

CERIAS Tech Report 2002-36

ON-THE-FLY INTRUSION DETECTION
FOR WEB PORTALS

by Radu Sion, Mikhail Atallah, Sunil Prabhakar

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

On-the-fly Intrusion Detection for Web Portals
(draft) �

Radu Sion
Computer Sciences & CERIAS

Purdue University
(sion@cs.purdue.edu)

Mikhail Atallah
Computer Sciences & CERIAS

Purdue University
(mja@cs.purdue.edu)

Sunil Prabhakar
Computer Sciences & CERIAS

Purdue University
(sunil@cs.purdue.edu)

Abstract

Remote access to distributed hyper-linked information
proves to be one of thekiller applications for computer
networks. More and more content in current inter and intra
nets is available as hyper-data, a form easing its distribution
and semantic organization.

In the framework of the Internet’s Web-Portals and Pay-
Sites, mechanisms for login based on username and password
enable the dynamic customization as well as partial protection
of the content. In other applications (e.g. commercial intra-
nets) various similar schemes of authentication are deployed.

Nevertheless, stolen passwords are an easy avenue to
identity theft, in both public and commercial data networks.
Once a perpetrator enters a system, assuming an authorized
user’s identity, the task of actually detecting this intrusion
becomes non-trivial and is often ignored completely.

Thus, in addition to the initial authentication step we
propose a runtime intrusion detection mechanism, required to
maintain a virtually continuous user authentication process
and detect identity theft and password misuses.

The current paper focuses on designing a pervasive
intrusion detection method for hyper-data systems, based on
training on and analyzing of access patterns to hyper-linked
data, aiming at detecting intruders and raising a red flag
at the content provider’s side. Our solution is based on
a new technique,on-the-fly adaptive training for normality
on streams of data access patterns. This enables runtime
intrusion detection through analysis of correlations between
current patterns and the adaptive past-knowledge. Such a
method is to be used in conjunction with current username-
password protection schemes. We introduce the motivation
behind our solution , discuss the novel detection and training
metrics and propose a real-life deployment design. We
implement the main algorithm and perform experiments for
assessing its intrusion detection ability, with very encouraging
results. We also discuss the deployment of our method for
detecting automatic spam-bot accesses.

�Portions of this work were supported by Grants EIA-9903545, ISS-
0219560, IIS-9985019, IIS-9972883 from the National Science Foundation,
Contract N00014-02-1-0364 from the Office of Naval Research, and by
sponsors of the Center for Education and Research in Information Assurance
and Security.

1 Introduction

In the framework of the Internet’s Web-Portals and
Pay-Sites, mechanisms for login based on username and
password enable the dynamic customization as well as
partial protection of the content. In other applications
(e.g. commercial intra-nets) various similar schemes of
authentication are deployed. Nevertheless, stolen passwords
are an easy avenue to identity theft, in both public and
commercial data networks. Once a perpetrator entered a
system, assuming an authorized user’s identity, the task of
actually detecting this intrusion becomes non-trivial and is
in most cases ignored completely. Thus, in addition to
the initial authentication step, runtime intrusion detection
mechanisms are required to maintain a virtually continuous
user authentication process and detect identity theft and
password misuses.

In this paper we introduce a new solution for intrusion
detection in systems with an underlying hyper-linked content
structure (e.g. Web Sites, Grid Portals). Our solution is based
on a new technique, on-the-fly adaptive trainingfor normality
on streams of data access patterns. This enables runtime
intrusion detection through analysis of correlations between
current patterns and the adaptive past-knowledge.

