
CERIAS Tech Report 2002-47

Statistical Analysis of Malformed Packets and Their Origins in the Modern Internet

by Marina Bykova, Shawn Ostermann

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Discrepancy-Sensitive Dynamic Fractional

Cascading, Dominated Maxima Searching, and

2-d Nearest Neighbors in Any Minkowski Metric

Mikhail J. Atallah1, Marina Blanton1,
Michael T. Goodrich2, and Stanislas Polu3

1 Dept. of Computer Sciences, Purdue Univ.,
{mja,mbykova}@cs.purdue.edu

2 Dept. of Computer Science, Univ. of California, Irvine
goodrich@acm.org

3 École Polytechnique
stanislas.polu@polytechnique.fr

Abstract. This paper studies a discrepancy-sensitive approach to dy-
namic fractional cascading. We provide an efficient data structure for
dominated maxima searching in a dynamic set of points in the plane,
which in turn leads to an efficient dynamic data structure that can an-
swer queries for nearest neighbors using any Minkowski metric.

1 Introduction

Discrepancy theory deals with the degrees to which point sets differ from their
expected uniformity (e.g., see Chazelle [8,9]). This theory is usually applied
globally, for entire sets, but we are interested in local notions of discrepancy,
dealing with how sets differ from their expected uniformity in small intervals.
This interest is motivated from dynamic fractional cascading [10,11,17].

In fractional cascading [10,11], we are given a bounded-degree1 catalog graph

G, such that each vertex v of G stores a catalog C(v) ⊂ U , for a total order
U . Given a value x belonging to the total order for a path P in G, a query for
x in P searches for x in the catalog C(v) for each vertex v in P . If insertions
and deletions are allowed in the C(v)’s, then we have the “dynamic fractional
cascading” [17] problem. Static fractional cascading solutions due to Chazelle
and Guibas [10,11] allow for queries to be performed in a path of length k in time
O(log n+k), where n is the total size of all the catalogs, and dynamic fractional
cascading solutions due to Mehlhorn and Näher [17] show that such queries can
be done in a dynamic setting in O(log n + k log log n) time, with updates taking
O(log n log log |U |) amortized time. The reduced efficiency of dynamic fractional
cascading seems to come from its need to dynamically handle discrepancy. Our
interest in this paper, therefore, is to address discrepancy head on—to design a
scheme for dynamic fractional cascading that is discrepancy sensitive.

1 We note that a catalog graph of degree d > 3 can be transformed into a degree-3
catalog graph by replacing high-degree nodes with complete binary trees.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 114–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Discrepancy-Sensitive Dynamic Fractional Cascading 115

Previous Related Work. For prior results in discrepancy theory, for example,
please see the excellent book by Chazelle [9]. Subsequent to the introduction of
fractional cascading by Chazelle and Guibas [10,11] and its dynamic implemen-
tation by Mehlhorn and Näher [17], there have been many specific uses for this
technique, as well as a generalization, due to Sen [21], based on randomized skip
lists, and an extension for I/O efficiency due to Yap and Zhu [24].

The prior work on nearest neighbor structures is vast; for more detailed re-
views, see the surveys by Alt [1] or Clarkson [12]. For static data, there are
several ways to achieve O(log n) time for nearest-neighbor queries in the plane,
including constructing a planar point location data structure “on top” of a
Voronoi diagram (e.g., see [20]). For uniformly distributed data, Bentley, Weide,
and Yao [5] give optimal algorithms for static data, and Bentley [4] gives an
optimal algorithm for the semidynamic (deletion only) case. For approximate
nearest-neighbor queries, Arya et al. [3] give an optimal static structure, and
Eppstein et al. [14] give an optimal dynamic structure. Finally, for general exact
nearest-neighbor queries, Chan [7] gives a dynamic method that achieves poly-
logarithmic expected times for updates and queries. In addition, there has been
some work on nearest-neighbors in non-Euclidean settings for “reasonably sepa-
rated” uniform point sets (e.g., see [6,16,15]), but this does work does not apply
efficiently to Euclidean metrics on point sets taken from continuous uniform
distributions.

