CERIAS Tech Report 2002-33

Petri-net Based Modeling for Verification
of RBAC Policies

by Basit Shafiq, James B. D. Joshi, Arif Ghafoor
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907

Petri-net Based Modeling for Verification of RBAC
Policies

Basit Shafig, James B. D. Joshi, Arif Ghafoor

Center of Education and Research in Information Assurance and Security (CERIAYS)
and
School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47906

Abstract

Role based access control has emerged as a promising new approach to security for advanced
applications because of the severa benefits it provides. However, most of the research effortsin
this area has been focused towards the specification and modeling of RBAC systems. The crucia
issue of verification of role based access control policies has not been adequately investigated in
the literature. In this paper, we propose a colored Petri-net based policy specification and analysis
framework for an RBAC model. The Petri-net model can capture al the cardindity and
separation of duty constraints that have been previoudly identified in the literature. Moreover, the
model also allows specification of the precedence and dependency constraints that we introduce
in this paper. We use the Petri-net reachability analysis technique for verifying correctness of
RBAC policies. A set of consistency rules is used as the basis of detecting undesirable states
representing erratic behavior of the system due to the flaws in policy specification. The analysis
framework can be used by security administrators to generate correct specification iteratively.

This work was supported by the Center for Education and Research in Information
Assurance and Security (CERIAS) and NSF under grant 11S-0209111

1 Introduction

Role based access control (RBAC) has emerged as a promising alternative to traditional
discretionary and mandatory access control (DAC and MAC) models, which have some inherent
limitations [JosO1a, Osb00]. Several beneficial features such as policy neutrality, support for least
privilege, efficient access control management, are associated with RBAC models [JosOla,
San96]. The concept of role is associated with the notion of functional roles in an organization,
and hence RBAC models provide intuitive support for expressing organizational access control
policies [Fer93]. Hence, RBAC models are better suited for handling access control requirements
of diverse organizations and emerging, advanced applications such as e-commerce, healthcare-
systems, etc. [JosOla]. Furthermore, use of role hierarchies and grouping of objects into object
classes based on responsibility associated with a role makes the management of permissions very
easy. RBAC constraints allow expressing user-specific access control policies, and DAC and
MAC policies, thus, increasing the applicability of RBAC models. In particular, many separation
of duty (SoD) constraint can be easily specified to cater to the access control needs of many
commercia applications [Ahn00, Nya99]. By configuring the assignment of the least set of
privileges from arole set assigned to a user when he activates the role, inadvertent damage can be
minimized in a system. RBAC models have also been found suitable for addressing security
issues in the Internet environment, and show promise for newer heterogeneous multi-domain
environments that raise serious concerns related to access control across domain boundaries
[Bar97, JosD1a, JosO1b].

RBAC has been widely researched, primarily because of its relevance and the benefits it provides
as mentioned above, and has been extended in by several researchers [San96, Nya99, Gavog].
One such crucia extension is an RBAC model with temporal constraints, which was proposed in
Tempora RBAC model [BerOl] and later generalized into Generaized-TRBAC [JosOl1b].
GTRBAC distinguishes among various states of a role - such as disabled, enabled and active
states - and extends the notion of RBAC events introduced in TRBAC. An event-based of
TRBAC approach is particularly suitable for time-based access control requirements and for
dynamic access control models [JosO1b, Jos02].

Although RBAC has today reached a good level of maturity, there are still relevant RBAC-based
policy specification and analysis issues that have not been addressed adequately in the literature.
Koch et. al. [Koc02] present a graph based RBAC model aimed at the analysis of the RBAC
policies based on graph transformations. Nyanchama et. al. [Nya99] present a graph based RBAC
model and focuses primarily on the management of the role-graphs and conflicts among roles
using graph algorithms. Jaeger et. al. [Jae01] present a graphica approach to capture a generic
typed access control model and express RBAC asiits special case. These approaches are primarily
static in nature and do not adequately take into account various authorization related RBAC
events that can be alowed in a system non-deterministically.

In this paper, we combine the event-based approach taken in GTRBAC with the Petri-net based
modeling approach to develop a framework for modeling and analysis of non-temporal RBAC
policies. The approach is particularly novel because of the intuitive way in which Petri-nets
capture both system states and events, thus allowing state-based anaysis for policy verification
and assisting in deriving an event based execution model of an RBAC system in order to ensure
safety. Furthermore, several formal tools and techniques are available for Petri-nets that can be
utilized to carry out relevant analysis for correctness verification of specification.

An essential feature of RBAC is that it alows specification of various SoD constraints that are
needed in many commercial applications [Ahn00, Fer93]. SoD constraints aim at eliminating any
possibility of users committing a fraud in a system by preventing a user from acquiring enough
access privileges to commit fraud. Several SoD constraints have been identified in the literature.
In this paper, we propose some new SoD, precedence and dependency constraints.

The paper is organized as follows. In section 2, we present relevant background on RBAC models
on which we build our Petri-net framework. In section 3, we provide a classification of
consistency rules. The colored Petri-net model of RBAC and the policy analysis framework are
presented in section 4. In section 5, we discuss related work. Section 5 concludes the paper and
provides future directions.

2 Overview of Role Based Access Control

In this section, we provide relevant background on the RBAC and GTRBAC models that we refer
to in this paper. The RBAC model as proposed by Sandhu et. al. in [San96], currently being used
as the basis for the NIST RBAC model, consists of the following four basic components: a set of
users User s, a set of roles Rol es, a set of permissions Per mi ssi ons, and a set of sessions
Sessi ons. A user is a human being or a process within a system. A role is a collection of
permissions associated with a certain job function within an organization. A permission is an
access mode that can be exercised on a particular object in the system. A session relates a user to
possibly many roles. When a user logs in the system he establishes a session by activating a set of
enabled role that heis entitled to activate at that time. If the activation request is satisfied, the user
issuing the request obtains all the permissions associated with the role he has requested to activate.
On Rol es, a hierarchy is defined, denoted by >. If rj = rj, rj, r; O Rol es then r; inherits the
permissions of r;. In such acase, ri isasenior roleand rj ajunior role.

The RBAC model does not explicitly model different states of a role and hence do not capture
various events that are typical of an RBAC system. Such event based approach was used by
Bertino et. al. in TRBAC model [Ber01] and later extended by Joshi et. al. in GTRBAC [Jos01b],
primarily to capture the different transitional actions needed in the context of temporal constraints.
The GTRBAC model provides atemporal framework for specifying an extensive set of temporal
constraints and uses a language-based framework [JosO1lb]. GTRBAC alows various types of
temporal congtraints such as temporal constraints on role enabling/disabling, temporal
constraints on user-role and role-permission assignments/de-assignments, role activation-time
constraints, etc. These constraints are useful in capturing the dynamic behavior of systems that
employ RBAC.

Fig. 1 highlights four key components of GTRBAC model that include user-role assignment/de-
assignment, role-permission assignment/de-assignment, role enabling/disabling, and role
activation/deactivation. The latter two events allows one to define fine-grained access constraints
based on system events as well as states. Such events, in particular, are useful in describing
various precedence and dependency constraints. For instance, a role can be enabled only if some
other roles are enabled, defining a precedence relation between them. Traditional RBAC model
does not explicitly capture such events and hence is not convenient for expressing such
precedence and other dependency constraints.

In this paper, we use an event based approach to model RBAC. This event based RBAC model
corresponds to a selected set of temporal constraints of GTRBAC. The motivations for this are
two fold:

1. Such an event-based realization of traditional RBAC system allows capturing the dynamic
properties of the system that can be used to verify the correctness of an RBAC specification.
For example, as we show later, although we start with a consistent initial specification, it is
possible that as users are assigned and de-assigned (assignment and de-assignment events) to
roles and their requests for activating roles granted, we may reach an undesirable state,
indicating some potential flaw in the initial specification or weakness in policy specification
with respect to the set of consistency properties for the system.

2. Our future goal is to extend the proposed Petri-net modeling framework to model the
GTRBAC system and then, to develop techniques for validating and verifying the correctness
properties of GTRBAC Policies pertaining to the four components of Fig. 1.

Permission- User-Role

Role Assignment/
Assignment/ | De-assignment
De-assignment

Role enabling/ | Role Activation/
Disabling Deactivation

Figure 1 Components corresponding to event set of GTRBAC

3 A verification model for RBAC

Our main objective in this paper is to model RBAC using a Petri net based framework and then
use this framework to verify the correctness of the underlying security policies.

