_suss_activeset(ry).
dep_auas_active(ry,r) evaluates true if r∈ dep_auas_activeset(ry).
conflicting_role_assign(ry,r) evaluates true if r∈ conflicting_role_assignset(ry).
conflicting_role_enable(ry,r) evaluates true if r∈ conflicting_role_enableset(ry).
conflicting_role_active(ry,r) evaluates true if r∈ conflicting_role_activeset(ry
conflicting_user_assign(ry, rz,u,u’) evaluates true if both u and u’∈

conflicting_user_assignset(ry) and ry ≥ rz.
conflicting_user_active(ry,u,u’) evaluates true if both u and u’∈

conflicting_user_activeset(ry).
last_session(ry,sk) evaluates true if sk is the last/only active session

associated with role ry.
su_last_session(ux,ry,sk) evaluates true if sk is the last/only active session

associated with user ux and role ry.

(d) The number of users who have activated a role r in their ongoing sessions does not
exceed the role activation cardinality.

).(__|)(_|, rcardroleactivationrusersetactiveUSERSr ≤∈∀

(e) The number of sessions activated by any user u does not exceed the maximum
number of sessions the user is entitled to activate at any time(user session
cardinality).

).(__|)(_|, ucardsessionuserusessionsetactiveUSERSu ≤∈∀

P2. If a role r1 inherits role r2 and both roles are distinct, then r2 cannot inherit r1. Formally:

)()()(,, 12212121 rrrrrrROLESrr ≥⇒≠∧≥∈∀

P3. Any two distinct roles assigned to same user do not inherit (directly or indirectly) one another.
Formally:

 8

)()(_,,,, 212121 rrurolesetassignedrrROLESrrUSERSu ≥¬⇔∈∈∀∈∀

P4. Any two roles assigned for same user are not in static separation of duties. Formally:

).,(__)(_,,,, 212121 rrassignroleconflicturolesetassignedrrROLESrrUSERSu ¬⇒∈∈∀∈∀

P5. There is no role in static separation of duties with itself. Formally:

),(__ rrassignroleconflictROLESr ¬⇒∈∀

P6. The static separation of duties relation is symmetric. Formally:

),(__),(__,, 122121 rrassignroleconflictrrassignroleconflictROLESrr ¬⇒¬∈∀

P7. If a role (directly or indirectly) inherits another role and the inherited role is in static
separation of duties with a third role, then the inheriting is in static separation of duties with the
third role. Formally:

),(__),(__,,, 313221321 rrassignroleconflictrrassignroleconflictrrROLESrrr ⇒∧≥∈∀

P8. If a role inherits another role, then the assignment time conflicting set of users of the inherited
role is a subset of the assignment time conflicting set of users of the inheriting role. Formally:

)(__)(__,,, 122121 rassignsetuserconflictrassignsetuserconflictrrROLESrr ⊆≥∈∀ .

P9(a). Only one user from a set of assignment time conflicting users of role r can be assigned role
r.

1 2 1 2, , _ _ (), _ () _ ()r ROLES u u conflict user assignset r r assigned roleset u assigned roleset u∀ ∈ ∀ ∈ ∉ I

P9(b) If two distinct roles r1 and r2 with r2 ≥ r1, have some common assignment time conflicting
set of users, then only one user from the common set can be assigned any of the two roles r1 and
r2 and not both. Formally:

1 2 2 1

1 2 1

1 2

2

, : ,

{ _ _ () _ _ ()} _ ()

({ _ _ () _ _ ()}

_ ())

i i

j

j i j

r r ROLES r r

u conflict user assignset r conflict user assignset r r assigned roleset u

u conflict user assignset r conflict user assignset r

r assigned roleset u u u

∀ ∈ ≥
∃ ∈ ∧ ∈
⇒ ¬ ∃ ∈

∧ ∈ ∧ ≠

I

I

P10. The active role set of any user is a subset of his/her authorized roles. Formally:

).(_)(_, urolesetauthorizedurolesetactiveUSERSu ⊆∈∀

P11. Any two roles in dynamic separation of duties do not both belong to the active role set of
any user. Formally:

),(__)(_,,,, 212121 rractivesetroleconflicturolesetactiverrROLESrrUSERSu ¬⇒∈∈∀∈∀

P12. The dynamic separation of duties and static separation of duties are disjoint. Formally:

 9

),(__),(__),(,, 21212121 rrassignsetroleconflictrractivesetroleconflictrrROLESrr ¬⇒∈∈∀

P13. There is no role in dynamic separation of duties with itself. Formally:

),(__ rractivesetroleconflictROLESr ⇒∈∀

P14. The dynamic separation of duties relation is symmetric. Formally:

),(__),(__),(,, 12212121 rractivesetroleconflictrractivesetroleconflictrrROLESrr ⇒∈∈∀

P15. If a role inherits a junior role, then the activation time conflicting set of users of the inherited
role is a subset of the activation time conflicting set of users of the inheriting role. Formally:

)(__)(__,, 122121 ractivesetuserconflictractivesetuserconflictrrROLESrr ⊆≥∈∀ .

P16 Role r cannot be concurrently activated by users u1 and u2, if they are activation time
conflicting users for role r. Formally:

1 2 1 2, , _ _ () _ () _ ()r ROLES u u conflict user activeset r r active roleset u active roleset u∀ ∈ ∀ ∈ ⇒ ∉ I

The following rules (P17-22) define the precedence constraints.

P17. Enabling time precedence constraint: If prec_enableset(r)�φ, then role r can be enabled
only if all r’ are enabled. Where, r’∈Ri for some Ri∈prec_enableset(r). Note that after getting
enabled role r can still remain in enable state even though some or all of the roles r’∈Ri get
disabled.

P18. Assignment time precedence constraint with same user: If prec_su_assignset(r)�φ, then role
r can be assigned to user u only if all r’ have been assigned user u.. Where, r’∈Ri for some
Ri∈prec_su_assignset(r). Note that the (u,r’) de-assignment does not imply that (u,r) assignment
be cancelled.

P19. Assignment time precedence constraint with any user: If prec_au_assignset(r)�φ, then role r
can be assigned to any user u only if all r’ have been assigned to one or more users. Where, r’∈Ri
for some Ri∈prec_au_assignset(r). Note that this does not imply that all r’ have to be assigned to
same user. Also, the de-assignment of role r’ does not imply that (u,r) assignment be cancelled.

P20 Activation time precedence constraint with any user: If prec_auas_activeset(r)�φ, then role r
can be activated by user u, if all r’ have been activated by one or more users. Where, r’∈Ri for
some Ri∈prec_auas_activeset(r). Note that this does not imply that all r’ have to be activated by
same user. Also, after getting activated by user u, role r can still remain in active state even
though some or all of the roles r’∈Ri get deactivated.