Our Results. In this paper, we introduce a study of a discrepancy-sensitive ap-
proach to dynamic fractional cascading. Unlike the Mehlhorn-Näher approach,
which assumes a worst-case distribution for the discrepancies between adjacent
catalogs, our approach is sensitive to these differences. That is, it runs faster
through low-discrepancy neighbors and slower through high-discrepancy neigh-
bors. We show, for example, that a search for a value x in a collection of cat-
alogs, of size at most n, stored in vertices of a path P can be done in time
O(log n +

∑
(v,w)∈P log δv,w(x)), where δv,w(x) is the relative local discrepancy

at x of the catalogs stored at the nodes v and w in G. Such a discrepancy-
sensitive result is useful in a number of real-world scenarios, as we show that
there are several practical distributions such that the sum of the relative local
discrepancies in the catalogs belonging to a path of length k is O(k) with high
probability. For example, we use this approach to provide an efficient data struc-
ture for dominated maxima searching in a dynamic set of uniformly distributed
points in the plane. This, together with the known fact that the expected num-
ber of maxima points in an uniformly distributed set S of n points in R

2 is
O(log n), shows that we can construct a dynamic data structure that can an-
swer queries for nearest neighbors in S using any Minkowski metric, where inser-
tions and deletions run in O(log2 n) expected time and queries run in O(log n)
expected time, as well. These expectations assume a uniform distribution, but
even with real-life (not uniformly distributed) data we experimentally observe
it to hold.

116 M.J. Atallah et al.

2 Discrepancy-Sensitive Dynamic Fractional Cascading

Weisstein [23] defines a notion for local discrepancy, which, for an interval I,
gives a measure of how much the number of points intersecting I differs from
the normalized length of I. We are, however, interested in the application to
dynamic fractional cascading, which involves comparing adjacent catalogs to
each other, not arbitrary intervals to catalogs. Suppose, therefore, that (v, w) is
an edge in G and that C(v) and C(w) are the catalogs stored respectively at
the vertices v and w in G. Let us assume, without loss of generality, that C(v)
and C(w) both store sentinel values, “−∞” and “+∞,” which are respectively
the smallest and the largest elements in the common total order to which all
catalog elements belong. For any value x, and vertex v in G, let predv(x) denote
the predecessor of x in C(v), that is, the largest element in C(v) less than or
equal to x. Likewise, let succv(x) denote the successor of x in C(v), that is, the
smallest element in C(v) greater than or equal to x. For any edge (v, w) in G,
we define the relative local discrepancy from C(v) to C(w) at x as follows:

δv,w(x) = |[a, b] ∩ C(v)| + |[a, b] ∩ C(w)| ,

where a = min{predv(x), predw(x)} and b = max{succv(x), succw(x)}, i.e.,,
the relative local discrepancy from C(v) to C(w) at x is the number of items
of C(v) and C(w) falling in the closed interval [a, b] = [predv(x), succv(x)] ∪
[predw(x), succw(x)]. It is a measure of how different C(v) and C(w) are in the
vicinity of x. Note that δv,w(x) ≥ 2, even if C(v) = C(w).

Augmenting a Catalog Graph to Support Searches and Updates. Let us first
give some intuition about our augmentation. Imagine that we have a determin-
istic skip list [19] built “on top” of the elements in C(v) and that the nodes
in this structure are all colored black. Likewise, imagine that we have a deter-
ministic skip list built “on top” of the elements in C(w) and that the nodes in
this structure are all colored white. These structures allow for both top-down
and bottom-up searches and updates to be performed in O(log n) time [19]. Now
imagine further that we merge these two structures into a common structure by
having each black node “cut” any white edge (i.e., interval of white nodes) that
it is contained in and having each white node “cut” any black edge that it is
contained in. Let us then link the roots of all the remaining bottom-level skip
lists. The remaining structure is the “fractionally-cascaded” merge of C(v) and
C(w) and this is the structure that we will maintain dynamically.