3.1 Policy considerations in RBAC

A policy isaset of rules that defines the expected behavior of the system employing that policy.
The system is said to be in conformance with the underlying policy if every state of the system
can be deduce from the set of rules/axioms comprising the policy. An inconsistent state or erratic
system behavior can be attributed to a potentia flaw in the policy specification. This flaw may be
because of inconsistency in the policy itself or because of incompleteness. An inconsistent policy
is the one in which two or more rules from a given set of rules comprising the policy contradict
each other. Incompleteness implies that the given set of rules defining the policy is not sufficient
to capture all states of the system. In this context, security verification can be stated as the process
of proving that the properties or rules specified in a security policy are enforced in the
information system.

Gavrilaet. al. [Gav98] state a set of consistency rules for information systems employing RBAC
as an access control mechanism. These rules are defined as consistency rules because the
information system is expected to satisfy these rules in al possible states it may take. These
consistency rules athough specify most of the constraints for the traditional RBAC model
[Gav98], do not capture the constraints required in modeling event-based systems. For example
precedence and dependency constraints cannot be modeled using the consistency rules specified
in [Gav98]. For an RBAC system constraints can be grouped into following classes: 1) cardinality
constraints, 2) separation of duties (SoD) constraints, 3) inheritance constraints, and 4)
precedence and dependency constraints.

Cardinality, inheritance and SoD constraints are addressed in literature for traditional RBAC

[Gav98], however these approaches are primarily static in nature and do not take into account

various authorization related RBAC events allowed in a system non-deterministically. These

events include user-role assignment enabling/disabling of a role, and activation/deactivation of a

role as described in [JosO1b]. A SoD constraint in an event-based environment may prohibit two

conflicting roles to be enabled at the same time, or inhibit two conflicting users of some role to
activate that role concurrently. Similarly, inheritance and cardinality constraints have new
semantics in this (event-based) environment that may not be captured by static approaches.

Precedence and dependency conditions are required to model the relative ordering of events. The

following two examples describe situations where precedence and dependency constraints are

required:

1. A junior employee of an office is allowed to activate the Junior_Employee role in the
system only if the manager of the office has activated the Manager role. This condition can
be modeled by the precedence constraint.

2. A trainee doctor is authorized to activate hig’her role only in presence of a senior doctor. In
this case the senior doctor cannot deactivate hisher role if there is an active trainee doctor
role. This example represents a dependency constraint.

3.1.1 Consistency Rules for RBAC

In the following, we list a set of consistency rules which are major extensions of consistency rules
defined by Gavrilain [Gav98]. This extended set of rules allows modeling of various constraints
of RBAC with an event-based approach. This set of rules mainly covers the cardindlity,
inheritance, SoD and precedence and dependency constraints. The correctness of a system state is
verified in the context of these consistency rules. The functions and predicates used in defining
these consistency rules arelisted in Table 1 and 2.

P1. Cardinality constraints:

(8 The number of authorized users for any role does not exceed the authorization
cardinality of that role. Formally:

Or O ROLES,| authorized _userset(r) | < authorization _role_card(r).

(b) The number of roles authorized for any user does not exceed the maximum number
of rolesthe user is entitled to acquire (authorization user cardinality).

OuOUSERS, | authorized _roleset(u) | < authorization _user _card(u).

(c) The number of roles activated by any user u does not exceed the maximum number
of rolesthe user is entitled to activate at any time(activation user cardinality).

OuOUSERS,| active _roleset(u) | < activation _user _card(u).

Table 1 Functionsused in defining consistency propertiesfor RBAC

assigned_roleset(u)

returns the set of active (currently assumed) roles of user u in his/her
Sessions

,active roles insessionset(u,s)

returns the set of active (currently assumed) roles of user uin session s.

active_userset(r)

returns the set of users who have activated a given roler in an ongoing
session.

active sessionset(u)

returns the set of sessions activated by user u.

authorized_roleset(u)

returns the roles authorized for a given user. We say that aroler is
authorized for a user u if either r is assigned to u, or r is inherited by
another role that is assigned to u.

authorized_userset(u)

returns the users authorized for agiven role

prec_su_assignset(ry)

defines the assignment time precedence constraint with same user for
roler,. Refer to property P18 of section 3.1.1.

prec_au_assignset(ry)

defines the assignment time precedence constraint with any user for ry.
Refer to property P19 of section 3.1.1.

prec_enableset(r,)

defines the enabling time precedence constraint for role ry. Refer to
property P17 of section 3.1.1.

prec_suss_activeset(r,)

defines the activation time precedence constraint with same user and
same session for role r,. Refer to property P20 of section 3.1.1.

prec_suas_activeset(r,)

defines the activation time precedence constraint with same user and
any session for ry. Refer to property P21 of section 3.1.1.

prec_auas_assignset(r)

defines the activation time precedence constraint with any user and any
session for roler,. Refer to property P22 of section 3.1.1.

dep_su_assignset(ry)

returns the set of roles dependent on a given role ry for user to role
assignment. Refer to property P24 of section 3.1.1.

dep_au_assignset(ry)

returns the set of roles dependent on a given role ry for user to role
assignment. Refer to property P25 of section 3.1.1.

dep_enableset(r,)

returns the set of roles dependent on a given role ry for role enabling.
Refer to property P23 of section 3.1.1.

dep_suss_activeset(r)

returns the set of roles dependent on a given role r, for role activation
by same user in same session. Refer to property P26 of section 3.1.1.

dep_suas_activeset(ry)

returns the set of roles dependent on a given role ry for role activation
by same user in any session. Refer to property P27 of section 3.1.1.

dep_auas_activeset(ry)

returns the set of roles dependent on a given role ry for role activation
by any user in any session. Refer to property P28 of section 3.1.1.

conflicting_role_assignset(r,)

returns the set of roles that conflict with a given role r, for user role
assignment.

conflicting_role_enableset(r,)

returns the set of roles that conflict with a given role r, for role
enabling.

conflicting_role_activeset(r,)

returns the set of roles that conflict with a given role r, for role
activation.

conflicting_user_assignset(r)

returns the set of users that are assignment time conflicting users for a
givenroler,.

conflicting_user_activeset(r,)

returns the set of users that are activation time conflicting users for a
givenroler,.

role_authorization_card(r,)

denotes the authorization cardinality of role ry, i.e, the maximum
number of users authorized for ry.

role_activation_card(r,)

denotes the activation cardinality of role ry, i.e., the total number of
times role r, can be activated concurrently.

user_authorization_card(u)

denotes the authorization cardinality of user u, i.e, the maximum
number of roles user u isentitled to acquire.

user_activation_card(u)

denotes the activation cardinality of user u, i.e., the maximum number
of roles user u is entitled to activate concurrently.

Table 2 Predicates used in CPN modeling of RBAC

role_assigned(ry,u,)

evaluatestrueif r, O assigned_roleset(u,).

role_enabled(r,)

evaluatestrueroler, isin enable state; otherwise.

role_active(ry,u,)

evaluatesstrueif ry O active_roleset(u,).

role_active_insession(ry,,u,Sy)

evaluatestrueif ry 0 active_roles insessionset(U,Sy).

prec_su_assign(ry,R)

evaluatestrue if RO prec_su_assignset(ry).

prec_au_assign(ry,R)

evaluatestrue if RO prec_au_assignset(ry).

prec_enable(r,,R)

evaluatestrue if RO prec_enableset(r,).

prec_suss_active(ry,,R)

evaluatestrue if RO prec_suss_activeset(r,).

prec_suas_active(r,,R)

evaluatestrue if RO prec_suss_activeset(ry).

prec_auas_active(ry,R)

evaluates true if RO prec_auas_activeset(r,).

dep_su_assign(ry,r)

evaluates true if rJ dep_su_assignset(r).

dep_au_assign(ry,r)

evaluatestrue if rJ dep_au_assignset(r).

dep_enable(ry,r)

evaluatestrue if rC] dep_enableset(ry).

dep_suss_active(ry,r)

evaluatestrue if rJ dep_suss_activeset(r,).

dep_suas_active(ry,r)

evaluatestrue if rJ dep_suss_activeset(r,).

dep_auas_active(r,,r)

evaluatestrue if rJ dep_auas activeset(ry).

conflicting_role_assign(ry,r)

evaluatestrue if rJ conflicting_role assignset(ry).

conflicting_role_enable(ry,r)

evaluatestrueif rJ conflicting_role_enableset(r,).

conflicting_role_active(ry,r)

evaluates true if rJ conflicting_role_activeset(r,

conflicting_user_assign(ry, r,u,u’) evaluates true if both u and u0O
conflicting_user_assignset(r,) and ry > 1.
conflicting_user_active(ry,u,u’) evduates true if both u and uO

conflicting_user_activeset(r,).

last_session(ry,sx)

evaluates true if s is the last/only active session
associated with roler,.

su_last_session(uy,ry,Sk)

evaluates true if s is the last/only active session
associated with user u, and role r,.