P21. Activation time precedence constraint with same user same session: If
prec_suss_assignset(r)�φ, then role r can be activated by user u, if all r’ have been activated by
same user u in the same session. Where, r’∈Ri for some Ri∈prec_suss_activeset(r). Note that
after getting activated by user u in session s, role r can still remain in active state even though
some or all of the roles r’∈Ri get deactivated by same user u in same session s.

P22. Activation time precedence constraint with same user any session: If
prec_suas_assignset(r)�φ, then role r can be activated by user u, if all r’ have been activated by
same user u any session. Where, r’∈Ri for some Ri∈prec_suas_active(r). Note that after getting

 10

activated by user u in session s, role r can still remain in active state even though some or all of
the roles r’∈ Ri get deactivated by same user u.

The following rules define the dependency constraint in RBAC

P23. Enabling time dependency constraint: A role rz ∈ dep_enableset(ry) can be enabled only if
role ry is in enable state. Furthermore, ry cannot be disabled if rz is in enable state. Formally:

_ () [_ () _ ()]z y z yr dep enableset r role enabled r role enabled r∈ ⇒ → .

P24. Assignment time dependency constraint with same user: A role rz ∈ dep_su_assignset(ry) can
be assigned to user u only if u has been assigned role ry. Furthermore, the (u,ry) role assignment
cannot be canceled unless (u,rz) assignment has been canceled. Formally:

_ _ () [_ () _ ()]z y z yr dep su assignset r r assigned roleset u r assigned roleset u∈ ⇒ ∈ → ∈

P25. Assignment time dependency constraint with any user: A role rz ∈ dep_su_assignset(ry) can
be assigned to user u only if u has been assigned role ry. Furthermore, the (u,ry) role assignment
cannot be canceled unless (u,rz) assignment has been canceled. Formally:

_ _ () [_ () _ ()]z y z yr dep su assignset r r assigned roleset u r assigned roleset u∈ ⇒ ∈ → ∈

P26. Activation time dependency constraint with same user and same session: A role rz ∈
dep_suss_activeset(ry) can be activated by user u in session s only if u has activated role ry in the
same session s. Furthermore, u cannot deactivate role ry in session s if role rz is active in session s.

_ _ () [_ _ (,)

_ _ (,)]
z y z

y

r dep suss activeset r r active roles insessionset u s

r active roles insessionset u s

∈ ⇒ ∈

→ ∈

P27. Activation time dependency constraint with same user and any session: A role rz ∈
dep_suas_activeset(ry) can be activated by user u in session s only if u has activated role ry in
some session. Furthermore, u cannot deactivate role ry if role rz is in active role set of u. Formally:

_ _ () [_ () _ ()]z y z yr dep suas activeset r r active roleset u r active roleset u∈ ⇒ ∈ → ∈

P28. Activation time dependency constraint with any user and any session: A role rz ∈
dep_auas_activeset(ry) can be activated by user u only if role ry is in the active role set of some
user u’ . Furthermore, role ry cannot be deactivated if role rz is in active role set of any user.
Formally:

’

_ _ () [_ () _ (’)]z y z y
u USERS

r dep auas activeset r r active roleset u r active roleset u
∈

∈ ⇒ ∈ → ∈ U

3.2 Colored Petri-Net model of RBAC
In this section, we present a Colored-Petri-net (CPN) based framework to model RBAC. We first
present a brief background on CPNs followed by the detailed description of the RBAC
components and its CPN representation.

Petri nets have been widely used for modeling and analysis of systems that are characterized as
being concurrent, asynchronous, distributed, parallel and non-deterministic [Jen97]. Various
factors that contribute to their success include [Jen97, Mur89]:
• The duality of places/transitions in Petri-nets provides for a balanced treatment of system

states and events, allowing better modeling of dynamic event-based systems than that is

 11

allowed by purely state or transition-oriented formalism where only one aspect is explicit.
In particular, it makes CPN appropriate for modeling GTRBAC specification as there are
state information and event occurrences that need to be captured for analysis purposes.

• CPNs have many desirable practical features for modeling such as graphical nature and the
equational representation, thus, integrating the documentation, presentation and analysis
features of a desirable model. CPNs provide a intuitive way of expressing causal
dependencies, conflicts and concurrency. In other words, “CPNs are potentially more
focused on pragmatism than most other commonly known formal methods”.

CPN Formulation of RBAC: A CPN [Jen97] is a tuple &3 = (Σ, P, T, A, N, C, G, E, I), where:

a. Σ is a finite set of non-empty types, called color sets;
b. P is a finite set of places;
c. T is a finite set of transitions;
d. A = NA ∪ RA ∪ IA is a finite set of arcs such that: P ∩ T = P ∩ A = T ∩ A = ∅; where

RA is a set of Normal Arcs, RA is a set of Read Arcs and IA is a set of Inhibitor Arcs.
e. N is a node function. N:A → P × T ∪ T × P.
f. C: is a color function. C:P→ Σ.
g. G is a guard function. It is defined from T into expressions such that:

∀t∈T: [Type(G(t)) = Boolean and Type(Var(G (t)) ⊆ Σ].
h. E is an arc expression function. It is defined from A into expressions such that:

a∈A: [Type(E(a)) = E(G(a))MS and Type(Var(E(a)) ⊆ Σ]. Here p(a) is the place of N(a).
i. I is an initialization function. It is defined from P into closed expression such that:

∀p∈P: [Type(I(p)) = C(p(a))MS].

In the following, we elaborate the above elements of CPN within the context of RBAC.

Color set Σ:

For the RBAC formulation, the elements of the color set Σ with the corresponding data type are
listed below.
Color USER = integer, Color ROLE = integer.
Color SESSION = integer.
Color COMMAND = {assign, de-assign, enable, disable, activate, deactivate}
Color UR = product USER * ROLE * ROLE; Color URS = product USER * ROLE * SESSION;
Color CMD = product COMMAND * USER * ROLE * SESSION.

Based on the above set of colors, following tokens are defined for RBAC mode:

• User token: <u>::color USER
• Role token: <r>:: color ROLE
• User-role assignment token: <u,r,r’>::color UR.
• User-role activation token: <u,r,s>::color URS.
• Command token: <cmd, u, r, s>:: color CMD.