More formally, our structure is defined so that we maintain the following
substructures for each edge (v, w) in G (see Fig. 1):

– We maintain in a “black” deterministic skip list each maximal contiguous
interval of C(v) that contains no elements of C(w).

– We maintain in a “white” deterministic skip list each maximal contiguous
interval of C(w) that contains no elements of C(v).

– We maintain black-white links between the roots of these skip lists.
– Each bottom-level skip-list interval that is cut by a skip list of the other

color has a link to and from the root of that skip list.

Discrepancy-Sensitive Dynamic Fractional Cascading 117

7

42 625957533331262512105

494422191714 66

442217

42 5953312510

533117

Fig. 1. An example of the fractionally-cascaded structures that join a “black” C(v)
to a “white” C(w). Skip-list edges are shown in bold, with those cut by a sublist of
the opposite colored gray. The links between skip-list roots are shown dashed and the
arrowed lines show the links between bottom-level skip-list edges and the roots of the
opposite-color skip lists that cut that edge.

Searches. A search in a catalog graph G consists of an element x for which
we would like to find predv(x) in C(v) for each node v in a given path P =
(v1, v2, . . . , vk). We assume that we have a complete deterministic skip list for
the first node, v1, of P . This allows us to locate predv1

(x) in O(log n) time,
where n is the maximum size of any catalog. For locating x in C(vi+1), for
i = 1, . . . , k − 1, we start from a pointer to predvi

(x), which we will have found
inductively. There are two cases at this point:

– Case 1: x falls inside a maximal skip list in C(vi). In this case, we traverse up
the skip list for this interval in C(vi) to its root and then follow the pointer
from the root to the interval in C(vi+1) containing x.

– Case 2: x falls outside a maximal skip list in C(vi). In this case, we follow
the pointer from the “cut” interval in C(vi) containing x to the root of the
skip list in C(vi+1) falling in this interval. We then search down this skip
list to locate the predecessor of x in C(vi+1).

Note that, in either case, each step i of the search, after the first, runs in
O(log δvi,vi+1

(x)) time, since the size of the skip list we search in for either
case is O(δvi,vi+1

(x)).

Updates. Let us consider how to perform an update in our structure, that is, an
insertion or deletion in a C(v) list, assuming we have already located the place in
C(v) where the update is to occur (let us account separately for the time needed
to find this location). We perform the necessary updates for each edge (v, w), of
which there are only a constant number, according to the following cases:

– Insert y:
• Case 1: y falls inside a maximal skip list L in C(v). In this case, we

simply insert y in L.
• Case 2: y falls outside a maximal skip list in C(v). In this case, we follow

the interval pointer from the (gray) interval in C(v) containing y to the
skip list L in C(w) and search down for y in this list. If y falls in the
interior of L then we split L at y, set up y as its own skip list in C(v)

118 M.J. Atallah et al.

and update the pointers of the three new root nodes. If y falls outside L,
then we simply insert y in the appropriate predecessor or successor skip
list in C(v) and update the (gray) interval to now have y as an endpoint.

– Delete y:
• Case 1: y falls in a maximal skip list L in C(v) with at least one other

element. In this case, we simply remove y from L (possibly updating
boundary pointers if y was the smallest or largest element in L or the
root pointers, if y was a root element—so that the appropriate adjacent
pointers now point to the new root of L).

• Case 2: y is the only element of its skip list in C(v). In this case, we follow
the pointers from y’s (root) node to the two skip lists in C(w) that y
separates, and we perform a splice of these two structures, updating the
root pointers as needed.

Note that in either an insertion or a deletion, the time needed to perform
all the necessary local searching, insertions, deletions, splits, and/or splices is
O(log δv,w(y)).

Theorem 1. A catalog graph G, with maximum catalog size n, can be augmented

with additional structures so as to support searches for an element x in the

catalogs in a path P in G in time O(log n +
∑

(v,w)∈P log δv,w(x)). Likewise, a

sequence of updates for an element y in catalogs in a path P in G can be done

in these structures in time O(log n +
∑

(v,w)∈P log δv,w(y)).