We envision a broad applicability of our research. A sug-
gested implementation as a web-server module, as outlined
in Section 4, could be used in additionally enforcing current
weak pay-site authentication mechanisms. Deployment inside
a company or government agency intra-net could be used to
detect identity theft and immediately revoke credentials for
access to sensitive internal information. An additional level
of privacy control can be guaranteed by deployment in the
framework of a hospital medical records access software. The
main contributions of this work are:

� Identification of the problem of training for normality
patterns in data access systems with underlying hyper-
linked content

� Formulation of a theoretical algorithmic solution for
on-the-fly intrusion detection using normality training of
hyper-linked content access patterns and an experimental
evaluation thereof

� A design proposal for an implementation in a concrete
real-world environment, e.g. secure web-server

The paper is structured as follows. Section 2 defines a
succinct model for the web-portal framework and introduces
the problem, its associated motivation and main challenges.
Section 3 outlines our solution and discusses novel concepts
such as on-the-fly training and transition queuing. Section
4 discusses several aspects of our solution (including the
potential for detecting automatic spam-bot accesses in both
anomalyand misusedetection scenarios) and proposes an
implementation design for a solution deployment. Section 6
introduces avenues for future research.

2 Problem

We define a web-objectto be a digital data object composed
of useful content (i.e. meant for the content consumer, e.g.
web-user) and web-links(aka. hyperlinks). A web-link is a
construct that allows accessing of an associated web-object,
for example through user-driven GUI actions such as mouse-
clicks. A web-user “clicks” on a web-link with the intention
to “load” (e.g. access for consumption) the associated web-
object.

Note: For brevity reasons, here we are assuming naturally
that a user can only “click” on web-links embedded in the
currentlyaccessed (i.e. loaded) web-object, that is, no direct
URL input (e.g. by typing into an “URL bar”) is possible.
This assumption simplifies access pattern processing and can
be relaxed immediately through the aid of technical counter-
measures, which are not the subject of this research.

A web-portalcan be viewed as a set of web-objects (e.g.
web-pages) that are structured in a certain “browsing-graph”
through the associated web-links contained in each web-
object. There is a finite set of authorized web-users that are
to be allowed access to the web-portal’s content. Each of
the individual web-users can be associated directly with a
digital “profile”, a highly user-specific data set, containing at
least some authorization tokens such as a usernameand an
associated password. To access the web-portal, the web-user
is to provide the username and password as input to a certain
authorization mechanism. Once authorized the user is offered
full access to the web-portal content.

From a content-centric view, a web-portal is composed of
it’s data objects � � ���� ��� ������ and the associated web-
link transitions � ������� � � . Thus a web-portal is a graph
construct � � �� �� � ������� �����.

2.1 Challenges

The main issues of a password protection access model
derive from the fact that password theft and reuse is
an extremely easy avenue for web-portal intrusion (or
unauthorized access). As a solution we propose an additional
layer of on-the-fly authentication through a dynamic modeling
mechanism for normality in web-user data access patterns.
This mechanism is to be used as a runtime aid for web-portal
intrusion detection and ultimately prevention.

Existing research addresses the issue of detecting anoma-
lies in embedded systems [4], software [1], user typing
behavior [5] [6] etc. In these efforts (and others [2])
pre-training on a state of normality is deployed in the

B: main
entrypoint

D: change
password

C: logout A: login

O: internal
news

K: check new
messages

E: search
F: access

patient data

I: read
access

H: write
access

G: messaging

L: set prefs

M: set
forwardiing

N: set
filters

P: schedule Q: docs

BD

H I K

O N

M

L

QPAC

E F G

TAB

Figure 1. (a) Sample hospital intra-net web-
portal. A likely authorized access pattern could
present a trace of A,B,G,O,P,F,I. A suspicious
pattern could show up as A,B,D,F,H,G,M,L,N.
(b) Training occurs not at state level (e.g.
web-page) but on transitions between states
(e.g. “web-click”).

construction of a model which is then to be used in
the detection of “anomalies” (potential intrusions). There
are several characteristics of this approach that become
drawbacks when applied in the web-portal framework. These
are the main challenges in constructing a mechanism for
training on hyper-linked data access patterns.

� Whereas embedded systems (for example), are usually
characterized by relatively stable and static state transi-
tion graphs, current web-portals feature a highly dynamic
content behavior. An intrusion detection scheme has to
be able to adapt to this dynamism. Pre-training presents
the inherent flaw of producing a model often outdated by
the time it is to be applied for intrusion detection.

