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Abstract

We present an adaptive controlled scheduler for heterogeneous applications running on general purpose comput-

ers. Our scheduler can effectively support diverse application requirements. It employs uniform rate-based sharing.

Application heterogeneity is satisfied by partitioning CPU capacity into service classes, each with a different criterion

for admission control. As a result, we are able to provide at once guaranteed performance, flexible allocation of rates

with excellent scalability and intermediate service classes offering tradeoffs between reserved rate utilization and the

strength of guarantees. Our scheduler has been implemented in Solaris 2.5.1. It runs existing applications without

modifications. We present experimental results showing the scalability, efficiency, guaranteed performance, and over-

load performance aspects of our scheduler. We demonstrate the importance of priority inheritance implemented in

our scheduler for stable system performance.

keywords: multimedia operating system, CPU scheduling, admission control, rate-based sharing, firewall protection,

priority inversion

1 Introduction

Emerging continuous media (CM) applications have well defined quality of service (QoS) constraints. These applica-

tions have stringent resource requirements and can benefit from non-interference. It is not possible to run them in a

closed or embedded system environment [11]. Instead, many will continue to run on general purpose machines, where

applications of diverse characteristics run concurrently.

QoS requirements of applications in an open and general purpose computing environment requires further research.

Appropriate admission control and scheduling policies must be investigated to avoid long term resource overload, and

to provide forms of progress guarantees. The resources should be carefully scheduled. CPU time is one bottleneck

resource, if we consider the processor requirements of applications like software media codes.

We have designed and implemented a CPU scheduling framework that conforms to the following service objec-

tives:

1. CPU scheduling should satisfy diverse classes of application requirements. At one extreme, there are applica-

tions with stringent progress constraints, for which missed deadlines can significantly degrade their perceived

quality. Audio processing in a tele-conferencing system is an example. At the other extreme, there are best-effort

applications that have no specific real-time properties, but for which some non-zero progress rate is desired. For

flexibility, some form of proportional sharing of CPU time among these applications can be provided. Network

file transfers and email processing belong to this type of applications. Between the two extremes, there are

applications that have well defined QoS requirements, but can tolerate periods of system overload by graceful�D. Yau was supported in part by the National Science Foundation under grant numbers EIA-9806741 and CCR-9875742 (CAREER); B.
Bhargava was supported in part by the National Science Foundation under grant numbers CCR-9901712 and CCR-0001788, and in part by CERIAS.

An earlier version of this paper appears in Proc. IEEE International Conference on Multimedia Computing and Systems, Florence, Italy, June 1999

[22].
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load shedding. Video playback is an example. When the system is busy, some users of video applications may

be happy to settle for a lower frame rate, as long as the video maintains good continuity.

2. CPU scheduling should provide suitable firewall protection among service classes, as well as among threads

within the same service class, the progress guarantees given to a service class or thread are independent of how

other service classes or threads make scheduling requests. The applications with stringent QoS requirements

must be protected from each other, and from applications in other service classes. The class of best-effort

applications should be protected from other more “demanding” service classes, so as to ensure an acceptable

level of progress rate. It is counter-productive, however, to have strong firewall protection between best-effort

applications themselves. For system scalability, we do not want CPU scheduling to be the limiting factor in how

many best-effort applications can be admitted by the system. This implies that actual progress rates of existing

best-effort applications will become lower as more such applications join the system, and become higher as

some such applications leave the system.

3. Certain service classes will require CPU reservations to prevent long term system overload. Since the actual

resource requirement of an application may not be known, apriori, or may depend on its current context of

execution, the system should provide feedback to applications on their actual resource demands. With such

information, reservations can be dynamically re-negotiated between applications and the system to reflect the

actual resource needs.

4. CPU scheduling should not unnecessarily restrict the progress rates of admitted applications. In particular,

reserved but unused CPU cycles should not be left idle, but be made available on-demand to applications.

5. To be competitive with existing round robin schedulers, a CPU scheduler providing diverse service classes

should do so with little extra overhead.

6. Since different organizations may have different characteristic workloads, a system administrator should be

allowed to configure the service classes according to the needs of their organization.