Places P:

Following CPN places are used to capture the state information for RBAC modeling:

1. Event token generator (ETG): This place stores command tokens for user-role assignment
and de-assignment, role enabling and disabling, and role activation and deactivation. For any
transition to get enabled, there must be a corresponding token in he place ETG. In this sense,
this place act as a transition firing controller that helps in analyzing all possible system states
against a given command list.

 12

2. Disabled Roles (DR): This place can only store role tokens (C(DR) = ROLE). A token <ry>
in this place implies that role ry is in disable state.

3. Enabled Roles (ER). This place can only store role tokens (C(ER) = ROLE). A token <ry> in
ER place implies that role ry is in enable state.

4. User Role Assignment/Authorization (UR). This place contains tokens of color UR (C(UR) =
UR). A token <u,ry,rx> in this place means that user u is authorized for role ry. This
authorization can be as a result of direct assignment of role ry to user u (rx = ry), or because of
assignment of role rx to user u such that rx inherits ry (rx ≥ ry and rx ��ry).

5. User Role Session activation (URS). This place stores tokens of color URS. . Each <u,r,s>
token stored in this place implies that session s is being activated by user u who has assumed
role r.

6. Role Cardinality (RC): This place contains role tokens only (C(RC) = ROLE). It enforces
assignment time role cardinality constraint, i.e., limits the number of users which can be
authorized for a given role. If there are ni number of <ry> tokens in place RC and no user is
assigned role ry, then role ry can be assigned to at most ni number of users.

7. User Cardinality (UC): This place contains user tokens only (C(UC) = USER). It enforces
assignment time user cardinality constraint, i.e., limits the number of roles for which a given
user can be authorized. If there are mj number of <uz> tokens in RC and uz is not authorized
for any role, then user uz can be authorized for at most mj number of roles.

8. Role Activation cardinality (RAC): Place RAC stores token of type ROLE (C(RAC) =
ROLE). It enforces activation time role cardinality constraint, i.e., limits the number of
concurrent activations of a given role. If there are ni number of <ry> tokens present at RC,
then at most ni more copies of role ry can be activated concurrently.

9. User Activation cardinality (UAC): Place UAC stores token of type USER (C(UAC) =
USER). This place enforces activation time user cardinality constraint, i.e., limits the number
of concurrent activations of roles for a given user. If there are mj number of <uz> tokens
present at RC, then user uz can make mj more activations concurrently. These activations may
involve activating same role multiple times or multiple roles for any number of times
provided that the total number of such concurrent activation of roles by user uz do not exceed
the user activation cardinality mj.

Arcs and arc expression:

Arc, arc expressions and guard functions are used to model constraints including cardinality, SoD,
inheritance, precedence and dependency constraints as discussed in section 3.1.

In this paper, an arc from place to transition (arrow head points at transition) is referred as an
input arc and an arc from transition to place (arrow head towards place) is referred as an output
arc. As stated in the definition of CPN, arc can be of three types: normal arc (NA), read arc (RA),
and inhibitor arc (IA). An input arc may be of any of the above types. Input arc defines both pre-
conditions and post-conditions of an event modeled by a transition and these conditions are
modeled using different types of input arcs (NA, RA, and IA). Satisfaction of all pre-conditions
of an event means that such event can take place anytime. In this case, a transition modeling such
event is said to be enabled. The following explains how input arc with different types represent
different pre-conditions:

• Input arc of transition t is a NA arc: For a transition t to be enabled, each input place p of t
connected through the NA arc must have at least as many matching tokens as defined in the
arc expression of the arc. A token in place p is a matching token if its color matches with the

 13

color of tokens specified in the arc expression and it satisfies the guard expression associated
with the transition and the corresponding arc. When transition t is fired, the same number of
tokens defined in the arc expression E of the NA arc is removed from the input place p. A NA
arc is represented by a line with an arrow head towards the output node.

• Input arc of transition t is an RA arc: For transition t to be enabled, each input place p of t
connected through the RA arc must have at least as many matching tokens as defined in the
arc expression of the RA arc. When a transition is fired, no token is removed from the input
place. An RA arc is represented by a line with an arrow on both sides.

• Input arc of transition t is an IA arc: For transition t to be enabled, each input place p of t
connected through the IA arc should not have matching tokens greater than the number of
tokens defined in the arc expression of the arc. When a transition is fired, no token is
removed from the input place p. An IA arc is represented by a line with a circle drawn
towards the transition.

An output arc is always of type NA. When a transition is fired, a number of matching tokens is
deposited in the output place of that transition.

Arc expression E maps each arc, A, into an expression of type C(P(A))MS (MS = multi-set). This
means that the variables used in arc expression and the tokens stored in the corresponding place
are of same color. An arc expression may take one of the following two forms:

1. m1t1 + m2t2 +…..+mntn; where tis are the tokens. An output arc expression (from a transition to
a place) will always take this form. An input arc expression (from place to transition) of this
form associated with normal/read arc implies that input place must have at least mi number of
ti tokens (1�i�n) in order to enable its output transition. For input inhibitor arc, all
coefficients mi except for one are zero. The corresponding output transition cannot be enabled
if the input place contains mj or more tokens tj, where mj is the nonzero coefficient.

2. {ti}. Only input arc expression may take this form. If an input arc expression is of this type
then there is always an associated transition guard function with the set {ti} as one of its input
parameters. An input guard expression of this type implies that all ti tokens present in the
input place will be evaluated against the corresponding guard function to determine if the
output transition can be enabled.

Transitions:

Transitions in this framework represent all four components of Fig. 1 including user-role
assignment/de-assignment, role-permission assignment/de-assignment, role enabling/disabling
and role activation/deactivation. In this CPN representation, each role ry has the following six
transitions:

1. Assignry: assigns user u ∈USERS to role ry. By virtue of this role assignment user u is
authorized for all roles inherited by role ry.

2. De-assignry: Cancels all the user role assignment between user u and role ry. It also nullifies
u’s authorization for all junior roles that are on u’s authorization list by virtue of its
assignment to role ry.

3. Enablery: This transition enables role ry. Upon firing, a token ry is inserted in place ER from
DR, implying that role ry is enabled and can be activated by a user who is authorized for role
ry.

4. Disablery: This transition disables role ry. Upon firing, ry is removed from place ER and
inserted in place DR, implying that role ry can not be activated by any user.

 14

5. Activatery: This transition establishes an active session between user u and role ry.

6. Deactivatery : This transition deactivates role ry from the an active session between user u and
role ry.

 Firing of any of the above transitions changes the state of the system. A transition can fire
anytime after its enabling. Enabling of a transition implies that all the constraints associated with
the event, the transition is modeling are satisfied. Transitions modeling different events have
different enabling and firing rules. For brevity in presentation, we list the enabling/firing rules for
assignment of roles only.