� Given the nature of web content, new content has to
be dealt with naturally. For example the creation of a
new web-object will likely result immediately in data
accesses to it. This has to be taken into account
when analyzing data access patterns and an associated
“normal” behavior, and, more important, the training
algorithm has to naturally accommodate it.

� Last but not least, in a web-portal, it is not very
intuitive how to enforce a lengthy (usually a must, in
the approaches discussed above) pre-training phase. It is
unreasonable to assume it can be imposed on the users
of the web-portal without incurring negative customer
feedback and associated customer-base losses.

Given the above, the training mechanism is to naturally be
highly dynamic and adapt to changes in data access patterns.
A trade-off is to be observed between this adaptability and
the ability to detect intrusions. Normality needs to be defined
accordingly and an associated adjustable normality-threshold
has to be made available.

3 A Solution

We initiate our construction by establishing the nature of
the input to the access pattern normality training algorithm.

In other words, what is a training set entry composed of (i.e.
what is the training alphabet [4]) ?

The immediate, naive, solution would consider the data
objects �� � � and associated access times as symbols
in our training set. Given the specifics of the web-portal
framework this would present an important drawback, namely
the impossibility of capturing the main user-web-portal
interaction behavior, the “click”.

“Clicking” on a certain web-link semantically “links” two
separate contexts, the “current” web-object and the “target”
web-object, corresponding to the web-link. A certain “target”
web-object can have many different “current” web-objects
containing web-links pointing to it. The behavior of the user
is not only characterized by the interest in the “target” but
also by the “path” taken to get there. This information is not
captured easily by a training alphabet corresponding to the
data objects �� � � .

We propose to use as training input actual transitions
(e.g. ��� � �) associated with web-links. The transition
information naturally captures both the “target” context and
the “path” taken to get there. A transition ��� � � is
characterized by the two web-objects it links through the
web-user “click” and a a time-stamp 1 (��� ���).

Thus our training mechanism receives as input a stream of
transition events (see Figure 2). It accordingly constructs an
on-the-fly model for data access normality and then uses the
(dynamically changing) model to identify abnormal behavior
in the input stream 2.

3.1 Transition Queuing

From the discussion above we can derive two required
characteristics of a desired solution. It has to dynamically
adapt to changing trends in data access patterns (with an
adjustable degree of sensitivity), and, at the same time, it
should enable the timely detection of unauthorized accesses
(i.e. intrusions).

With respect to the change adaptability, at one extreme is
a system that does not adapt at all, but is rather based on
normality pre-training. This scheme is suitable for cases of
long-term, stable patterns of normality in the state transitions
(eventually hard-coded and pre-determined, e.g. in hardware
devices over a narrow set of inputs).

At the other extreme, a system adapts its normality model
continuously from each and every access pattern input. While
this can be a very effective solution for problems of the branch
prediction type, it suffers from the impossibility to actually
isolate a potential intrusion (e.g. occurring “now”) from the
normal (e.g. occurred “past”), as every occurring pattern is
immediately “absorbed” into the normality model.

Our solution provides a trade-off between both extremes.
A FIFO structure (see Figure 2, “transition queue”) is used
to delay the absorption of training data items (i.e. observed
transitions) into the runtime normality model. As transitions
are observed at certain moments in time, they are introduced
in the transition queue and will only exit (and enter the next
phase, the actual training process) after a certain queuing

1Here in absolute UTC time; “system” time is explored in Section 3.2.3.
2The collection of this “web click” type of data has already been discussed

in numerous commercial frameworks, including [3].

training

user
(client)

Tn+1, Tn
access

transitions

T3T4

transition queue
T2, T1

hyperdata
shadow

client profile

Figure 2. Transition-queued on-the-fly training.

timeoutelapses. The transitions to be found in the queue at a
given moment in time are called “queuing window”. Through
delaying of the transition absorption in the training model, the
solution presented provides the necessary separation between
a potential intrusion (i.e. whose patterns are to be found in the
transition queue) and a model of normality. At the same time,
as it considers all inputs in the training process it naturally
adjusts to changes in the data access patterns.