The scheduling framework evolves from our earlier work on Adaptive Rate-Controlled (ARC) scheduling. It

retains ARC’s central features of rate-based sharing with firewall protection, and provision of system feedback for

resource re-negotiation. It improves over ARC by providing improved scalability for best-effort applications, and

offering explicit tradeoffs between reserved rate utilization and the strength of guarantees for adaptive applications.

In this paper, we present our design innovations and discuss our experience in the evolution of ARC scheduling. In

addition, we provide extensive performance results and illustrate the salient aspects of our current prototype. These

results demonstrate the soundness and practical utility of our approach.

1.1 Contributions and related work

CPU scheduling for multimedia applications is an active area of research. Solutions designed for embedded real-time

systems are not applicable on general purpose computers [1, 12]. The use of static priorities [9] is generally susceptible

to “runaway” applications. Rate-based resource sharing is widely used. Many rate-based systems, however, target

only for flexible resource allocation, but do not consider guaranteed QoS through admission control [3, 6, 7, 8, 19].

Lack of system feedback on application performance makes it difficult to determine suitable rates.A highly flexible

resource model is proposed in [18], but offers only probabilistic performance. A resource model specific to protocol

processing is proposed in [5], which yields guaranteed performance without using threads. This approach does not

immediately extend to general computation. Hierarchical schedulers have been advanced to support heterogeneity of

applications [4, 6]. They employ leaf schedulers of diverse types. Classical real-time schedulers like rate-monotonic or

earliest-deadline-first lack the firewall property [11, 15]. To adapt to dynamic application behavior, certain scheduling

algorithms require close application participation, and sophisticated schedulability tests [14]. Other systems have

appealed to policing mechanisms external to the scheduling algorithm, such as priority depression [10, 13, 17].

We propose a solution that uniformly applies the well proven technique of rate-based scheduling for diverse ap-

plication requirements. By considering scheduling algorithms with a provable firewall property, we offer protection

among applications without resorting to complicated machinery. Heterogeneity of applications is handled by config-

uring service classes with different criteria for admission control. As a result, our system achieves at once guaranteed

performance, flexible resource allocation with excellent scalability, and intermediate services offering tradeoff be-

tween reserved rate utilization and the strength of guarantees. A new rate-based scheduling algorithm suitable for use
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in our framework is defined. In addition, we present system implementation in a general purpose operating system, and

introduce the use of proxied scheduling to account for inexact rate control in a real system. We provide performance

evaluations using a real multimedia workload.

1.2 Paper organization

In Section 2, we discuss ARC’s rate-based sharing with firewall protection as a basis of this research. We discuss the

issue of progress fairness, and define a new CPU scheduling algorithm with good fairness properties. Extending ARC

to accommodate a heterogeneous services framework is presented in Section 3. Section 4 discusses the importance of

priority inversion in CPU scheduling. The use of proxied class to achieve predictable performance in a real system

environment is given in Section 5. We present performance evaluations of prototype implementations using a real

multimedia workload in Section 6.

2 ARC scheduling

This section summarizes the main features of ARC scheduling details are in [23]. ARC defines a family of schedulers,

each having the following three properties: (i) reserved rates can be negotiated, (ii) QoS guarantees are conditional

upon thread behavior, and (iii) firewall protection among threads is provided. Firewall protection is effected through

periodic rate control. Hence, we execute a rate-based scheduling algorithm at certain rescheduling points, as follows:� When the currently running thread exits or becomes blocked, the algorithm is executed for it (a block event).� When a system event occurs that causes one or more threads to become runnable, the algorithm is executed for
each thread that becomes runnable (an unblock event).� When a periodic clock tick occurs in the system, the algorithm is executed for the currently running thread (a
clock tick event).