Enabling/firing rules of transition assignry:

This transition upon firing inserts the set of tokens {<u, rx, ry>: ry≥ rx} in the place UR which
implies that the role ry is assigned to user u, and user u is authorized for role ry and all roles rx
junior to role ry. The transition assignry and its connecting places are shown in Fig. 2 and the
corresponding arc expressions and guard functions are listed in Table 3.

This transition gets enabled if the following constraints are satisfied:

• There is a token <assign, uz, ry> in place ETG implying that role ry be assigned to user uz.

• Assignment time role cardinality constraint specified by the arc expression E3: ry+ry1+…ryn,
where, all ryi < ry and i ��Q��LV�VDWLVILHG��$OWHUQDWLYHO\��WRNHQV�Uy,ry1,…,ryn are present in place
RC.

• Assignment time user cardinality constraint specified by the arc expression E4: (n+1)uz is
satisfied, where n is the number of roles that are junior to ry in the role hierarchy.

• Assignment time conflicting roles constraint specified by the arc expression (inhibitor) E6:
<uz, rc, any r > and the transition guard function G2: conflict_role_assign(ry rc) is satisfied.
That is Place UR does not contain any token <uz, rc, any r > for which the above guard
function evaluates true.

• Assignment time conflicting users constraint specified by the arc expression (inhibitor)
E7:<uc, rz, any r> and the transition guard function G3: conflict_user_Assign(ry,uz,uc) is
satisfied. That is Place UR does not contain any token <uc, rz , any r> for which the above
guard function is true.

• Place UR does not contain any token <uz, ry, any r >. This is specified by the inhibitor arc
expression E3 and guard function G1.

• The following two constraints are optional and are only defined for roles which have
assignment time precedence constraint(s). Assignment time precedence constraint can be of
two types: same user assignment constraint and any user assignment constraint. A given role
may have one, both or none of these precedence constraints.

1. Same user assignment constraint requires that a user uz can be assigned role ry, if all roles
r’ are assigned to user uz. Where r’∈Ri for some Ri ∈ prec_su_assignset(ry). This
constraint is specified by the read arc expression E8 and the transition guard function G4:
prec_su_assign(ry,{r}). This constraint represents consistency property P18.

2. Any user assignment constraint requires that a user uz can be assigned role ry, if all roles
r’ ’ are assigned to any users. Where r’∈Ri for some Ri ∈ prec_au_assignset(ry). Note that
all r’ ’ may not necessarily be assigned to just one user. This constraint is specified by the
read arc A9 and the transition guard function G5: prec_au_assign(ry,{r}).

 15

{n ir i}

R C

{m iu i}

U C

{< u i,r j,rk>}

U R

A 3

A 2

A 1

A 5

A 4

A 7

A ssign ry

{< u i,r j,s l> }

U R S

D eassign ry

A 11

A 6

A 8

A 9

E T G

A 10
A 12

A 13
A 14

A 15

A 16

(∀ < u ,r,r ’ > ∈ U R , ¬ G 1 ∧ ¬ G 2∧ ¬ G 3) ∧ G 4 ∧ G 5

(∀ < u ,r,s>∈ U R S, ¬ G 6) ∧
(∀ < u ,r,r ’ >∈ U R , ¬ G 7∧ ¬ G 8)

{ r i}

A 1 7 r y

{ r j}

r y

E n a b le r y

D is a b le r y

A 1 8 A 1 9
A 2 0

A 2 1

A 2 2

A 2 3
A 2 4
A 2 5

A 2 6

E T G

E R

D R (∀ r ∈ E R , ¬ G 9) ∧ G 1 0

(∀ r∈ E R , ¬ G 1 1)

{ u i} U A C

{ n ir i}
R A C

{ < u i,r j,s l> }

U R S

r y

E R

A c tiv a te r y

{ u ,r }
U R

A 2 7

A 2 8

A 2 9

A 3 0

A 3 1
A 3 2

A 3 3

A 3 4

A 3 5

A 3 6

A 3 7

A 3 8

A 3 9

A 4 0

A 4 1

A 4 2

A 4 3

A 4 4

A 4 5

E T G

D e a c t iv a te r y

(∀ < u ,r ,s > ∈ U R S , ¬ G 1 2 ∧ ¬ G 1 3) ∧
G 1 4 ∧ G 1 5 ∧ G 1 6

(∀ < u ,r ,s > ∈ U R S , ¬ G 1 7 ∧ ¬ G 1 8 ∧ ¬ G 1 9)

Figure 2. Petri-net construction for (a) User Role Assignment/De-assignment (b) Role
Enabling/Disabling (c) Role Activation/Deactivation

 16

Table 3 Arc and guard expressions

Arc Expression Ei for corresponding arc Ai, where

E1 <assign,uz,ry> E24 ry�

E2 (n+1)uz E25 rde

E3
ry+ry1+… ryn (ryi<ry. for all 1�L�Q� E26 ry�

E4 <uz,rh, any r> E27 <activate,uz,ry,sk>

E5
<uz,ry, ry> + <uz, ry1,ry>+… .+<uz, ryn,ry> E28 <uz,ry, any r>�

ry
E6 <uz rc, any r> A7: <uc rz, any r> E29 ry

E7 <uc rz, any r> E30 uz

E8 {<uz , r’ , any r>} E31 ry

E9 {<any u , r’ ’ , any r>} E32 <uc,rz,any_session>

E10 <de-assign,uz,ry> E33 <uz,rc,any_session>

E11 <uz rk, any r> E34 <uz,ry,sk>

E12 <uz,ry, ry> + <uz, ry1,ry>+… .+<uz, ryn,ry> E35 <uz,ry,sk>

E13 <uz,ri, rdsu> (ri ��rdsu) E36 {<uz,r’ ,sk>}

E14 <any u, rj, rdau> (rj ��rdau) E37 {<uz,r’ ’ ,any_session>}�

E15 (n+1)uz E38 {<uz,r’ ’ ’ ,any_session>}

E16 ry+ry1+… ryn (ryi<ry. for all 1�L�Q� E39 <deactivate,uz,ry,sk>

E17 <enable,ry> E40 <uz,ry,sk>

E18 Ry E41 <uz,rd1,sk>

E19 Rc E42 <uz,rd2,any_session>

E20 Ry E43 <any user,rd3,any_session>

E21 {r’ } E44 ry

E22 Ry�

E45 uz�

E23 <disable,ry>

Guard functions associated with transition Assignry and De-ssignry�

G1 :(rh ��ry) �ry ��rh) G11 dep_enable(ry, rde)�

G2
conflict_role_assign(ry,rc)�

G12 conflict_user_activate(ry,uz,uc)