The main assumption behind the use of transition queuing
is based on the understanding that a sound real-time intrusion
detection mechanism detects intrusions necessarily within few
time-spans of their happening. If an intrusion goes undetected
for too long a time-period its effects (e.g. the attack) are
already consumed with a high probability 3. In the worst
case, if the detection process fails to detect an intrusion, this
solution absorbs the associated (abnormal) transitions in the
normality model. The dynamicity of the training process
(see below) aims to gradually overcome the effect of such a
case. Nevertheless we would argue that not much more can
be done in this scenario. The inability to detect the intrusion
necessarily limits the potential of the system and inherently,
from this perspective, the intrusion transition patterns become
“normal” (after all who can detect them as being abnormal ?).

The queuing delay is an adjustable parameter in transition
queuing. Different queuing window sizes need to be
considered for different applications, in order to be able to
effectively “catch” abnormal patterns and enable the detection
process to a maximum.

3.2 On-the-fly Training and Intrusion Detection

After the stream of observed transitions is delayed by
queuing, it enters the training process. In this process, a
model of normality is updated continuously from this data.
A simultaneous intrusion detection process uses this model to
detect intrusion patterns in the transition queue.

3.2.1 Hyper-data Shadow

Working in a structured (i.e. hyper-linked) data environment
(e.g. web-portal) enables the construction of a normality
model data structure that relates in a natural bijection with
the underlying web-portal data. In other words, because

3As discussed further, in the case an intrusion is detected, the transition
queue is “flushed” and the normality model training re-started with new data.

while (true) do
// training:
1. tr� tr queue.nextFIFOBlocking() // blocks until timeout
2. tr shadow.get(tr.name).profile.add(tr.time())
// detection:
3. tr shadow copy� tr shadow.copy()
4. norm� 0
5. while ((tr� tr queue.nextFIFO()) �� null) do

//: weight at time of occurence
a) norm� norm + weight(tr.name,tr.time())
//: absorb effect into shadow copy
b) tr shadow copy.get(tr.name).profile.add(tr.time())

6. if (norm � norm min) then
//: call intrusion handler
a) intrusion handler()
b) tr queue.flush()

Figure 3. Training and Detection Algorithm.

transitions are structure-conditioned (i.e. a transition can
only occur if there exists an associated web-link), a natural
data structure for a transition model is exactly a weighted
directional graph (see Figure 1 (a), (b)) of version of the
web-portal hyper-linked content. This data structure is called
hyper-data shadow. Thus, the hyper-data shadow is a directed
graph data structure in which each node is associated with
a web-object (i.e. “browsing state”) and the edges with
transitions corresponding to web-links.

In the detection process, a traversal of the graph is
performed according to the analyzed input patterns (e.g.
the queuing window data) and a “normality metric” is
computed. Each edge in the graph has a certain associated
“transition profile” (���) FIFO data structure which contains
time-stamp information about the occurrences of the transition
it corresponds to

������ � ���� ��� ���� ������� � � (1)

where �� are timestamps at which the transition was
observed and � upper-bounds the size of the transition
profile according to available storage space and number of
transitions. The hyper-data shadow is updated each time a
transition becomes input for the training process (i.e. by
exiting the transition queue). If full (e.g. already � elements),
the corresponding transition profile is “shifted” by discarding
the oldest element, then the incoming transition is inserted.

3.2.2 Normality Metric

An automated abnormality detection mechanism requires a
computable “normality metric”, a function of the system
state that closely models the desired definition of “system
normality”. In this solution we are modeling normality from
a content-centric perspective with respect to web-portal users
actions, more specific data access (e.g. web-clicks).