The initial RC scheduling algorithm (Figure 2a) that we chose for a proof-of-concept experiment in the ARC

framework is simple and efficient. Using RC, a thread, say i, can request CPU reservation with rate ri; 0 < ri � 1 and
period pi (in �s). In Figure 2a, event denotes which one of the three rescheduling events triggered the algorithm,Q is
the thread for which RC is executed, r(Q) and p(Q) denoteQ’s reserved rate and period, respectively, urtime is the
real time at which RC begins execution, finish(Q) is the expected finishing time of previous computation performed
by Q, and val(Q) is an RC value of Q. The system schedules threads in a non-decreasing order of their RC values.
Under the assumption of an idealized execution environment [23], Theorem 1 guarantees progress for a punctual

thread, say j, in the system.
Definition 1 Thread j is punctual if it generates at least (k + 1)rjpj seconds of work over time interval [0; kpj ℄, fork = 0; 1; : : :.
Theorem 1 If thread j is punctual and �iri � 1, then j is scheduled by RC to run for at least (k + 1)rjpj time over
time interval [0; (k + 1)pj ℄, for k = 0; 1; : : :.
Notice that when pj is smaller, rate guarantees are provided over finer time intervals, but with concomitant increase

in context switch overhead. Conversely, when pj is larger, the number of context switches becomes smaller, but rate
guarantees are now provided over coarser time intervals. Hence, pj in RC allows the tradeoff between context switch
overhead and time granularity of rate guarantees to be specifiable by applications, according to their own needs.

We have performed experiments to validate Theorem 1 for an actual system running the existing multimedia

applications [23]. We show that CM applications such as video and audio can meet their deadlines using ARC,

when competing with a variety of best-effort applications (see, for example, Fig. 1). Simultaneously, best-effort

applications are able to achieve satisfactory progress despite the demands of CM applications. Firewall protection

among applications is achieved without significantly degrading CPU efficiency and utilization.
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Figure 1: Times between pictures sent by a 30 fps video application running under (a) Unix TS and (b) ARC, in the

presence of competing compute-intensive applications started at about frame 250.

Algorithm RC(Q, event)
L1. if (event = unblock)
L2. finish(Q) := max(finish(Q); urtime);

else

L3. runtime := time Q has run since RC

was last executed for it;

L4. finish(Q) := finish(Q) + runtime=r(Q);
fi;

L5. if (event 6= block)
L6. k = b(finish(Q)� start(Q))=p(Q) + 1;
L7. val(Q) := start(Q) + k � p(Q);

fi;

Algorithm FRC(Q, event)
L1. if (event = unblock)
L2. vtime := minffinish(R) : R 2 �g+ q=r(Q);
L3. finish(Q) := max(finish(Q); vtime);
L4. � := �SfQg;

else

L5. runtime := timeQ has run since FRC

was last executed for it;

L6. finish(Q) := finish(Q) + runtime=r(Q);
L7. if (event = block)
L8. � := �� fQg;

fi;

fi;

Figure 2: Specification of (a) Algorithm RC, and (b) Algorithm FRC.

2.1 Progress Fairness

We show in [23] that RC exhibits the punishment phenomenon. The threads that have overrun their resource reserva-

tions can later be punished (i.e. not scheduled) for an extended time period, when a thread with little or no resource

overrun joins the system. We show in [23] how rate adaptation can be used by long-running CM applications to avoid

the punishment phenomenon, by carefully matching reserved rate to actual execution rate. We have, however, explic-

itly designed the ARC framework to be highly modular and flexible. As a result, we have been able to incorporate

scheduling algorithms with diverse fairness properties into our prototype system. In particular, we have designed a

fair rate-controlled (FRC) algorithm with improved fairness over RC.
FRC allows threads to reserve for guaranteed CPU rates. As in RC, FRC calculates for each thread a finish value

giving the time at which previous computation by the thread would finish had it been progressing at its reserved rate.

The system then schedules runnable threads in a non-decreasing finish value order.

FRC is outlined in Figure 2b. Observe that in RC, as a thread, say R, overruns its reserved rate, finish(R) may
increase much beyond the real time. Hence, when a new thread, say S, later joins the system, finish(S) will be set to
the current real time by L2 of Figure 2a. It may then take unbounded time for finish(S) to catch up with finish(R).
To solve the problem, Fig. 2b (line L3) uses a virtual time value, vtime – calculated in L2 to closely match the
finish values of existing runnable threads – to determine the finish value of a newly runnable thread. In addition, the

algorithm uses�, initially empty, to keep track of the current set of runnable threads in the system.
We discuss the progress properties of FRC. For notational convenience, we adopt the following in our exposition:

4



� fi denotes the finish value of thread i.� q (in �s) denotes the period of system clock tick.
We first prove Lemma 1, which bounds the difference in finish values between two runnable threads scheduled by

FRC. Such a bound implies progress fairness by limiting how long a thread can run before another runnable thread

will be given a chance to use the CPU.