(d) The number of users who have activated a role r in their ongoing sessions does not

exceed the role activation cardinality.
Or OUSERS, | active _userset(r) | < activation _role__card(r).

(e) The number of sessions activated by any user u does not exceed the maximum
number of sessions the user is entitled to activate at any time(user session

cardinality).

OuJOUSERS,| active _sessionset(u) | < user _session__card(u).

P2. If aroler; inheritsrole r, and both roles are distinct, then r, cannot inherit r;. Formally:
Or,,r, OROLES, (r, 2r,) O(r, Z1,) 0 (r, 271,)

P3. Any two distinct roles assigned to same user do not inherit (directly or indirectly) one another.

Formally:

OuOUSERS,Or,,r, OROLES,r,,r, Jassigned _roleset(u) < =(r, 2r,)
P4. Any two roles assigned for same user are not in static separation of duties. Formally:

OuOUSERS,Or,,r, OROLES, 1,1, Jassigned _roleset(u) O —conflict _role_assign(r,,r.).

P5. Thereisno role in static separation of dutieswith itself. Formally:

Or OROLES O —conflict _role_assign(r,r)

P6. The static separation of duties relation is symmetric. Formally:

Or,,r, O ROLES, - conflict _role_assign(r,,r,) O —conflict _role_assign(r,,r;)

P7. If arole (directly or indirectly) inherits another role and the inherited role is in static
separation of duties with a third role, then the inheriting is in static separation of duties with the
third role. Formally:

Or,,r,,r; DROLES, 1, 21, Oconflict _role_assign(r,,r,) O conflict _role_assign(r,,r;)

P8. If aroleinherits another role, then the assignment time conflicting set of users of the inherited
roleisasubset of the assignment time conflicting set of users of the inheriting role. Formally:

Or,, r, OROLES, 1, 21,,conflict _user _assignset(r,) [conflict _user _ assignset(r,) .

P9(a). Only one user from a set of assignment time conflicting users of roler can be assigned role
r.

Or0OROLES,u,,u, Oconflict _user _assignset(r),r Dassigned _roleset(u,)(Nassigned _roleset(u,)

PO(b) If two distinct roles ry and r, with r, > ry, have some common assignment time conflicting
set of users, then only one user from the common set can be assigned any of the two roles ry and
r,and not both. Formally:

Or,r, UROLES:1, 21,
Cu. Of conflict _user _assignset(r,) N conflict _user _assignset(r,)} Or, D assigned _roleset(u,)
0 = (Cu; O{conflict _user _assignset(r,) (N conflict _user _assignset(r,)}

Or, Dassigned _roleset(u;) Ou; #u;)

P10. The active role set of any user is a subset of his/her authorized roles. Formally:
Ou OOUSERS, active _roleset(u) [authorized _roleset(u).

P11. Any two roles in dynamic separation of duties do not both belong to the active role set of
any user. Formally:

OuOUSERS, Or,,r, OROLES, r,, 1, Jactive_roleset(u) O —conflict _role_ activeset(r,,r,)

P12. The dynamic separation of duties and static separation of duties are digoint. Formally:

Or,,r, OROLES,(r,,r,) Oconflict _role_ activeset(r,,r,) [—conflict_role_ assignset(r,,r,)

P13. Thereis ho rolein dynamic separation of duties with itself. Formally:

Or OROLES O conflict _role__activeset(r,r)

P14. The dynamic separation of duties relation is symmetric. Formally:

Or,,r, OROLES,(r,,r,) Oconflict _role_ activeset(r,,r,) O conflict _role_ activeset(r,,r,)

P15. If aroleinheritsajunior role, then the activation time conflicting set of users of the inherited
roleisasubset of the activation time conflicting set of users of the inheriting role. Formally:

Or,, r, OROLES,r, =1, conflict _user _activeset(r,) [conflict _user _ activeset(r,) .

P16 Role r cannot be concurrently activated by users u; and u,, if they are activation time
conflicting usersfor roler. Formally:

Or0OROLES,u,, u, Oconflict _user _activeset(r) O r Dactive_roleset(u,)(active_roleset(u,)

Thefollowing rules (P17-22) define the precedence constraints.

P17. Enabling time precedence constraint: If prec_enableset(r)#¢@, then role r can be enabled
only if all r' are enabled. Where, r'JR, for some R/ jprec_enableset(r). Note that after getting
enabled role r can still remain in enable state even though some or all of the roles r’' R get
disabled.

P18. Assignment time precedence constraint with same user: If prec_su assignset(r)~¢ then role
r can be assigned to user u only if al r' have been assigned user u.. Where, r' R for some
R [prec_su assignset(r). Note that the (u,r’) de-assignment does not imply that (u,r) assignment
be cancelled.

P19. Assignment time precedence constraint with any user: If prec_au_assignset(r)£¢ thenroler
can be assigned to any user u only if al r’ have been assigned to one or more users. Where, r' R,
for some R [jprec_au_assignset(r). Note that this does not imply that al r’ have to be assigned to
same user. Also, the de-assignment of role r’ does not imply that (u,r) assignment be cancelled.

P20 Activation time precedence constraint with any user: If prec_auas_activeset(r)#¢ then role r
can be activated by user u, if all r’ have been activated by one or more users. Where, r' R, for
some R [jprec_auas_activeset(r). Note that this does not imply that al r’ have to be activated by
same user. Also, after getting activated by user u, role r can still remain in active state even
though some or dl of therolesr’ /R get deactivated.

P21. Activation time precedence constraint with same user same session: |If
prec_suss assignset(r)£¢ then role r can be activated by user u, if al r’ have been activated by
same user u in the same session. Where, r' LR for some R /jprec_suss activeset(r). Note that
after getting activated by user u in session s, role r can still remain in active state even though
some or al of therolesr’ /R get deactivated by same user u in same session s.

P22. Activation time precedence constraint with same user any sesson: If
prec_suas assignset(r)£¢ then role r can be activated by user u, if al r’ have been activated by
same user u any session. Where, r' LR for some R [prec_suas_active(r). Note that after getting

activated by user uin session s, role r can still remain in active state even though some or all of
therolesr’ //R, get deactivated by same user u.

The following rules define the dependency constraint in RBAC

P23. Enabling time dependency constraint: A role r,J dep_enableset(r,) can be enabled only if
rolery isin enable state. Furthermore, r, cannot be disabled if r, isin enable state. Formally:

r,Jdep _enableset(r,) U [role_enabled(r,) - role_enabled(r,)] .

P24. Assignment time dependency constraint with same user: A roler,[] dep_su_assignset(ry) can
be assigned to user u only if u has been assigned role r,. Furthermore, the (u,r,) role assignment
cannot be canceled unless (u,r,) assignment has been canceled. Formally:

r,00dep_su_assignset(r,) O [r,Jassigned _roleset(u) — r,[Jassigned _roleset(u)]

P25. Assignment time dependency constraint with any user: A role r, [dep_su_assignset(ry) can
be assigned to user u only if u has been assigned role r,. Furthermore, the (u,r,) role assignment
cannot be canceled unless (u,r,) assignment has been canceled. Formally:

r,0dep_su_assignset(r,) O [r,Jassigned _roleset(u) — r,[Jassigned _roleset(u)]

P26. Activation time dependency constraint with same user and same session: A role r, [
dep_suss_activeset(r,) can be activated by user u in session sonly if u has activated rolery in the
same session s. Furthermore, u cannot deactivate roler, in session sif roler, is activein session s.
r,0dep_suss_activeset(r,) U [r, Dactive_roles_insessionset(u,s)

— I, Dactive_roles_insessionset(y, s)]

P27. Activation time dependency constraint with same user and any session: A role r, [
dep_suas_activeset(r,) can be activated by user u in session s only if u has activated role ry in
some session. Furthermore, u cannot deactivate roler, if roler,isin active role set of u. Formally:

r,0dep_suas_activeset(r,) U [r, Uactive_roleset(u) — r, Jactive_roleset(u)]

P28. Activation time dependency constraint with any user and any session: A role r, O
dep_auas_activeset(ry) can be activated by user u only if roler, isin the active role set of some
user u'. Furthermore, role r, cannot be deactivated if role r, is in active role set of any user.
Formally:

r, Jdep_auas_activeset(r,) 0 [r, Dactive_roleset(u) - r,0 |] active_roleset(u’)]

uTUSERS

3.2 Colored Petri-Net model of RBAC

In this section, we present a Colored-Petri-net (CPN) based framework to model RBAC. We first
present a brief background on CPNs followed by the detailed description of the RBAC
components and its CPN representation.