G3
conflict_user_assign(ry, rz, uz, uc)�

G13 conflict_role_activate(ry,rc)�

G4

prec_su_assign(ry,{r’ })�

G14 prec_suss_active(ry,{r’ })�

G5 prec_au_assign(ry r’ ,})�

G15 prec_suas_active(ry,{r’ ’ })�

G6 rk ��ry G16 prec_auas_active(ry,{r’ ’ ’ })�

G7 dep_su_assign(rdsu, ry)�

G17 dep_suss_active(ry,rd1)

G8 dep_au_assign(rdau, ry)�

G18 dep_suss_active(ry,rd2)

G9
Conflict_role_enable(ry,rc)�

G19 dep_suss_active(ry,rd1)�

G10
prec_enable(ry,{r’ })�

 17

Referring back to Fig. 1, we now elaborate how the proposed CPN can capture the four
components of event-based RBAC. Fig. 2 represents the complete specification of Fig. 1 except
the role to permission assignment/de-assignment, which is identical to Fig. 2(a). The guard
functions and arc expressions corresponding to Fig. 2 are listed in Table 3. Fig. 2(a) shows a CPN
representation of user to role assignment/de-assignment with transition assignry and deassignry
modeling the assignment and de-assignement events for role ry respectively. The set of places in
Fig. 2(a) shows the current state of the system in terms of number of users assigned to role ry, the
number of active sessions associated with role ry etc. The arcs and guard expressions specify the
assignment time cardinality, SoD, precedence and dependency constraints. Similarly, Fig. 2(b)
shows the CPN representation of enabling and disabling events for role ry, and Fig. 2(c) depicts
the CPN representation of role activation and deactivation events for role ry.

Based on the discussions in Section 3.1, we now formalize the notion of a consistent RBAC state
in the following definition. This notion of consistency is used to capture the dynamic property of
the CPN in Theorem 1.

Definition: The state of an RBAC system is said to be consistent if all the cardinality, inheritance,
SoD, precedence and dependency constraints are satisfied in that state.

In the following, we provide a theorem which establishes the validity of models in Fig. 2 for the
specification of GTRBAC components of Fig. 1.

Theorem 1: Given a PRBAC (CPN structure for RBAC) structure with an initial consistent state M0,
all states M, reachable from M0 are consistent.

Proof of this theorem is given in the appendix.

Lemma: Given a bounded initial state and a finite number of command tokens in the place ETG,
the PRBAC (CPN structure for RBAC) structure remains bounded.

The proof for this lemma follows from the fact that the following pairs of places - (RC, UR),
(UC, UR), (RAC, URS), (UAC, URS) and (ER, DR) form place invariants. Therefore, the total
number of tokens in these pairs of places always remains the same as that in the initial state. The
ETG initially contains a finite number of command tokens and no transition firing generates a
new token in it.

3.3 Reachability analysis for consistency verification of RBAC Policy
In this section, we elaborate the process of verifying the consistency of RBAC policy constraints.
The verification is based on the reachability analysis of CPN proposed in the previous section.
We use occurrence graph method [Jen97] to enumerate all reachable states of a system employing
a given RBAC policy. The above lemma states that our Petri net representation of RBAC system
is bounded and so its occurrence graph will have finite number of nodes. However, the exhaustive
nature of this method implies that the problem of verifying that a given state is reachable from
some initial state takes exponential space and time [Mur89]. Since policy verification can be done
offline and is performed before the deployment of actual system, so complexity is not a major
issue in using this proposed Petri-net approach.

The following two examples illustrate the use of occurrence graph for security policy verification.

Example 1: Consider three roles r0, r1, and r2 and a single user u0. Let r1 be junior to r0 (r0 ≥ r1 and
r1 �r0). Also let r1 and r2 be assignment time conflicting roles, i.e., r1 and r2 cannot be assigned to
the same user implying that roles r1 and r2 cannot be activated by the same user concurrently. Fig.
2 shows the sub-graph of the occurrence graph of the RBAC system. In this sub-graph all roles (r0,
r1, and r2) are considered to be in enable state and the SoD constraint is only defined between
roles r1, and r2. Note that in Fig. 3, user u0 who is assigned role r0 and r2 is able to activate roles r1

 18

and r2 concurrently. This is a violation of the SoD constraint defined on these two roles. This
inconsistency arises because of the fact that in the original specification, roles r0 and r2 do not
have any SoD constraint while r1 and r2 are assignment time conflicting roles. As r0 is superior to
role r1 and any user assigned to role r0 is authorized for role r1, the SoD constraint must also be
defined between roles r0 and r2. Fig. 4 shows the occurrence sub-graph of the same system with
an additional assignment time SoD constraint defined between roles r0 and r2. Note that in this
figure all the reachable states are consistent with respect to the given policy specifications.

(r1 assigned to u0)

(r1 assigned to u0)
(ri activated by u0 in s1)

(r2 assigned to u0)(r0 assigned to u0)

(r0 assigned to u0)
(r0 activated by u0 in s0)

(r0 assigned to u0)
(r0 activated by u0 in s0)
(r1 activated by u0 in s1)

(r0 assigned to u0)
(r1 activated by u0 in s1)

(r2 assigned to u0)
(r0 assigned to u0)

(r2 assigned to u0)
(r0 assigned to u0)
(r0 activated by u0 in
s0)

(r2 assigned to u0)
(r0 assigned to u0)
(r0 activated by u0 in s0)
(r1 activated by u0 in s1)

(r2 assigned to u0)
(r0 assigned to u0)
(r0 activated by u0 in s0)
(r1 activated by u0 in s1)
(r2activated by u0 in s2)

(r2 assigned to u0)
(r0 assigned to u0)
(r0 activated by u0 in s0)
(r2 activated by u0 in s2)

(r2 assigned to u0)
(r0 assigned to u0)
(r1 activated by u0
in s1)

(r2 assigned to u0)
(r0 assigned to u0)
(r1 activated by u0 in s1)
(r0 activated by u0 in s0)

(r2 assigned to u0)
(r0 assigned to u0)
(r1 activated by u0 in s1)
(r2 activated by u0 in s2)

(r2 assigned to u0)
(r0 assigned to u0)
(r2 activated by u0 in s2)

(r2 assigned to u0)
(r0 assigned to u0)
(r2 activated by u0 in s2)
(r0 activated by u0 in s0)

(r2 assigned to u0)
(r2 activated by u0 in s2)

(r2 assigned to u0)
(r2 activated by u0 in s2)
(r0 assigned to u0)

(r2 assigned to u0)
(r2 activated by u0 in s2)
(r0 assigned to u0)
(r1 activated by u0 in s1)

1 user u0, 3 roles r0, r1, and r2.