An analysis of a web-click trace has several types of
information available, including content semantics, structural
paths and access timing information. In the web-portal
framework absolute timing information is not practically

relevant as discussed in Section 3.2.3. Using semantics
associated with a certain content in modeling user behavior is
a promising avenue situated at an area boundary (e.g. natural
language and intrusion detection) suited for future research.
In the present paper we address the definition of normal user
behavior from a structural path perspective, that is, we are
concerned most with the web-portal browsing patterns. This is
why the metric we propose quantifies normality with respect
to observed browsing patterns.

The transition weightof a certain transition ��� at a certain
moment � is defined (see Section 5 for an experimental
analysis of other weights) by

�����	�
�� � 	� � ����
����� �
�����
�� ��

	���
�

�
�������� �

	�

	���
(2)

The transition weight concept captures the time-locality
and weighted frequency of the observed transition. Given a
sorted set (FIFO) of transitions (e.g. the transition queuing
window) � � ���� ��� ���� ��� � � the normality metric for
� at time � is then defined by

������	���� 	� �
�

�����
�

��

�����

�����	���� 	� (3)

In the formula above, the computation of the transition
weights is done on a special copy of the hyper-data shadow,
gradually trained with the incoming transitions in � (in the
order they appear in �). Each transition weight is computed
only after the previous transitions from � were already
considered and used in training the hyper-data shadow copy.
The symbol

�� was used to denote the fact that after each
new element (transition weight) in the sum is added to the
sum result, the corresponding transition is used in training the
hyper-data shadow copy. This happens beforeadding the next
weight. The purpose of the incremental training process of
the hyper-data shadow copy, in the detection mechanism, is
twofold. While it preserves the original hyper-data shadow,
it also ensures that normality is measured consistently, by
naturally considering also the incoming transitions in �.
This addresses a scenario in which for example part of the
elements in � induce (through training) a drastic change to
the hyper-data shadow. If not trained for, the detection metric
would result in a different, inconsistent value (because it does
not consider the natural flow of transitions).

The normality metric matches the given series of
transitions against the dynamic model of the observed past.
By using transition weights as base components it captures
both the “freshness” and the frequency characteristics of this
model. A minimum allowable normality value 	
���������

defines the threshold below which an intrusion is suspected
and the corresponding “intrusion handler” is signaled. Upon
detecting an intrusion, the transition queue output is disabled
and training is stopped until the intrusion handler deals
with the intrusion. Then the queue is flushed and training
commences.

3.2.3 System Time

Absolute time values are not suited for an analysis of user
browsing patterns from an content-centric perspective. Most
web-portal users are not in a “glued to the screen” working

hyperdata server (e.g. apache)

hyperdata

access
logs

data
clients

login

ACM
runtime AC

training

access
control

hyperdata
shadow

client profile

Figure 4. System Architecture Overview

mode and time locality cannot be assessed properly by
using absolute time. Lunch-hour breaks and night-shifts do
significantly shift time locality in equations such as 2 and 3
without a real correspondence in actual user behavior.

For the purpose of computing weights and normality
metrics, we propose the deployment of a Lamport-style
system time mechanism. As each normality computation is
done per web-user, each web-user’s “time” will be defined as
the total number of transitions already performedby this user.
This involves keeping a transition counter for each user 4 An
algorithm summary is illustrated in Figure 3

4 Discussion

In comparison to the “Markov detector” deployed in [4],
to a certain extent, our solution can be viewed as a “Markov
detector with memory”. The Markovian nature of the model
derives from the fact that it practically samples normalized
occurrence frequencies for input symbols (i.e. transitions).
The model also features memory as it considers time-locality
of observed inputs and weights “older” occurrences less than
“new” ones, see Equation 2.

We believe this dual nature to provide much of the power
of our solution. The normality model is built by sampling
occurrences for transitions, while the time-weighted memory
effect provides for adaptability to access pattern changes.