Petri nets have been widely used for modeling and analysis of systems that are characterized as

being concurrent, asynchronous, distributed, paralel and non-deterministic [Jen97]. Various

factors that contribute to their success include [Jen97, Mur89]:

. The dudlity of places/transitions in Petri-nets provides for a balanced treatment of system
states and events, allowing better modeling of dynamic event-based systems than that is

10

allowed by purely state or transition-oriented formalism where only one aspect is explicit.
In particular, it makes CPN appropriate for modeling GTRBAC specification as there are
state information and event occurrences that need to be captured for analysis purposes.

. CPNs have many desirable practical features for modeling such as graphical nature and the
equational representation, thus, integrating the documentation, presentation and anaysis
features of a desirable model. CPNs provide a intuitive way of expressing causal
dependencies, conflicts and concurrency. In other words, “CPNs are potentially more
focused on pragmatism than most other commonly known formal methods”.

CPN Formulation of RBAC: ACPN [Jen97] isatupleCP = (2, P, T, A N, C, G, E, I), where:

Z2isafinite set of non-empty types, called color sets;
P isafinite set of places,
T isafinite set of transitions;
A= NA/JRA JIAisafiniteset of arcssuchthat: Ph T=P n A=T n A= [J, where
RAisa set of Normal Arcs, RAisa set of Read Arcsand A is a set of Inhibitor Arcs.
Nisanodefunction. N:A - P xT T xP.
C: isacolor function. C:P - 2.
Gisaguard function. It is defined from T into expressions such that:
[ROT: [Type(G(t)) = Boolean and Type(Var (G (1)) 72].
h. Eisanarcexpression function. It is defined from A into expressi ons such that:

al/A: [Type(E(a)) = E(G(a))us and Type(Var(E(a)) 7 2]. Here p(a) isthe place of N(a).
i. lisaninitialization function. It is defined from P into closed expression such that:
LpLP: [Type(l(p) = C(p(@))wms] -

In the following, we elaborate the above elements of CPN within the context of RBAC.

Color set >:

opopw

Q@™o

For the RBAC formulation, the elements of the color set with the corresponding data type are
listed below.

Color USER =integer, Color ROLE = integer.

Color SESSION = integer.

Color COMMAND = {assign, de-assign, enable, disable, activate, deactivate}

Color UR = product USER * ROLE * ROLE; Color URS = product USER * ROLE * SESSION;
Color CMD = product COMMAND * USER * ROLE * SESSION.

Based on the above set of colors, following tokens are defined for RBAC mode:

e User token: <u>::color USER

* Roletoken: <r>::color ROLE

e User-role assignment token: <u,r,r’>::color UR.
e User-role activation token: <u,r,s>::color URS.
e« Command token: <cmd, u, r, s>:: color CMD.

Places P:
Following CPN places are used to capture the state information for RBAC modeling:

1. Event token generator (ETG): This place stores command tokens for user-role assignment
and de-assignment, role enabling and disabling, and role activation and deactivation. For any
transition to get enabled, there must be a corresponding token in he place ETG. In this sense,
this place act as a transition firing controller that helps in analyzing all possible system states
against a given command list.

11

2. Disabled Roles (DR): This place can only store role tokens (C(DR) = ROLE). A token <r,>
in this placeimplies that roler, is in disable state.

3. Enabled Roles (ER). This place can only store role tokens (C(ER) = ROLE). A token <r,> in
ER place implies that roler, isin enable state.

4. User Role Assignment/Authorization (UR). This place contains tokens of color UR (C(UR) =
UR). A token <u,ryr> in this place means that user u is authorized for role r,. This
authorization can be as aresult of direct assignment of roler, to user u (r«=ry), or because of
assignment of roler, to user u such that ry inheritsry (ry2ryand ry #ry).

5. User Role Session activation (URS). This place stores tokens of color URS. . Each <u,r,s>
token stored in this place implies that session sis being activated by user u who has assumed
roler.

6. Role Cardinality (RC): This place contains role tokens only (C(RC) = ROLE). It enforces
assignment time role cardinality constraint, i.e., limits the number of users which can be
authorized for a given role. If there are n; number of <r,> tokens in place RC and no user is
assigned role ry, then roler, can be assigned to at most n; number of users.

7. User Cardinality (UC): This place contains user tokens only (C(UC) = USER). It enforces
assignment time user cardinality congtraint, i.e., limits the number of roles for which a given
user can be authorized. If there are my number of <u,> tokens in RC and u, is not authorized
for any role, then user u, can be authorized for at most my number of roles.

8. Role Activation cardinality (RAC): Place RAC stores token of type ROLE (C(RAC) =
ROLE). It enforces activation time role cardinality constraint, i.e., limits the number of
concurrent activations of a given role. If there are n number of <r,> tokens present a RC,
then at most n; more copies of role ry, can be activated concurrently.

9. User Activation cardinality (UAC): Place UAC stores token of type USER (C(UAC) =
USER). This place enforces activation time user cardinality constraint, i.e., limits the number
of concurrent activations of roles for a given user. If there are my number of <u/> tokens
present at RC, then user u, can make my more activations concurrently. These activations may
involve activating same role multiple times or multiple roles for any number of times
provided that the total number of such concurrent activation of roles by user u, do not exceed
the user activation cardinality m,.

Arcsand arc expression:

Arc, arc expressions and guard functions are used to model constraints including cardinality, SoD,
inheritance, precedence and dependency constraints as discussed in section 3.1.

In this paper, an arc from place to transition (arrow head points at transition) is referred as an
input arc and an arc from transition to place (arrow head towards place) is referred as an output
arc. As stated in the definition of CPN, arc can be of three types: normal arc (NA), read arc (RA),
and inhibitor arc (1A). Aninput arc may be of any of the above types. Input arc defines both pre-
conditions and post-conditions of an event modeled by a transition and these conditions are
modeled using different types of input arcs (NA, RA, and 1A). Satisfaction of all pre-conditions
of an event means that such event can take place anytime. In this case, a transition modeling such
event is said to be enabled. The following explains how input arc with different types represent
different pre-conditions:

* Input arc of transition tisa NA arc: For atransition t to be enabled, each input place p of t
connected through the NA arc must have at least as many matching tokens as defined in the
arc expression of the arc. A token in place p is a matching token if its color matches with the

12

color of tokens specified in the arc expression and it satisfies the guard expression associated
with the transition and the corresponding arc. When transition t is fired, the same number of
tokens defined in the arc expression E of the NA arc is removed from the input place p. A NA
arc isrepresented by aline with an arrow head towards the output node.

Input arc of transition tis an RA arc: For transition t to be enabled, each input place p of t
connected through the RA arc must have at least as many matching tokens as defined in the
arc expression of the RA arc. When a transition is fired, no token is removed from the input
place. An RA arc is represented by aline with an arrow on both sides.

Input arc of transition tisan I A arc: For transition t to be enabled, each input place p of t
connected through the 1A arc should not have matching tokens greater than the number of
tokens defined in the arc expression of the arc. When a trangition is fired, no token is
removed from the input place p. An IA arc is represented by a line with a circle drawn
towards the transition.

An output arc is always of type NA. When atransition is fired, a number of matching tokens is
deposited in the output place of that transition.