Uniform data. Suppose that each catalog in G contains n points chosen inde-
pendently and uniformly at random from the interval [0, 1]. In this case, the
set of points in a catalog C(v) define a set of order statistics, and the distribu-
tion of the length of consecutive spacings therefore follows the Beta distribution
with parameters 1 and n (e.g., see [2,13]). Thus, the expected interval length is
1/(n + 1). Having fixed such an interval in C(v), the number of points in C(w)
that falls in this interval follows a Binomial distribution, with probability equal
to the length of the interval. Thus, the distribution of each δv,w(v) follows the
Beta-Binomial distribution, with parameters 1 and n, which has expected value
µ = n/(n + 1) [22].

The performance of searching and updating our augmented structures at an
element x along a path P = (v1, . . . , vk) in a catalog graph G depends on the
random variable,

TP =
∑

(vi,vi+1)∈P

log δvi,vi+1
(x).

Unfortunately, the relative local discrepancies for consecutive edges in P are not
necessarily independent. Even so, we can write

TP =
∑

(vi,vi+1)∈P, odd i

log δvi,vi+1
(x) +

∑

(vi,vi+1)∈P, even i

log δvi,vi+1
(x), (1)

and we note that each term in the separate sums are independent. Thus, we can
bound the degree to which TP differs from its expectation by adding bounds on

Discrepancy-Sensitive Dynamic Fractional Cascading 119

the two sums. Combining this with the expected value of the associated Beta-
Binomial distribution given above, we can use a Chernoff bound twice (e.g.,
see [18]) to prove the following (we give the proof in the final version):

Theorem 2. Given a catalog graph G such that each catalog is a set of O(n)
independent, uniform random points in the interval [0, 1], then for any path P
of length k in G,

∑
(v,w)∈P log δv,w(x) is O(k) with probability 1 − 1/2k.

Using this result, we can take the dynamic range searching structure of Mehlhorn
and Näher [17], which is based on range trees (e.g., see [20], and replace their
dynamic fractional cascading solution with ours, which gives us the following:

Theorem 3. We can maintain a dynamic range searching data structure for a

set of points taken uniformly at random in the unit cube so as to support point

insertions and deletions in O(log n) time w.h.p. and the reporting of all the points

in a rectangular query range [x1, x2] × [y1, y2] in O(log n + k) time w.h.p., where

k is the number of points returned by the query.

3 Dynamic Dominated Maxima

This section describes a scheme for dynamically maintaining a set S of points
drawn from a uniform distribution in a rectangle, so that a dominated maxima

query can be done in O(log n) expected time: Given a query point q, the query
returns the set of maximal elements among the points of S that are dominated
by q; note that the expected size of the output is itself O(log n) (because of
the uniform distribution). The expected time for an update will be shown to be
O(log2 n).

We shall find it necessary to maintain 4 such data structures, one for each
of the 4 possible sets of coordinate axes obtained by reversing the direction of
{neither,one,both} of the x and y axes – having all 4 such structures makes it
possible to achieve the bounds we claim but imposes only a constant factor of 4
on the complexity bounds.

In order to more explicitly define the 4 above-mentioned problems, and also
to facilitate the understanding of our algorithm, we will consider the smallest
origin-centered square containing the whole set S for a given state of S. We
position four coordinate systems, one at each of the four corners of the square,
with the origin being at the corresponding corner and the directions of the
axes pointing from the origin along the edges of the square. We call these four
coordinate systems South-West (abbreviated as SW), South-East (SE), North-

West (NW), North-East (NE). For a point q ∈ S, we use xSW (q) (resp., ySW (q))
to denote the x (resp., y) coordinate of q in the SW coordinate system. A similar
notation is used for the other three coordinate systems.