Initial state: Each role r0, r1 and r2 can be assigned to atmost 3 users.

Each role r0, r1 and r2 can be activated by atmost 3 users.

User u0 can be assigned atmost 3 roles.

User u0 can activate atmost 3 roles.

Following conditions remain true in all states: :

All roles r0, r1 and r2 always remain in enabled state

r0 ≥ r1 and r0 ≠ r1

(r1,r2) ∈ ssd

Example 2: Consider four roles r0, r1, r2, and r3 and a single user u0. Let r1 be junior to r0 (r0 ≥ r1
and r1 �r0). Suppose r1 has same user activation time dependency on role r2 which in turn has
same user activation time dependency on role r3, i.e., r1 ∈ dep_suas_activeset(r2) and r2 ∈
dep_suas_activeset(r3). Also, assume that r1 and r3 are activation time conflicting roles, i.e., r1
and r3 cannot be activated by same user in concurrent sessions. Fig. 5 shows the occurrence graph
of the system in which user u0 is assigned to roles r0, r2 and r3, and all four roles are in enabled
state. The occurrence graph depicts that there is no reachable state in which user u0 can activate
role r1, although u0 is authorized for role r1. This implies that a user assigned to role r0 can never
assume its junior role r1 - a flaw in the security policy.

Figure 3. Occurence graph for Example 1 with incomplete specifications�

 19

1 user u0, 3 roles r0, r1, and r2.

Initial state: Each role r0, r1 and r2 can be assigned to atmost 3 users.

Each role r0, r1 and r2 can be activated by atmost 3 users.

User u0 can be assigned atmost 3 roles.

User u0 can activate atmost 3 roles.

Following conditions remain true in all states:

All roles r0, r1 and r2 always remain in enabled state

(r1 assigned
to u0)

(r1 assigned to u0)
(ri activated by u0 in s1)

(r2 assigned
to u0)

(r2 assigned to u0)
(r2 activated by u0 in s2)

(r0 assigned to u0)

(r0 assigned to u0)
(r0 activated by u0 in s0)

(r0 assigned to u0)
(r0 activated by u0 in s0)
(r1 activated by u0 in s1)

(r0 assigned to u0)
(r1 activated by u0 in s1)

(r0 assigned to u0)
(r1 activated by u0 in s1)
(r0 activated by u0 in s0)

r0 ≥ r1 and r0≠r1

(r1,r2) and (r0,r2) ∈ ssd

1 user u0, 4 roles r0, r1,r2 and r3..

Initial state: Each role r0, r1, r2 and r3 can be assigned to atmost 3 users.

Each role r0, r1, r2 and r3 can be activated by atmost 3 users.

User u0 can be assigned atmost 4 roles.

User u0 can activate atmost 4 roles.

Following conditions remain true in all states:

1) All roles r0, r1, r2 and r3 always remain in enabled state. 2) u0 is assigned roles r0, r2,r3 and r4.

r0 ≥ r1 and r0 ≠ r1
r1 ∈ dep_auas_activeset(r2)
r2 ∈ dep_auas_activeset(r3)
r1 ∈ conflicting_role_activeset(r3)

(r0 activated by u0 in s0)

(r0 activated by u0 in s0) (r3
activated by u0 in s3)

(r0 activated by u0 in s0) (r3
activated by u0 in s3) (r2
activated by u0 in s2)

(r3activated by u0 in s3) (r3activated by u0 in s3)

(r3 activated by u0 in s3)
(r2activated by u0 in s2)

(r3 activated by u0 in s3) (r0
activated by u0 in s0)

4 Related Work
RBAC models have been proposed and extended by several researchers [Nya99, San96, Fer01],
and the efforts in this direction have resulted in the proposal of a standard model – the NIST
RBAC model [Fer01]. Need for supporting constraints in an RBAC model has been addressed by
many researchers. In particular, the attention has been in supporting separation of duties (SoD)
constraints [Ahn00, Gav98]. In [Ahn00], Ahn et. al. propose RCL2000 – a role based constraint

Figure 5. Occurence graph for Example 2�

Figure 4. Occurence graph for Example 1 with correct specification�

 20

specification language. Bertino et. al. have proposed a logic based constraint specification
language that can be used to specify constraint on roles and users and their assignments to
workflow tasks [Ber99]. Although, precedence and dependency constraints have been used in
workflow and transaction systems [Ber99], to the best of our knowledge they have not been
addressed explicitly for RBAC systems.

Various work address policy analysis and verification issues related to RBAC models.
Nyanchama et. al. [Nya99] present a graph based RBAC model, where graphs are used to mainly
represent hierarchies of users, roles and permissions. It does not address the issue of policy
verification. Koch et. al. [Koc02] present a graph transformation based formalism for RBAC
model and model the SoD constraints identified in the literature. The model provides a graph
transformation based specification of static and dynamic consistency conditions of RBAC. Jaeger
et. al. [Jae97] provide a graphical model or constraint expressions where nodes, similar to places
in CPN proposed in this paper, represent sets and edges represent binary relations between those
sets. Here, the constraints are expressed using operators on the nodes. All these models, however,
do not model events explicitly. The key advantage of our CPN model over these is that it provides
a balanced treatment of RBAC states and events.

5 Conclusion
We presented a CPN model of RBAC that incorporates various cardinality, separation of duty,
precedence and dependency constraints. The proposed CPN framework is based on the event
based approach of TRBAC/GTRBAC model and is suitable for modeling event based aspect of
RBAC model. We use the reachability analysis to detect and identify inconsistencies among a
given set of RBAC policies.

6 References

[Ahn00] G. Ahn, R. Sandhu, “Role-Based Authorization Constraints Specification”, ACM
Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

[Bar97] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn, “Role Based Access
Control for the World Wide Web,” In 20th National Information System Security
Conference, NIST/NSA, 1997.

[Ber99] E. Bertino, E. Ferrari, and V. Atluri, “The Specification and Enforcement of
Authorization Constraints in Workflow Management Systems,” ACM Transactions on
Information and System Security, 2(1):65-104, 1999.

[Ber01] E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A Temporal Role-based Access Control
Model,” ACM Transactions on Information and System Security, 4(3):191-233, August
2001.