Arc expression E maps each arc, A, into an expression of type C(P(A))us (MS = multi-set). This
means that the variables used in arc expression and the tokens stored in the corresponding place
are of same color. An arc expression may take one of the following two forms:

1.

myt; + mpty +.....+mit,; where t;s are the tokens. An output arc expression (from a transition to
a place) will always take this form. An input arc expression (from place to transition) of this
form associated with normal/read arc implies that input place must have at least m number of
t; tokens (1<i<n) in order to enable its output transition. For input inhibitor arc, all
coefficients m except for one are zero. The corresponding output transition cannot be enabled
if the input place contains m or more tokens t;, where my is the nonzero coefficient.

{t}. Only input arc expression may take this form. If an input arc expression is of this type
then there is always an associated transition guard function with the set {t;} as one of its input
parameters. An input guard expression of this type implies that all t; tokens present in the
input place will be evaluated against the corresponding guard function to determine if the
output transition can be enabled.

Transitions:

Transitions in this framework represent all four components of Fig. 1 including user-role
assignment/de-assignment, role-permission assignment/de-assignment, role enabling/disabling
and role activation/deactivation. In this CPN representation, each role r, has the following six

transitions:

1. Assignr,: assigns user u OJUSERS to role ry. By virtue of this role assignment user u is
authorized for all roles inherited by role r,.

2. De-assignry: Cancels all the user role assignment between user u and role ry. It also nullifies
u’s authorization for all junior roles that are on u’s authorization list by virtue of its
assignment to role ry.

3. Enablery: This transition enables role r,. Upon firing, a token ryis inserted in place ER from
DR, implying that role ry is enabled and can be activated by a user who is authorized for role
ry.

4. Disablery: This transition disables role ry,. Upon firing, ry is removed from place ER and

inserted in place DR, implying that role r, can not be activated by any user.

13

5. Activater,: Thistransition establishes an active session between user u and roler,.

6. Deactivater,: This transition deactivates role r, from the an active session between user u and
roler,.

Firing of any of the above transitions changes the state of the system. A transition can fire
anytime after its enabling. Enabling of atransition implies that all the constraints associated with
the event, the transition is modeling are satisfied. Transitions modeling different events have
different enabling and firing rules. For brevity in presentation, we list the enabling/firing rules for
assignment of rolesonly.

Enabling/firing rules of transition assignr,:

This transition upon firing inserts the set of tokens {<u, ry, r,>: r,= 1} in the place UR which
implies that the role ry is assigned to user u, and user u is authorized for role ry and all roles ry
junior to role ry. The transition assignr, and its connecting places are shown in Fig. 2 and the
corresponding arc expressions and guard functions are listed in Table 3.

Thistransition gets enabled if the following constraints are satisfied:
* Thereisatoken <assign, u, ry> in place ETG implying that role r, be assigned to user u,.

* Assignment time role cardinality constraint specified by the arc expression E3: ry+ry,+...1y,,
where, all r;; <r,and i <n, is satisfied. Alternatively, tokens ry,Iy,...,Iy, are present in place
RC.

» Assignment time user cardinality constraint specified by the arc expression E4: (n+1)u, is
satisfied, where n is the number of roles that are junior to ry in the role hierarchy.

» Assignment time conflicting roles constraint specified by the arc expression (inhibitor) E6:
<u, I, any r > and the transition guard function G2: conflict_role_assign(r, r.) is satisfied.
That is Place UR does not contain any token <u,, r., any r > for which the above guard
function evaluates true.

* Assignment time conflicting users constraint specified by the arc expression (inhibitor)
E7:<u, r, any r> and the transition guard function G3: conflict_user_Assign(ry,u,uc) is
satisfied. That is Place UR does not contain any token <u, r,, any r> for which the above
guard function is true.

» Place UR does not contain any token <u,, ry, any r >. This is specified by the inhibitor arc
expression E3 and guard function G1.

* The following two constraints are optional and are only defined for roles which have
assignment time precedence constraint(s). Assignment time precedence constraint can be of
two types: same user assignment constraint and any user assignment constraint. A given role
may have one, both or none of these precedence constraints.

1. Same user assignment constraint requires that a user u, can be assigned role ry, if all roles
r' are assigned to user u, Where r'0R; for some R; O prec_su_assignset(r,). This
constraint is specified by the read arc expression E8 and the transition guard function G4:
prec_su_assign(ry,{r}). This constraint represents consistency property P18.

2. Any user assignment constraint requires that a user u, can be assigned rolery, if all roles
r"’ are assigned to any users. Wherer’ UR; for some R; 0 prec_au_assignset(r,). Note that
al r’ may not necessarily be assigned to just one user. This constraint is specified by the
read arc A9 and the transition guard function G5: prec_au_assign(ry.,{r}).

14

(O<u,r,r>0UR,-G10-G20-G3) 0G4 0G5

A9
A8
Al6
AT
A6
A1l5
A5 v
<UL
A4
- UR
Assign ry
(O<u,r,s>0 URS, ~G6) O w
(O<u,r,rr>0 UR , - G70-G38) .
s URS
Al0
e Al2
A1l
Deassignr,
DR (0 r0ER,-G9) 0G10
A26 () A18
ER
Al7
Enabler,
(O rdER,-G11)
A24
A23
Disabler,
© _ETG

<u,r,s>0 URS,-G12 0-G13) 0O
40G150G16

o~
= 0O

Activater,
(O<u,r,s>0 URS,-G170-G180 - G19)
[A43
ETG
Ad4
L A40]
___A45
A39

Deactivate r,

Figure 2. Petri-net construction for (a) User Role Assignment/De-assignment (b) Role
Enabling/Disabling (c) Role Activation/Deactivation

15

Table 3 Arc and guard expressions

Arc Expression E; for corresponding arc A;, where

E1 <assign,uz,ry> E24 | 1Y
g2 | (MDuz E25 | rde
E3 ry+ryq+...fyn (ryj<ry. for al 1<i<n) E26 | TY
E4 <uzrh, any r> E27 | <activateuz,ry,sk>
E5 <Uz,ly, fy> + <Ugz, fyq,ly>+....+<Uz, 'yp,ly> E28 | <Uzly, any r>
E6 <uzrg, any r> AT: <ucrz any r> E29 | Iy
£7 <Ugrz any r> E30 | Uz
E8 {<uz ,r,anyr>} E31 | Iy
E9 {<anyu ,r’,anyr>} E32 | <Ucrzany_session>
E10 | <de-assignuzry> E33 | <uzlcany_session>
E1l | <uzrk anyr> E34 | <uzly,Sk>
E12 | <uzly, ry>+ <ugz, fyq,ly>+....+<Ugz, Iy fy> E35 | <uzly.sk>
E13 | <uzfi,rdsu> (fi <rdsu) E36 | {<uzr'.sk>}
E14 | <anyurj,rdau> (1) <rdau) E37 | {<uzr any_session>}
E15 | (n+l)uz E38 | {<uzr'’,any_session>}
E16 | fy*ry1+...ryn (ryj<ry.for al 1<i<n) E39 | <deactivate,uz,ry,s>
E1l7 <enable,ry> E40 | <uzly,;sk>
E18 | Ry E41 | <uzrdi.sk>
E19 |Rc E42 | <uzfd2.any_session>
E20 | Ry E43 | <any user,rg3any_session>
E21 {r} E44 | 1y
E22 | Ry E45 | Uz
E23 <disable,ry>

Guard functions associated with transition Assignry and De-ssignry
Gl (th<ry) V(ry <Th) G11 | dep_enable(ry, rde)
G2 conflict_role_assign(ry,rc) G12 | conflict_user_activate(ry,uz,Uc)
G3 conflict_user_assign(ry, rz, Uz, Uc) G13 | conflict_role_activate(ry,rc)
Ga prec_su_assign(ry,{r'}) G14 | prec_suss active(ry,{I'})
G5 prec_au assign(ry I’ ,}) G15 | prec_suas active(ry,{r''})
G6 rk<ry G16 | prec_auas active(ry,{r'"'})
G7 dep_su_assign(rdsu, ry) G17 | dep_suss active(ry,rd1)
G8 dep_au_assign(rdaus ry) G18 | dep_suss active(ry,rd?)
G9 Conflict_role_enable(ry,rc) G19 | dep_suss active(ry,rd1)
G10 prec_enable(ry,{r'})

16

Referring back to Fig. 1, we now elaborate how the proposed CPN can capture the four
components of event-based RBAC. Fig. 2 represents the complete specification of Fig. 1 except
the role to permission assignment/de-assignment, which is identical to Fig. 2(a). The guard
functions and arc expressions corresponding to Fig. 2 are listed in Table 3. Fig. 2(a) showsa CPN
representation of user to role assignment/de-assignment with transition assignr, and deassignr,
modeling the assignment and de-assignement events for role r, respectively. The set of places in
Fig. 2(a) shows the current state of the system in terms of number of users assigned to rolery, the
number of active sessions associated with role ry etc. The arcs and guard expressions specify the
assignment time cardinality, SoD, precedence and dependency constraints. Similarly, Fig. 2(b)
shows the CPN representation of enabling and disabling events for role ry, and Fig. 2(c) depicts
the CPN representation of role activation and deactivation events for roler,.