The 4 problems mentioned above are then the following: (i) A South-West
problem that pertains to the subset of S that is dominated by the query point
q0 in the SW coordinate system, i.e., the subset “below and to the left of q0”;
(ii) a South-East problem that pertains to the subset of S that is dominated by

120 M.J. Atallah et al.

the query point q0 in the SE coordinate system (the subset “below and to the
right of q0”); (iii) a North-East problem that pertains to the subset of S that
is dominated by the query point q0 in the NE coordinate system (the subset
“above and to the right of q0”); and (iv) a North-West problem that pertains to
the subset of S that is dominated by the query point q0 in the NW coordinate
system (the subset “above and to the left of q0”).

Recall that a point q is maximal in the set S relative to the SW coordinate
system iff for every other point q′ ∈ S at least one of the following inequalities
holds:

xSW (q′) ≤ xSW (q) ySW (q′) ≤ ySW (q),

which, in words, can be stated as: “no other point of S dominates q in the SW
coordinate system.” For a point q and a set S we also define the notion of a
maximal set in the SW coordinate system with respect to q. This set, denoted
by MSW (S, q), is computed by first considering only those points in S that are
dominated by q in the SW coordinate system (i.e., the subset of S below and to
the left of q) and then computing the maximal points of that subset. All points
in MSW (S, q) are assumed to be sorted by increasing x coordinates. A similar
notation is used for the other three coordinate systems.

In the rest of our discussion we focus on the South-West problem. All of our
solutions for this South-West problem can be translated into similar ones for the
South-East, North-East, and North-West problems.

The Data Structure. Let Tx be an n-node search tree structure whose nodes
are the n points of S ordered by their x coordinates. Tx verifies the following
properties, v being a node of Tx :

– Tx is a weight balanced binary search tree
– All nodes in the right subtree of v have greater x value than v
– All nodes in the left subtree of v have lesser value than v

For each node v in Tx, we use Slv to denote the subset of S that lies in the
subtree of v and have x coordinate lesser or equal to v’s one. Each such Slv is
itself organized as a dynamic search structure according to the y coordinates
of the points in it. The Tx tree and its associated Slv’s are organized as the
dynamic fractional cascading structure described above. With this structure in
place, for every path P in Tx, searching for y0 in Slv for every v ∈ P can be
done in O(log n + |P|) expected time.

An update to this structure due to insertion or deletion of a point consists of
adding or removing a node of Tx, updating all the Slv sets from that node to the
root and finally then rebalancing Tx. Note that the insertion of a point (x0, y0)
does not cause the creation of a new node in Tx if there exists already a point
with x0 coordinates, but only an update in the underlying dynamic fractional
cascading structure. We have the equivalent property for deletion. Rebalancing
the tree implies O(1) rotations. A rotation associated with three node v, v′, v′′

implies the reconstruction of the underlying sets Slv, Sl′v, Sl′′v , that is, O(|Slv|)
insertions and deletions in the dynamic fractional cascading structure. Since Tx

Discrepancy-Sensitive Dynamic Fractional Cascading 121

is a weight balanced search tree, the amortized value of |Slv| is log n. Thus an
update to this structure takes O(log n) amortized time.

In addition to the above, each copy of a point q in Slv stores the following:

– lSW (v, q) = the leftmost (hence, highest) point in MSW (Sv, q).
– rSW (v, q) = the rightmost (hence, lowest) point in MSW (Sv, q).
– lSE(v, q) = the leftmost (hence, lowest) point in MSE(Sv, q).
– rSE(v, q) = the rightmost (hence, highest) point in MSE(Sv, q).
– lNW (v, q) = the leftmost (hence, lowest) point in MNW (Sv, q).
– rNW (v, q) = the rightmost (hence, highest) point in MNW (Sv, q).
– lNE(v, q) = the leftmost (hence, highest) point in MNE(Sv, q).
– rNE(v, q) = the rightmost (hence, lowest) point in MNE(Sv, q).

The above quantities will be shown to facilitate a query, but they also impose
the burden of dynamically updating them. We need to describe how a query is
processed, and how to dynamically update all of the above quantities.

Processing a Query. The query processing consists of, given a query point q0,
returning the maximal elements of the subset of S dominated by q0 in the SW
coordinate system. (The query point is arbitrary and need not be in S.)