[Chr92] Søren Christensen and Niels Damgaard Hansen, “Coloured Petri Nets Extended with
Place Capacities, Test Arcs and Inhibitor Arcs,” Technical Report DAIMI PB--398,
Computer Science Department, Aarhus University, DK-8000 Aarhus C, Denmark, May
1992.

[Fer93] D. F. Ferraiolo, D. M. Gilbert, N Lynch, “An examination of Federal and Commercial
Access Control Policy Needs,” In Proceedings of NISTNCSC National Computer
Security Conference, Baltimore, MD, September 20-23 1993, pages 107-116.

[Fer01] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R. Chandramouli, “Proposed NIST
Standard for Role-based Access Control,”ACM Transactions on Information and
System Security (TISSEC) 4(3), August 2001.

 21

[Gav98] S. I. Gavrila , J. F. Barkley, “ Formal Specification for Role Based Access Control
User/role and Role/role Relationship Management,” Proceedings of the third ACM
workshop on Role-based access control, Fairfax, Virginia, United States, October 22-
23, 1998, pages81-90.

[Jae01] T. Jaeger, J. E. Tidswell, “ Practical Safety in Flexible Access Control Models,” ACM
Transactions on Information System Security, Vol. 4, No. 2, May 2001.

[Jen97] K. Jensen, “ Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use
Volume 1” , Springer Verlag, 1997.

[Jos01a] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, “ Security Models for Web-
based Applications,” Communications of the ACM, Vol. 44, No. 2, Feb. 2001, pages
38-72.

[Jos01b] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor, “ Generalized Temporal Role Based
Access Control Model (GTRBAC) (Part I)– Specification and Modeling,” Submitted to
the IEEE Transaction on Knowledge and Data Engineering.

[Jos02] J. B. D. Joshi, E. Bertino, A. Ghafoor, “ Temporal Hierarchies and Inheritance
Semantics for GTRBAC,” Seventh ACM Symposium on Access Control Models and
Technologies, June 2002, pages 74-83.

[Koc02] M. Koch, L. V. Mancini, F. Parisi-Presicce, “ A Graph-based Formalism for RBAC,”
ACM Transactions on Information and System Security (TISSEC) August 2002, Vol. 5
No. 3, pages 332 – 365.

[Mur89] T. Murata, “ Petri Nets: Properties, Analysis and Application” , Proceedings of IEEE,
Vol. 77, No. 4, 1989, pages 541-580.

[Nya99] M. Nyanchama and S. Osborn, “ The Role Graph Model and Conflict of Interest,” ACM
Transactions on Information and System Security, Vol. 2 No. 1, 1999, pages 3-33.

[Osb00] S. Osborn, R. Sandhu, Q. Munawer, “ Configuring Role-based Access Control to
Enforce Mandatory and Discretionary Access Control Policies,” ACM Transactions on
Information and System Security (TISSEC) Vol. 3, No. 2, May 2000, pages 85 - 106

[San96] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “ Role-Based Access Control
Models,” IEEE Computer Vol. 29 No. 2, IEEE Press, 1996, pages 38-47.

 22

7 Appendix

This section provides a detailed proof of theorem 1 stated in section 3.2. The proof is based on the
fact that all the user-role assignment/de-assignment, role enabling/disabling, and role
activation/deactivation events preserve properties P1-P28. Note that properties P1-P28 are non-
interfering in a sense, that satisfying one does not violate another. Also, note that properties P2,
P5, P6, P7, P8, P12, P13, and P14 are static properties and are independent of the CPN structure
PRBAC, i.e., these properties do not depend on the CPN execution. Thus, these properties will be
preserved in all reachable states of PRBAC provided that the initial state is consistent.

One important structural property of the PRBAC (CPN structure for RBAC) is the existence of
place invariants. PRBAC has place invariants formed by the following pairs of places:

1. RC and UR.
2. UC and UR.
3. RAC and URS.
4. UAC and URS.

The following lemmas provide a basis for proving that PRBAC structure with consistent initial
marking preserves system consistency.

Lemma 1: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
satisfy the cardinality constraints (property P1).

Proof:

We will prove this lemma for assignment time cardinality constraints. Activation time cardinality
constraint can be proved by similar argument. For the transition assignry (Fig. 2(a)), the input arcs
A2 with expression E2: (n+1)uz, and A3 with expression E3:ry + ry1+… + ryn ensure that role ry is
assigned to user uz only if all role tokens ry , ry1,… ., ryn (where, ry ≥ ryi and ry �ryi) are present at
place RC and there are at least (n+1) uz tokens present in UC. Upon firing of assignry, all these
tokens are removed from their respective input places. If any of the above token is missing from
their input places, the transition cannot be enabled and hence cannot fire.

 As a consequence of the above observation and the place invariants RC–UR and UC-UR,
properties the assignment time user and role cardinality constraints hold in any state obtained by
firing transition assignry. �

Lemma 2: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
preserve property P3.

The inhibitor arc A4 with arc expression E4:<uz,rh,any r> and the Boolean guard function
G1(rh�Uy or ry�Uh) prevent firing of transition assignry for user uz, if user uz is authorized for role rh
and either rh inherits ry or ry inherits role rh. Consequently, no two roles assigned to same user can
inherit (directly or indirectly) one another. �

Lemma 3: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
preserve property P4 (assignment time role specific SoD).

Proof: Role specific assignment time SoD constraint states that conflicting roles cannot be
authorized to same user. Assume that for some user to role assignment this condition does not

 23

hold, i.e., there exist a user uz who can be assigned two conflicting roles rx and ry simultaneously.
According to our assumption, tokens <uz,rx, any r> and <uz,ry, any r> can coexist in place UR. Let
M0 be the state of the system just before the firing of transition of assignrw that deposit token <
uz,ry,rw> where (rw ≥ ry) in place UR and assume that in state M0 role user uz is authorized for role
rx (token <uz,rx,any r> present in place UR and <uz,ry any r> is not). Let ry is the first role for
which the role specific SoD constraint does not hold. In this case, M0 is a consistent state if it
does not break down other consistency rules. From our initial assumption, assignrw that
authorized user uz for ry is enabled. This implies that the transition assignrw can fire. But the
inhibitor arc A6 with arc expression E6:<uz,rc,any r> and the transition guard expression
G2:conflict_role_assign(rw,rc) evaluating true, will prevent the transition to be enabled (a
contradiction). Hence, transition assignrw will not fire in this case. So, the role specific
assignment SoD constraint is preserved in any state M reachable from M0. �

Lemma 4: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
preserve properties P9(a) and P9(b) (assignment time user specific SoD).