Based on the discussions in Section 3.1, we now formalize the notion of a consistent RBAC state
in the following definition. This notion of consistency is used to capture the dynamic property of
the CPN in Theorem 1.

Definition: The state of an RBAC systemis said to be consistent if all the cardinality, inheritance,
SoD, precedence and dependency constraints are satisfied in that state.

In the following, we provide a theorem which establishes the validity of modelsin Fig. 2 for the
specification of GTRBAC components of Fig. 1.

Theorem 1: Given aPggac (CPN structure for RBAC) structure with aninitial consistent state My,
al states M, reachable from M are consistent.

Proof of thistheorem is given in the appendix.

Lemma: Given a bounded initia state and a finite number of command tokens in the place ETG,
the Preac (CPN structure for RBAC) structure remains bounded.

The proof for this lemma follows from the fact that the following pairs of places - (RC, UR),
(UC, UR), (RAC, URS), (UAC, URS) and (ER, DR) form place invariants. Therefore, the total
number of tokens in these pairs of places always remains the same as that in the initial state. The
ETG initially contains a finite number of command tokens and no transition firing generates a
new tokenin it.

3.3 Reachability analysis for consistency verification of RBAC Policy

In this section, we elaborate the process of verifying the consistency of RBAC policy constraints.
The verification is based on the reachability analysis of CPN proposed in the previous section.
We use occurrence graph method [Jen97] to enumerate all reachable states of a system employing
agiven RBAC policy. The above lemma states that our Petri net representation of RBAC system
is bounded and so its occurrence graph will have finite number of nodes. However, the exhaustive
nature of this method implies that the problem of verifying that a given state is reachable from
some initial state takes exponentia space and time [Mur89]. Since policy verification can be done
offline and is performed before the deployment of actua system, so complexity is not a major
issue in using this proposed Petri-net approach.

The following two examplesillustrate the use of occurrence graph for security policy verification.

Example 1: Consider threerolesry, r1, and r, and asingle user u,. Let r1 bejuniortory (ro = ry and
r; #rg). Also let ry and r, be assignment time conflicting roles, i.e., r; and r, cannot be assigned to
the same user implying that rolesr; and r, cannot be activated by the same user concurrently. Fig.
2 shows the sub-graph of the occurrence graph of the RBAC system. In this sub-graph all roles (ro,
r;, and r,) are considered to be in enable state and the SoD constraint is only defined between
rolesry, and r,. Notethat in Fig. 3, user up who isassigned rolerg and r, is able to activate rolesr,

17

and r, concurrently. This is a violation of the SoD constraint defined on these two roles. This
inconsistency arises because of the fact that in the original specification, roles ro and r, do not
have any SoD constraint while r, and r, are assignment time conflicting roles. Asrg is superior to
role r; and any user assigned to role rqis authorized for role r,, the SoD constraint must also be
defined between roles ry and r,. Fig. 4 shows the occurrence sub-graph of the same system with
an additional assignment time SoD constraint defined between roles ry and r,. Note that in this
figure all the reachable states are consistent with respect to the given policy specifications.

1 user uy, 3roles ry, r;, and r,.

Initial state: Each role r, r, and r, can be assigned to atmost 3 users.
Each role ry, ry and r, can be activated by atmost 3 users.
User u0 can be assigned atmost 3 roles.
User u, can activate atmost 3 roles.

Following conditions remain true in all states: :

All roles ry, ry and r, always remain in enabled state

(r, assigned to ug) (ro assigned to ug)

(r, assigned to ug)

(r, assigned to ug)

r, assigned to u (ro assigned to ug) ; ;
¢ !t gt db o) (r, agtivated by u in s,) (rg assigned to Uo) (r, assigned o ug)
(r; activated by ug in's;) o 0™ >0 \ (r, activated by ug in's,)
(o assdigbned 0 uo)) (rpassignedto Up) (. assignedtou,) (r, assigned to uy) v
! r, activated by ug in s. i 2 o) (1, o i
(rpassigned o ug) ** Y o IS (1, assigned to up) (ro assigned to ug) (r, assigned to ug) (1 assigned to uq)

(r, activated by u, in's,)

(r, activated by u, in 50)4'/// (ro activated by Uy in ¢ activated by u, (r, activated by u, in s,) ;
(r, activated by uyin s W/ /(ro zlsslgned to up)

r, assigned to u,) . (r, assigned to uy) (r, assigned to ug)
(r, assigned to ug) gz :Zz:ggzg :2 t’]o; (r, assigned to u) (r, activated by ug in's,)
(r, assigned to ug) (r, activated by uy in's,) (rg AT u°0 ins,) (r, activated by u, in's,) (1o assigned to up)

i (rp assigned to Ug) (r, activated by u, in s X ; r, activated by u, in's,) (r; activated by ug in's
(r, assignedjto uy) (ri assigned to u2> (ro XA o) (1 activated by g in sy) (ro Y Up insg) (fy Y Ug insy)

r, activated|b; ins ; .
(fo activ Y Uy N So) (r, activated by u, in sg) ¢

r, activated|b; ins ; -
(ry activ Y U In'Sy) (r, activated by u, in's,)
\ (r, assigned to u)

. (ro assigned to u,)

" (ro activated by u, in sy)
(r, activated by u, in's;)

ro2ryand ro#ry (r,activated by u, in s,)

(ry.ry) Ossd

Figure 3. Occurence graph for Example 1 with incomplete specifications

Example 2: Consider four rolesry, ry, o, and rz and asingle user uy. Let ry bejuniortorg (ro=r;
and ry #ro). Suppose r; has same user activation time dependency on role r, which in turn has
same user activation time dependency on role rg, i.e, ry [dep_suas activeset(r,) and rp [
dep_suas activeset(rs). Also, assume that r; and r; are activation time conflicting roles, i.e., ry
and r3 cannot be activated by same user in concurrent sessions. Fig. 5 shows the occurrence graph
of the system in which user uy is assigned to roles ry, r, and r, and al four roles are in enabled
state. The occurrence graph depicts that there is no reachable state in which user u, can activate
role ry, dthough ug is authorized for role ry. Thisimplies that a user assigned to role ro can never
assumeitsjunior roler; - aflaw inthe security policy.

18

1 user uy, 3roles ry, r;, and r,.

Initial state: Each role r,, r, and r, can be assigned to atmost 3 users.
Each role r, r, and r, can be activated by atmost 3 users.
User u, can be assigned atmost 3 roles.
User u,can activate atmost 3 roles.

Following conditions remain true in all states:

All roles ry, r, and r, always remain in enabled state

(r, assigned (r, assigned (r, assigned to uy)
(r, assigned to uy) (r, assigned to u,) (ro assigned to ug)

(ro assigned to u)

i i i i r, activated by u, in s
(r,activated by uin's,) (r,activated by ugins,) (% Y Ug in So) (r, activated by U in's,)

Iy ryand ro#r,

d d (ro assigned to u,) (r, assigned to u,)
(ry,r;) and (io,ry) O s (r, activated by u, in s;) (r, activated by u, in s,)
(r, activated by u, in's,) (r, activated by u, in sp)

Figure 4. Occurence graph for Example 1 with correct specification

1 user uy, 4 rolesry, ry,r,and ry..

Initial state: Each role ry, r,, r, and r, can be assigned to atmost 3 users.
Each role r, r;, r,and r, can be activated by atmost 3 users.
User u, can be assigned atmost 4 roles.
User u,can activate atmost 4 roles.