More formally, to process a query for a point q0 with the coordinates (x0, y0),
we do the following:

1. First we locate the node which has greatest x value lesser or equal to x0 in
Tx, thereby defining a root-to-leaf path P in Tx. Let v1, . . . , vt be (in left to
right order) the nodes whose right sibling is on P . We henceforth refer to
these nodes as the fringe of x0 in Tx. Note that t ≤ log n, and that every
point in

⋃t

i=1 Slvi
has an x coordinate that is ≤ x0 and that there is no

other such points.
2. Within every Slvi

, 1 ≤ i ≤ t, let y′
i be the largest y coordinate that is ≤ y0.

Computing all the y′
is involves locating y0 in every Slvi

. Using the dynamic
fractional cascading search structure, the computation of all the y′

is can be
done in O(log n + t) expected time, which is O(log n).

3. Let Y1, . . . , Yt be defined inductively as follows:
(a) Yt = −∞
(b) Yk−1 = max{Yk, y′

k} for k = t − 1, t − 2, . . . , 1.
In words, Yk (k < t) is the largest y coordinate among the points in⋃t

i=k+1 Slvk
.

4. Enumerate the points in MSW (S, q). Before explaining how this enumeration
done, we point out that the point of S that constitutes the South-West solu-
tion must belong to MSW (S, q), which is easy to prove by contradiction. We
also point out that the expected number of points in MSW (S, q) is O(log |S|),
hence O(log n). Thus, the O(log n) average query performance would be
achieved if we could somehow enumerate the points of U = MSW (S, q) in
time O(|U |). We do this by first observing that the subset of S from which
the maximal points are computed consists of the subset of

⋃t

i=1 Slvk
hav-

ing y coordinates < y0. Our strategy will be to enumerate, in the order
k = 1, . . . , t the maximal points of Slvk

that belong to U , call their set Uk,

122 M.J. Atallah et al.

stopping as soon as the about-to-be-enumerated y coordinate drops below Yk.
(If we did not stop at that point, we would be enumerating points that do
not belong to U .) This enumeration of Uk is done as follows:
(a) Let qk be the point with the y coordinate y′

k (that is, qk is the highest
point of Slvk

whose y coordinate is ≤ y0).
(b) While the y coordinate of qk is ≥ Yk, we (i) include qk as a member

of Uk, and then (ii) set qk = rSE(v, qk), which is the rightmost (hence,
highest) point in MSE(Sv, qk).

Of course, in the above, U is the concatenation of U1, . . . , Ut.
5. Since we have not checked the points with y-coordinate equal to y0 in

MSW (S, q), we need to add them to U . This can be done by searching for y0

in the fringe of x0 which takes O(log n) expected time using the fractional
cascading structure.

As argued above, the average complexity of the above query processing is
O(log n). We now turn our attention to the dynamic updates. We begin with
the case of insertions.

Processing an Insertion. Let q0 = (x0, y0) be the point being inserted. We al-
ready argued that the fractional cascading structure can be updated in O(log n)
expected time as a result of this insertion. The main task we face now is how
to update the quantities lSW (v, q), rSW (v, q), lSE(v, q), rSE(v, q), lNW (v, q),
rNW (v, q), lNE(v, q), and rNE(v, q), for each q = (x, y) ∈ S and each v that is
ancestor of x in Tx. We explain how to update only rSE(v, q) for all v’s that
are ancestors of x in Tx; similar updating can be repeated for each of the seven
other quantities (relative to their own frame of reference).

We begin with the updating of the rSE(v, q)’s for all points other than q0

(i.e., the points in S −{q0}). And we will explain how to compute the rSE(v, q0)
separately.

The first step is to compute, as a query that is processed just as in the previous
section (except that the coordinate system is different), the set U = MNE(S, q0),
where, as before, the expected size of U is O(log n). The only points q of S
whose rSE(v, q) may change are in U . For each point q of U , we update its (at
most log n) rSE(v, q) values. This is done in constant time for each value, by
checking whether q0 can cause an improvement when v is ancestor of q0. The
total update time for doing this is therefore O(|U | log n), which is O(log2 n) on
average.