We propose an implementation architecture as a web-
server component (see Figure 4). Server access is to be partly
regulated by the runtime access patterns analysis module.
This module implements the detection and training algorithm
(see Figure 3) which identifies abnormal patterns based on
stored training user profiles and notifies the access control
module (ACM) which acts as a intrusion handler. Runtime
access data can be collected either via web logs (in the case
of an external module implementation) or directly by using
server module callback functionality inside the web-server.
This enables a notification for each and every web-object

4Transition queuingis necessarily linked to absolute time locality as
discussed in Section 3.1 and the queuing timeout is expressed in absolute
time. System time values are only used in computing normality metrics and
transition weights.

access to be received and processed directly by the training
module. Due to space constraints, more details are omitted.

Web-Bots

Automated web-bots are more and more used for
automated web-data collection and indexing. Spam-bots are
a particular case of web-bots, used for the specific purpose
to (often illegally) collect personal contact information for
the purpose of targeted product advertisements and general
marketing. We believe our solution can be deployed as
an effective tool in detecting automated web-bots by using
a slightly different deployment scenario. Whereas in the
password-protected web-portal a claimed association between
real browsing patterns and a certain username was to be
verified, when detecting automated web-bots there is no
such claim 5 Rather two avenues present themselves. In
one scenario, a model of the expected web-bots is built by
training for the known associated access patterns (i.e. misuse
detection). While this case should offer accurate detection of
known patterns, it suffers from the impossibility of detecting
new (unknown) automated web-bots.

Another scenario deploys training in the construction
of a general model of normal web-user access on trusted
non-web-bot accesses (i.e. anomaly detection). This model
is then matched with incoming (un-trusted) accesses and
an estimation of the access patterns normality is done.
The question asked is whether the given accesses are of a
normal (i.e. real, non-automated) web-user or come from an
automated browsing tool. In this scenario we estimate a higher
rate of detection failure and false positives. Nevertheless we
believe that the potential to detect new, previously unseen,
web-bots is a benefit often out-weighting these disadvantages.

A combination of the two deployment scenarios could also
be envisioned, under the form of a “chain” of detectors. The
first stage, detection using a model of a known set of web-bots,
could be followed by a stage of “abnormality” assessment.
Thus, if no known patterns are discovered initially, this second
assessment attempts to detect unknown automatic web-bots,
albeit with higher false-positive and false-negative rates.

Given current space limitations, a more in depth analysis
is out of scope here. We performed several detection
experiments as outlined in Section 5. Further work with
well-known web-bots and associated browsing patterns are to
reveal the detection effectiveness of our method.

5 Experiments

We implemented our detection algorithm in Java and
performed experiments to test its detection ability. The results
are extremely encouraging. A web-user is simulated through
a dynamically defined finite state machine (FSM). The states
in the FSM correspond to web-objects and an actual “run”
corresponds to a web-user browsing session.

Initially a given FSM is “run” a certain amount of time
and the FSM transitions are fed into the on-the-fly training
algorithm. After a certain time (TRAINING LENGTH) the
FSM and its transition probabilities are modified for a limited
(INTRUSION LENGTH) time period (modeling an intruder

5A web-bot usually browses public, non-protected web content, thus no
username-password-identity association is available.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50

no
rm

al
ity

 d
is

ta
nc

e

bias (%)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

re
qu

ir
ed

 tr
ai

ni
ng

 le
ng

th

intrusion length

’test2.dat’

Figure 5. (a) Observed intrusion detection effec-
tiveness as a function of data access pattern
deviation from normal (bias). (b) Detecting
intrusions of increasing complexity, requires
increasingly more “normality” knowledge.

access). The modifications are gradually introduced biases
in the FSM transition probabilities and can be quantified in
terms of the original (i.e. normal) FSM transition probabilities
(i.e. “bias” factor in Figure 5 (a)). The (now biased)
FSM is then “run” for a certain time and the on-the-fly
detection algorithm’s ability to detect an intrusion (i.e. the
FSM changes) is assessed by comparing the normality metrics
output for the original (unbiased) FSM and the ones for the
biased FSM.