Following conditions remain true in all states:

1) Allroles ry, r;, 1, and r3 always remain in enabled state. 2) u, is assigned roles ry, r,ryand r,.

(r, activated by u,in s;) (rjactivated by u,in s;) (r;activated byu,in s,)

(r, activated by uyin's,) (r, (r; activated by ugin s (r (r; activated by uyin s;)
activated by uyin s, activated by u,in s;) (r,activated by uyin s,)
re2rand ro#r,
r, O dep_auas_activeset(r,) (ro activated by uyin s) (rs
r, 0 dep_auas_activeset(r,) activated by uyins;) (r,
r, O conflicting_role_activeset(r,) activated by uyin's,)

Figure 5. Occurence graph for Example 2

4 Related Work

RBAC models have been proposed and extended by several researchers [Nya99, San96, FerQ1],
and the efforts in this direction have resulted in the proposal of a standard model — the NIST
RBAC model [Fer01]. Need for supporting constraints in an RBAC model has been addressed by
many researchers. In particular, the attention has been in supporting separation of duties (SoD)
constraints [Ahn00, Gav98]. In [Ahn00], Ahn et. al. propose RCL2000 — a role based constraint

19

specification language. Bertino et. al. have proposed a logic based constraint specification
language that can be used to specify constraint on roles and users and their assignments to
workflow tasks [Ber99]. Although, precedence and dependency constraints have been used in
workflow and transaction systems [Ber99], to the best of our knowledge they have not been
addressed explicitly for RBAC systems.

Various work address policy anaysis and verification issues related to RBAC models.
Nyanchama et. al. [Nya99] present a graph based RBAC model, where graphs are used to mainly
represent hierarchies of users, roles and permissions. It does not address the issue of policy
verification. Koch et. al. [Koc02] present a graph transformation based formalism for RBAC
model and model the SoD constraints identified in the literature. The model provides a graph
transformation based specification of static and dynamic consistency conditions of RBAC. Jaeger
et. al. [Jae97] provide a graphical model or constraint expressions where nodes, similar to places
in CPN proposed in this paper, represent sets and edges represent binary relations between those
sets. Here, the constraints are expressed using operators on the nodes. All these models, however,
do not model events explicitly. The key advantage of our CPN model over these isthat it provides
abalanced treatment of RBAC states and events.

5 Conclusion

We presented a CPN model of RBAC that incorporates various cardinality, separation of duty,
precedence and dependency constraints. The proposed CPN framework is based on the event
based approach of TRBAC/GTRBAC model and is suitable for modeling event based aspect of
RBAC model. We use the reachability analysis to detect and identify inconsistencies among a
given set of RBAC policies.

6 References

[AhnOO] G. Ahn, R. Sandhu, “Role-Based Authorization Constraints Specification”, ACM
Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

[Bar97] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn, “Role Based Access
Control for the World Wide Web,” In 20th National Information System Security
Conference, NIST/NSA, 1997.

[Ber99] E. Bertino, E. Ferrari, and V. Atluri, “The Specification and Enforcement of
Authorization Constraints in Workflow Management Systems,” ACM Transactions on
Information and System Security, 2(1):65-104, 1999.

[Ber01] E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A Temporal Role-based Access Control
Model,” ACM Transactions on Information and System Security, 4(3):191-233, August
2001.

[Chr92] Saren Christensen and Niels Damgaard Hansen, “Coloured Petri Nets Extended with
Place Capacities, Test Arcs and Inhibitor Arcs,” Technical Report DAIMI PB--398,
Computer Science Department, Aarhus University, DK-8000 Aarhus C, Denmark, May
1992,

[Fer93] D. F. Ferraiolo, D. M. Gilbert, N Lynch, “An examination of Federal and Commercial
Access Control Policy Needs,” In Proceedings of NISTNCSC National Computer
Security Conference, Baltimore, MD, September 20-23 1993, pages 107-116.

[Fer01] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R. Chandramouli, “Proposed NIST
Standard for Role-based Access Control,”ACM Transactions on Information and
System Security (TISSEC) 4(3), August 2001.

20

[Gavos]

[Jae01]
[Jen97]

[JosO14]

[JosO1b]

[Jos02]

[Koc02]

[Mur89]
[Nya99]

[0sb00]

[San96]

S. I. Gavrila, J. F. Barkley, “Formal Specification for Role Based Access Control
User/role and Role/role Relationship Management,” Proceedings of the third ACM
workshop on Role-based access control, Fairfax, Virginia, United States, October 22-
23, 1998, pages81-90.

T. Jaeger, J. E. Tidswell, “Practical Safety in Flexible Access Control Models,” ACM
Transactions on Information System Security, Vol. 4, No. 2, May 2001.

K. Jensen, “Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use
Volume 1", Springer Verlag, 1997.

J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, “Security Models for Web-
based Applications,” Communications of the ACM, Vol. 44, No. 2, Feb. 2001, pages
38-72.

J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor, “Generalized Tempora Role Based
Access Control Model (GTRBAC) (Part 1)— Specification and Modeling,” Submitted to
the |EEE Transaction on Knowledge and Data Engineering.

J. B. D. Joshi, E. Bertino, A. Ghafoor, “Temporal Hierarchies and Inheritance
Semantics for GTRBAC,” Seventh ACM Symposium on Access Control Models and
Technologies, June 2002, pages 74-83.

M. Kaoch, L. V. Mancini, F. Parisi-Presicce, “A Graph-based Formalism for RBAC,”
ACM Transactions on Information and System Security (TISSEC) August 2002, Vol. 5
No. 3, pages 332 — 365.

T. Murata, “Petri Nets: Properties, Analysis and Application”, Proceedings of |IEEE,
Vol. 77, No. 4, 1989, pages 541-580.

M. Nyanchama and S. Osborn, “The Role Graph Model and Conflict of Interest,” ACM
Transactions on Information and System Security, Vol. 2 No. 1, 1999, pages 3-33.

S. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-based Access Control to
Enforce Mandatory and Discretionary Access Control Policies,” ACM Transactions on
Information and System Security (TISSEC) Val. 3, No. 2, May 2000, pages 85 - 106

R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-Based Access Control
Models,” IEEE Computer Vol. 29 No. 2, IEEE Press, 1996, pages 38-47.

21

7 Appendix

This section provides a detailed proof of theorem 1 stated in section 3.2. The proof is based on the
fact that al the user-role assignment/de-assignment, role enabling/disabling, and role
activation/deactivation events preserve properties P1-P28. Note that properties P1-P28 are non-
interfering in a sense, that satisfying one does not violate another. Also, note that properties P2,
P5, P6, P7, P8, P12, P13, and P14 are static properties and are independent of the CPN structure
Preac, i.€., these properties do not depend on the CPN execution. Thus, these properties will be
preserved in al reachable states of Prgac provided that the initial state is consistent.

One important structural property of the Preac (CPN structure for RBAC) is the existence of
place invariants. Prgac has place invariants formed by the following pairs of places:

RC and UR.
UC and UR.
RAC and URS.
UAC and URS.

The following lemmas provide a basis for proving that Prgac Structure with consistent initial
marking preserves system consistency.

pODNPE

Lemma 1: Given Prgac With a consistent initial state My, all the states M reachable from Mg
satisfy the cardinality constraints (property P1).

Proof:

We will prove this lemmafor assignment time cardinality constraints. Activation time cardinality
constraint can be proved by similar argument. For the transition assignr, (Fig. 2(a)) the input arcs
A2 with expression E2: (n+1)u,, and A3 with expression E3:ry + ry. . I'y, ensure that rolery is
assigned to user u, only if al role tokensr, , ry, . ryn (Where, ry 2 ry; and ry #ry;) are present at
place RC and there are at least (n+1) u, tokens present in UC. Upon firing of assignry, all these
tokens are removed from their respective input places. If any of the above token is missing from
their input places, the transition cannot be enabled and hence cannot fire.

As a consequence of the above observation and the place invariants RC-UR and UC-UR,
properties the assignment time user and role cardinality constraints hold in any state obtained by
firing transition assignyy.

Lemma 2: Given Pgrgac With a consistent initial state My, all the states M reachable from Mg
preserve property P3.