To compute the rSE(v, q0), we first compute U ′ = MSE(S, q0) as a query,
hence in O(log n) expected time. We then walk along the path from x0 to the
root in Tx, and at each node v along this path we set rSE(v, q0) equal to the
highest point of U ′ that is in Slv. Note that this whole walk can be done in time
O(log n) because of monotonicity: The Slv’s of the nodes on that walk to the
root monotonically “swallow” U ′ in left-to-right order (hence, by increasing y
coordinates). Thus we end up going through U ′ only once (not log n times).

Discrepancy-Sensitive Dynamic Fractional Cascading 123

Processing a Deletion. Let q0 = (x0, y0) be the point being deleted. We already
argued that the fractional cascading structure can be updated in O(log n) ex-
pected time as a result of this deletion. Now we need to show how to update
the quantities lSW (v, q), rSW (v, q), lSE(v, q), rSE(v, q), lNW (v, q), rNW (v, q),
lNE(v, q), and rNE(v, q), for each q = (x, y) ∈ S and each v that is ancestor of
x0 in Tx. We explain how to do it for rSE(v, q) for all v that are ancestors of
x0 in Tx, all other values are updated similarly (relative to their own frame of
reference).

First, we compute each of the sets U = MNW (S, q0) and U ′ = MSW (S, q0) as
queries (and, hence, in O(log n) expected time). The only points q of S whose
rSE(v, q) may change as a result of the deletion are in U . Moreover, for each
such point q whose rSE(v, q) changes, its new rSE(v, q) is either in U ′ or it is
the old rSE(v, q0). The best candidate from U ′ for each q ∈ U need not be done
in isolation; rather, it can be done for all the points of U together. This can
be performed in a manner reminiscent of the way two sorted lists are merged,
by walking simultaneously along U and U ′. This has to be done only once (not
repeated for the rSE(v, q) of every ancestor v of x0). On the other hand, the
comparison of the old rSE(v, q) with the two new candidates, which are the old
rSE(v, q0), and the point of U ′ determined during the above-mentioned merge-
like procedure, needs to be done for every v and q. Hence, the overall time for a
deletion is O(log2 n) on average.

4 Dynamic Nearest Neighbors in Minkowski Metrics

Given a nearest-neighbor query for a point q0, in a set S of uniformly-distributed
points in an axis-aligned rectangle, we partition the problem into four sub-
problems: (i) a South-West problem that consists of computing the nearest
neighbor from among the subset of S that is dominated by the query point
q0 in the SW coordinate system, i.e., the subset “below and to the left of q0”;
(ii) a South-East problem that consists of computing the nearest neighbor from
among the subset of S that is dominated by the query point q0 in the SE co-
ordinate system (the subset “below and to the right of q0”); (iii) a North-East
problem that consists of computing the nearest neighbor from among the sub-
set of S that is dominated by the query point q0 in the NE coordinate system
(the subset “above and to the right of q0”); and (iv) a North-West problem that
consists of computing the nearest neighbor from among the subset of S that
is dominated by the query point q0 in the NW coordinate system (the subset
“above and to the left of q0”). We solve all of (i)–(iv) and choose, as the solution
to the nearest-neighbor query, the best from the four answers they return. Our
performance bounds for this problem therefore immediately follow from those
we established in the previous section for the dynamic dominated maxima prob-
lem: O(log n) expected query time, and O(log2 n) expected time for an update
(insertion or deletion).

124 M.J. Atallah et al.

5 Experimental Results

Local Discrepancy on a Range Tree. In this section we explore the distributions
of the local discrepancy in the catalogs of the nodes of a range tree, augmented
using our dynamic fractional cascading structure.

To evaluate the distributions of the local discrepancy along a path in the range
tree we use, we have inserted the points of the real data set S in such a range
tree and chose random query points (x, y). For each point, we calculated the
local discrepancy relative to y for each edge on the path from the leaf associated
with x to the root of the tree. We also did the same work with the same number
of evenly distributed points (see Fig. 2).