Figure 5 (a) shows that as the bias factor increases for
the modified FSM, the intrusion detection process becomes
more and more effective (intuitively expected), i.e. the
distance between the normality metrics for the normal and
biased case increase. Figure 5 (b) displays the (15 runs
averaged) dependency between TRAINING LENGTH and
INTRUSION LENGTH for a certain guaranteed minimum
detection threshold. In other words, the question answered
here is: how “much” (TRAINING LENGTH) normality do
we need to see in order to be able to detect intrusions
of “this” (INTRUSION LENGTH) length. There exists an
upper-bound effect in this graph, probably determined by the
finite nature of the FSMs. After a certain point the normality
model likely becomes an exact copy of the FSM, and thus,
seeing additional access patterns (past that point) won’t help.
More experiments should explore the dependency between the
FSM state graph diameter and this upper bound effect. Also
naturally, intrusions of smaller access pattern sizes prove to
be harder to detect, especially if the introduced FSM bias is
small.

In an attempt to increase the effectiveness of our
method, and better capture distinguishing access patterns,
we experimented with different metrics of normality and
associated transition weights. Several variants were assessed,
including the following transition weights:

�����	�
�� � 	� �
�

����
�����
�
�

�������� �

�

	��� � 	�
(4)

�����	�
�� � 	� �
�����
����

	� ����
�����
�
�

�������� �

�������
����� 	�� (5)

While the weight defined in equation 4 aims to capture time
locality, it suffers from the inability to also capture and weight
the transition frequency. Thus, for example, a low-frequency
transition seen very recently might weight much more than

a very high-frequency transition seen in the near past but
not recently. Equation 5 aims to capture both time locality
and transition frequency. Unfortunately it only considers
relative (to the transition itself) time locality and misses the
semantic link to system time. One very old high-frequency
transition can thus be weighted much more than a more recent
lower-frequency one. This impacts both the dynamicity and
detection ability of normality metric. The transition weight
(equation 2) and metric proposed in Section 3.2.2 proved to be
most accurate in detecting patterns generated by the abnormal
(biased) generator.

Given the current space constraints a more detailed
experimental analysis is out of scope here. Nevertheless it
is to be noted that the results are extremely encouraging. For
example, a deviation (bias) as low as 3% from the “normal”
access pattern can be accurately detected.

6 Conclusions

In the present paper we defined the problem of intrusion
detection through normality training on content access
patterns in systems with an underlying hyper-linked structure
(e.g. web-portals). We introduced an algorithmic solution
appropriate for the particularities of the framework. Our
solution dynamically adapts to changes in content access
patterns while at the same time detecting intrusions. It is
based on novel concepts such on-the-fly training and transition
queuing.

Several issues warrant research continuation, including the
ability to handle web-object semantic shifts (e.g. same web-
object but different content) through content summarization,
the ability to detect structural classes(“partitions” of the
hyper-linked content that are usually accessed simultaneously.
Different types of hyper-linked data and associated theoretical
and deployment issues should be analyzed.

Further research should focus on an actual proof-of-
concept implementation in the framework of an existing
content providing server (as proposed above) and on assessing
its effectiveness through training and real-life testing in a
large-scale experiment.

References

[1] A. Ghosh, J. Wanken, and F. Charron. Detecting anomalous and
unknown intrusions against programs. In Proceedings of the 1998 Annual
Computer Security Applications Conference (ACSAC), December 1998.

[2] Wenke Lee and Salvatore Stolfo. Data mining approaches for intrusion
detection. In Proceedings of the 7th USENIX Security Symposium, San
Antonio, TX, 1998.

[3] Martin Lurie. Web click stream analysis using linux clusters. In Linux
Journal (www.linuxjournal.com), November 2001.

[4] Roy A. Maxion and Kymie M.C. Tan. Anomaly detection in embedded
systems. IEEE Transactions on Computers, 51(2):108–120, February
2002.

[5] Fabian Monrose and Aviel D. Rubin. Keystroke dynamics as a biometric
for authentication. Future Generation Computer Systems, 16(4):351–
359, 2000.

[6] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on SSH. In Tenth USENIX Security
Symposium, 2001.

	purdue.edu
	idss.dvi