We will first prove that property p9(a) (only one user from a conflicting set of users for role r is
authorized for r) holds in all states reachable from M0. Suppose users uz and uc are assignment
time conflicting users for role ry. Assume that user specific SoD does not hold in some marking
M reachable from M0, i.e., in marking M tokens <uz, ry, any r> and <uc,ry, any r> can coexist in
place UR. Consider the state of the system M’ just before the firing of some transition assignrx
that deposit token <uc,ry,rx> where (rx ≥ ry) in place UR. Assume that role uz is already authorized
for role ry in state M’ . Also, assume that uc is the first user for which the user-specific SoD does
not hold. We can safely assume that the state M’ is consistent provided it does not violate other
consistency rules and is reachable from M0. From our initial assumption transition assignrx is
enabled with the system in state M’ . This implies that the transition assignrx can fire. But the
inhibitor arc A7 with arc expression E7: <uc, ry, any r> and the transition guard expression
G3:conflict_user_assign(rx,rx,uz,uc), evaluating true, will prevent the transition to be enabled.
Hence the transition assignrx that authorize user uc for role ry, will not fire in this case. So, the
user specific assignment SoD constraint is preserved in any state M reachable from M0.

For property P9(b), suppose that role ry inherits role rx (ry≥rx and ry≠rx). By property P8
conflict_user_assignset(rx) ⊆ conflict_user_assignset(ry). Let C= conflict_user_assignset(rx) ∩
conflict_user_assignset(ry) be a non-empty set. If |C|=1, then property P9(b) holds trivially in any
marking reachable from M0. For the case |C| ≥ 2,. Let u1 and u2 ∈ C and assume that property
P9(b) does not hold in some marking M reachable from M0 implying that tokens <u1,rx, rx > and
<u2,ry, ry > can coexist at place UR in the marking M. Consider the state of the system M’ just
before the firing of transition of assignry that deposit token <u2,ry,ry > in place UR and assume
that role rx is already assigned to user u1 in state M’ (token <u1,rx,rx > present at place UR and
<u2,ry,ry > is not). We can safely assume that M’ is reachable from M0. From our initial
assumption transition assignry is enabled with the system in state M’ . This implies that the
transition assignry can fire. But the inhibitor arc A7 with arc expression E7<uc,rz,any r> (in this
case uc=u2, rz=rx), and the transition guard expression conflict_user_assign(ry,rx,u1,u2),
(conflict_user_assign(ry,rx,u1,u2) is true because u1,u2 ∈ C ⊆ conflict_user_assign(ry)) , will
prevent the transition to be enabled. Hence the transition assignry will not fire in this case, which
is contrary to our assumption. Similarly it can be shown that if ry is assigned to u1 then rx cannot
be assigned to u2.

Property P3 maintains that rx and ry cannot be assigned to same user. So, from the above
argument and property P3, if two role rx and ry with ry≥rx have a common set of assignment time

 24

conflicting users, then only one user from the common set can be assigned any one of the two
roles rx and ry and not both. �

Lemma 5: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
preserve property P10 ()(_)(_, urolesetauthorizedurolesetactiveUSERSu ⊆∈∀).

Proof:

The input read arc A28 between the input place UR and transition activatery ensures that
transition activatery can fire for user uz only if a token <uz,ry,any r> is present in the place UR.
The token <ux,ry,any r > in place UR shows that user uz is either assigned role ry (ry=r) or is
authorized for role ry by virtue of role r assigned to uz such that (r≥ry and r�ry). Hence the active
role set of any user is a subset of his/her authorized roles. �

Lemma 6: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
preserve property P11 (activation time role specific SoD).

Proof:

Can be proved with similar argument as lemma 3 was proved for static case. �

Lemma 7: Given PRBAC with a consistent initial state M0, all the states M reachable from M0
preserve property P16 (activation time user specific SoD).

Proof:

Can be proved with similar argument as property P9(a) is proved for static case in lemma 4. �

Lemma 8: Given a PRBAC structure with initial marking M0 in which all precedence constraints are
satisfied, then the subsequent markings also satisfy all the precedence constraints, i.e., properties
P17 – P22 are preserved.

Lets take the enabling time precedence constraint which says that if role some role ry has enabling
time precedence constraint, then role ry can only be enabled if all roles r’ are enabled, where,
r’∈Ri for some Ri ∈ prec_enableset(ry). For the sake of contradiction, suppose that this does not
hold for a marking M which is reachable from M0 in the PRBAC structure. Without loss of
generality, assume that prec_enableset(ry) = {R1, R2, … ,Rn}, where Ri = {ri1,ri2,… .rim}. Our
assumption implies that in marking M, the place ER has token <ry>, but it does not have all <r’>
tokens, where, r’∈Ri for some Ri∈prec_enableset(ry). Without loss of generality, assume that M
is the first marking in which ry is in enable state. This means that marking M is achieved by firing
of transition enablery from marking M’ which does not have all <r’ > tokens in enable state, where,
r’∈Ri for some Ri∈prec_enableset(ry). But the read arc A21 and the associated guard function
G10: prec_enable(ry,{r’ }) of the transition enablery will prevent enablery to fire. This contradicts
the assumption that marking M does not preserve the enabling time precedence constraint. Hence,
all markings reachable from M0 in the PRBAC structure preserve the enabling time precedence
constraint.

Similarly, it can be proved that all markings reachable from M0 in the PRBAC structure preserve all
precedence constraints defined in section 3.1.1. �

 25

Lemma 9: Given a PRBAC structure with initial marking M0 in which all dependency constraints are
satisfied, then the subsequent markings also satisfy all the dependency constraints, i.e., properties
P23 – P28 are preserved.

Proof:

We will prove this lemma for enabling time dependency constraint only, the assignment and
activation time precedence can be proved in a similar way. Note that enabling time dependency
constraint poses two conditions on role ry and rde with rde ∈ dep_enableset(ry): 1) role rde cannot
be enabled if role ry is not enabled, and 2) role ry cannot be disabled if role rde is in enable state.
The first condition can be satisfied by defining a precedence constraint between role rde and role
ry, i.e., {ry} ∈ prec_enableset(rde). To satisfy the second condition, the PRBAC structure has an
inhibitor arc A23 (E23: <rde>between place ER and transition disablery and the transition guard
function G11: dep_enableset(ry, rde), which prevents the transition disablery to fire if role rde is in
enable state. Consequently, role ry cannot be disabled if role rde is in enable state. �

Theorem 1: Given a PRBAC (CPN structure for RBAC) structure with an initial consistent state M0,
all states M, reachable from M0 are consistent.

Proof:

Since the properties P1-P28 are non-interfering, therefore the proof of this theorem immediate
from lemma 1- 9.