The inhibitor arc A4 with arc expression E4:<u,r,any r> and the Boolean guard function
G1(rs<ry or r,<ry) prevent firing of transition assignry for user u,, if user u, is authorized for rolery,
and either r,, inheritsry or r, inherits role r,. Consequently, no two roles assigned to same user can
inherit (directly or indirectly) one another.

Lemma 3: Given Prgac With a consistent initial state My, all the states M reachable from Mg
preserve property P4 (assignment time role specific SoD).

Proof: Role specific assignment time SoD constraint states that conflicting roles cannot be
authorized to same user. Assume that for some user to role assignment this condition does not

22

hold, i.e., there exist a user u, who can be assigned two conflicting roles r, and rysimultaneoudly.
According to our assumption, tokens <u,ry, any r> and <u,,r,, any r> can coexist in place UR. Let
Mo be the state of the system just before the firing of transition of assignr,, that deposit token <
Uy, fy,rw> where (r,, = ry) in place UR and assume that in state M, role user u, is authorized for role
ry (token <u,ry,any r> present in place UR and <u,r, any r> is not). Let ry is the first role for
which the role specific SoD constraint does not hold. In this case, My is a consistent state if it
does not bresk down other consistency rules. From our initial assumption, assignr,, that
authorized user u, for ry is enabled. This implies that the transition assignr,, can fire. But the
inhibitor arc A6 with arc expression E6:<u,rcany r> and the transition guard expression
G2:conflict_role_assign(r,,r;) evaluating true, will prevent the transition to be enabled (a
contradiction). Hence, transition assignr,, will not fire in this case. So, the role specific
assignment SoD constraint is preserved in any state M reachable from My,

Lemma 4: Given Pgrgac With a consistent initial state My, all the states M reachable from Mg
preserve properties P9(a) and P9(b) (assignment time user specific SoD).

We will first prove that property p9(a) (only one user from a conflicting set of usersfor roler is
authorized for r) holds in al states reachable from M,. Suppose users u, and u. are assignment
time conflicting users for role r,. Assume that user specific SoD does not hold in some marking
M reachable from My, i.e., in marking M tokens <u,, ry, any r> and <ug,ry, any r> can coexist in
place UR. Consider the state of the system M’ just before the firing of some transition assignry
that deposit token <uc,ry,r,> where (r, 2 r) in place UR. Assume that role u, is already authorized
for roler, in state M’. Also, assume that u. is the first user for which the user-specific SoD does
not hold. We can safely assume that the state M’ is consistent provided it does not violate other
consistency rules and is reachable from M. From our initial assumption transition assignry is
enabled with the system in state M’. This implies that the transition assignr, can fire. But the
inhibitor arc A7 with arc expresson E7: <u,, ry, any r> and the transition guard expression
G3:conflict_user_assign(r,,r«Uz,Uc), evaluating true, will prevent the transition to be enabled.
Hence the transition assignry that authorize user u. for role ry, will not fire in this case. So, the
user specific assignment SoD constraint is preserved in any state M reachable from M.

For property P9(b), suppose that role ry inherits role r, (r,2ry and ry#r,). By property P8
conflict_user_assignset(r,) U conflict_user_assignset(r,). Let C= conflict_user_assignset(ry) n
conflict_user_assignset(r,) be a non-empty set. If |C|=1, then property P9(b) holds trivially in any
marking reachable from M. For the case |C| = 2,. Let ul and u2 [0 C and assume that property
P9(b) does not hold in some marking M reachable from Mg implying that tokens <ul,r,, r, > and
<uz,y, r, > can coexist at place UR in the marking M. Consider the state of the system M’ just
before the firing of transition of assignry that deposit token <u2,r,,r, > in place UR and assume
that roler, is already assigned to user ul in state M’ (token <ul,r,r, > present at place UR and
<u2,ry,ry > is not). We can safely assume that M’ is reachable from Mo. From our initia
assumption transition assignr, is enabled with the system in state M’. This implies that the
transition assignr, can fire. But the inhibitor arc A7 with arc expression E7<u,r,,any r> (in this
case Us=u2, r=ry), and the transition guard expression conflict_user_assign(ry,ry,ul,u2),
(conflict_user_assign(ry,ryul,u2) is true because ul,u2 O C O conflict_user_assign(ry)) , will
prevent the transition to be enabled. Hence the transition assignry will not fire in this case, which
is contrary to our assumption. Similarly it can be shown that if ry is assigned to ul then r, cannot
be assigned to u2.

Property P3 maintains that r, and ry, cannot be assigned to same user. So, from the above
argument and property P3, if two role r, and ry, with ry2r, have a common set of assignment time

23

conflicting users, then only one user from the common set can be assigned any one of the two
rolesr, and ry and not both.

Lemma 5: Given Prgac With a consistent initia state M, al the states M reachable from Mg
preserve property P10 (Ju OUSERS, active _roleset(u) [authorized _roleset(u)).

Proof:

The input read arc A28 between the input place UR and transition activater, ensures that
transition activater, can fire for user u, only if a token <u,,ryany r> is present in the place UR.
The token <uy,ryany r > in place UR shows that user u, is either assigned role ry (r,=r) or is
authorized for role r, by virtue of role r assigned to u, such that (r=r, and r+r,). Hence the active
role set of any user is asubset of higher authorized roles.

Lemma 6: Given Prgac With a consistent initial state My, al the states M reachable from Mg
preserve property P11 (activation time role specific SoD).

Proof:

Can be proved with similar argument as lemma 3 was proved for static case.

Lemma 7: Given Prgac With a consistent initial state My, al the states M reachable from Mg
preserve property P16 (activation time user specific SoD).

Proof:

Can be proved with similar argument as property PO(a) is proved for static case in lemma4.

Lemma 8: Given a Prgac Structure with initial marking Mg in which al precedence constraints are
satisfied, then the subsequent markings also satisfy all the precedence constraints, i.e., properties
P17 — P22 are preserved.

L ets take the enabling time precedence constraint which saysthat if role some role ry, has enabling
time precedence constraint, then role r, can only be enabled if al roles r’ are enabled, where,
r' OR; for some R; [prec_enableset(r,). For the sake of contradiction, suppose that this does not
hold for a marking M which is reachable from Mg, in the Pggac Structure. Without loss of
generality, assume that prec_enableset(ry) = {Ry, Ry, ...,Ry}, where Ri = {riyliz,....lim}. Our
assumption implies that in marking M, the place ER has token <r,>, but it does not have all <r’>
tokens, where, r' R, for some RiUprec_enableset(ry). Without loss of generality, assume that M
isthe first marking in which ryisin enable state. This means that marking M is achieved by firing
of transition enabler, from marking M’ which does not have all <r'> tokensin enable state, where,
r' OR; for some RUprec_enableset(r,). But the read arc A21 and the associated guard function
G10: prec_enable(ry,{r'}) of the transition enabler, will prevent enabler, to fire. This contradicts
the assumption that marking M does not preserve the enabling time precedence constraint. Hence,
all markings reachable from Mg in the Prgac Structure preserve the enabling time precedence
constraint.

Similarly, it can be proved that all markings reachable from Mg in the Prgac Structure preserve all
precedence constraints defined in section 3.1.1.

24

Lemma 9: Given a Prgac Structure with initial marking Mo in which all dependency constraints are
satisfied, then the subsequent markings also satisfy all the dependency constraints, i.e., properties
P23 — P28 are preserved.

Proof:

We will prove this lemma for enabling time dependency constraint only, the assignment and
activation time precedence can be proved in a similar way. Note that enabling time dependency
constraint poses two conditions on role ry and rq With rq O dep_enableset(ry): 1) role rg cannot
be enabled if role r, is not enabled, and 2) role rycannot be disabled if role rqe is in enable state.
The first condition can be satisfied by defining a precedence constraint between role rqe and role
ry, i.e., {ry} O prec_enableset(rq). To satisfy the second condition, the PRBAC structure has an
inhibitor arc A23 (E23: <rq>between place ER and transition disabler, and the transition guard
function G11: dep_enableset(ry, rqe), which prevents the transition disabler, to fire if rolerg isin
enable state. Consequently, role ry, cannot be disabled if rolerg isin enable state.

Theorem 1: Given a Pgrgac (CPN structure for RBAC) structure with an initial consistent state My,
al states M, reachable from M, are consistent.

Proof:

Since the properties P1-P28 are non-interfering, therefore the proof of this theorem immediate
fromlemma 1- 9.

25