As we see in Fig. 2, the distributions of local discrepancy for the real data set
is very close to the distributions of local discrepancy in the case of evenly dis-
tributed points. Their plot in logarithmic scale indicates that they are very close
to exponential distributions, which shows that the demonstration for theorem 3
still holds in the case of the real data set.

Fig. 2. Distributions of the local discrepancy along top-down path in a range tree
using real data set in the upper-left corner and evenly distributed points on the upper-
right corner. The distribution heightk represents the distribution of local discrepancy
for edges between nodes at height k − 1 and k containing respectively 2k−1 and 2k

points in their catalogs. The two plots below show the same distributions on a log
scale.

Discrepancy-Sensitive Dynamic Fractional Cascading 125

References

1. Alt, H.: The nearest neighbor. In: Computational Discrete Mathematics. LNCS,
vol. 2122, pp. 13–24. Springer, Heidelberg (2001)

2. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statitics.
Wiley-Interscience, Chichester (1992)

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algo-
rithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45,
891–923 (1998)

4. Bentley, J.L.: K-d trees for semidynamic point sets. In: SCG ’90. Proceedings of
the sixth annual symposium on Computational geometry, pp. 187–197. ACM Press,
New York (1990)

5. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for clos-
est point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)

6. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML ’06. Proceedings of the 23rd international conference on Machine learning,
pp. 97–104 (2006)

7. Chan, T.M.: A dynamic data structure for 3-d convex hull and 2-d nearest neighbor
queries. In: Proceedings of the seventeenth ACM-SIAM symposium on Discrete
algorithm, pp. 1196–1202. ACM Press, New York (2006)

8. Chazelle, B.: Geometric complexity and the discrepancy method. In: Abstracts 15th
European Workshop Comput. Geom., pp. 21–23. INRIA Sophia-Antipolis (1999)

9. Chazelle, B.: The Discrepancy Method. Cambridge Univ. Press, Cambridge (2002)
10. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique.

Algorithmica 1(3), 133–162 (1986)
11. Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1,

163–191 (1986)
12. Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In:

Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge
(2006)

13. David, H.A., Nagaraja, H.N.: Order Statitics, 3rd edn. Wiley-Interscience, Chich-
ester (2003)

14. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: A simple dynamic data
structure for multidimensional data. In: SCG. 21st ACM Symp. on Computational
Geometry, pp. 296–305. ACM Press, New York (2005)

15. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: STOC ’02. Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, pp. 741–750. ACM Press, New York (2002)

16. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: SODA. Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms, pp. 798–807. ACM Press, New York (2004)

17. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5, 215–241
(1990)

18. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

19. Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA. Proc.
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 367–375 (1992)

20. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag, New York (1985)

126 M.J. Atallah et al.

21. Sen, S.: Fractional cascading revisited. J. Algorithms 19(2), 161–172 (1995)
22. Weisstein, E.W.: Beta binomial distribution. In: MathWorld—A Wol-

fram Web Resource. Wolfram (2007) http://mathworld.wolfram.com/

BetaBinomialDistribution.html

23. Weisstein, E.W.: Local discrepancy. In: MathWorld—A Wolfram Web Resource.
Wolfram (2007) http://mathworld.wolfram.com/LocalDiscrepancy.html

24. Yap, C., Zhu, Y.: Yet another look at fractional cascading: B-graphs with applica-
tion to point location. In: CCCG’01. Proceedings of the 13th Canadian Conference
on Computational Geometry, pp. 173–176 (2001)

http://mathworld.wolfram.com/BetaBinomialDistribution.html
http://mathworld.wolfram.com/BetaBinomialDistribution.html
http://mathworld.wolfram.com/LocalDiscrepancy.html

	Introduction
	Discrepancy-Sensitive Dynamic Fractional Cascading
	Dynamic Dominated Maxima
	Dynamic Nearest Neighbors in Minkowski Metrics
	Experimental Results