Lemma 1 The following is invariant: If i and j are both runnable, then fi � fj � q=ri.
Proof: The invariant is true when the first thread becomes runnable. We show that the invariant is preserved after

each rescheduling point. In the proof, � and fi denote the set of runnable threads and the finish value of thread i,
respectively, before the rescheduling point. �0 and f 0i denote the set of runnable threads and the finish value of threadi, respectively, after the rescheduling point.
1. When a system clock tick occurs for thread i. Since i was chosen to run, fi � fj � 0, for all j 2 �. By L6,f 0i = fi + runtime=ri. Hence, f 0i � f 0j = f 0i � fj � runtime=ri � q=ri, for all j 6= i.
2. When thread k becomes blocked. This does not affect the finish value of any runnable thread. Hence, trivially,fi � fj � q=ri =) f 0i � f 0j � q=ri, for all i; j 2 �0.
3. When thread i becomes runnable. Consider two cases.
Case 1 fi � vtime. By L2, f 0i = minffk : k 2 �g + q=ri. Hence, f 0i � f 0j = f 0i � fj � f 0i �minffk : k 2�g = q=ri, for all j 2 �. Also, f 0j � f 0i = fj � f 0i � fj �minffk : k 2 �g � q=rj , for all j 2 �.
Case 2 fi > vtime. By L2, f 0i = fi. Let f 00j be the finish value of thread j when i last blocked (notice
that f 00i = fi = f 0i ). Since fj � f 00j , we have f 0i � f 0j = fi � fj � fi � f 00j � q=ri. Moreover, sincefi > vtime =) fi > minffk : k 2 �g, we have fj � fi � fj �minffk : k 2 �g � q=rj , for all j 2 �,
where the last inequality follows from the fact that the invariant holds before the rescheduling point. Fromf 0j = fj and f 0i = fi, we conclude f 0j � f 0i � q=rj . 2
Using Lemma 1, Theorem 2 proves guaranteed throughput for FRC scheduling.

Theorem 2 For any time interval [t; t0℄, if i is continuously runnable throughout the interval, then it will be scheduled
by FRC to run for at least [t0 � t� (j�j � 1)� q℄� ri�j2�rj � q�j2�;j 6=irj�j2�rj (1)

time, where� is the set of threads that are ever runnable in [t; t0℄.
Proof: LetWj denote the total amount of time j runs in the interval [t; t0℄, fj denote the finish value of j when j first
becomes runnable in [t; t0℄, and f 0j the finish value of j at time t0. By Lemma 1 and the fact that fi is non-decreasing,
we have fi � fj � q=ri (2)f 0j � f 0i � q=rj (3)

From (2) and (3), f 0j � fj � f 0i � fi + q=ri + q=rj (4)

By L3 and L6, for j 6= i, Wj � (f 0j � fj)� rj (5)

From the fact that i is continuously runnable, we haveWi = (f 0i � fi)� ri (6)

Since i is continuously runnable, the CPU is busy throughout [t; t0℄. Hence,�k2�Wk = t0 � t (7)
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From (6) and (7), (f 0i � fi)� ri = t0 � t��j 6=iWj� t0 � t��j 6=i(f 0j � fj)� rj by (5)� t0 � t��j 6=i[(f 0i � fi)� rj + q � rj=ri + q℄ by (4)=) �j2�rj � (f 0i � fi) � t0 � t��j 6=i[rj � q=ri℄� (j�j � 1)q=)Wi = ri � (f 0i � fi) � [t0 � t� (j�j � 1)� q℄� ri�j2�rj � q�j2�;j 6=irj�j2�rj 2
The following corollary is immediate, which states guaranteed progress when CPU time is not overbooked, i.e.

when �ri � 1. Notice that when t0 � t becomes large, a continuously runnable thread has a CPU rate that converges
to the reserved rate.

Corollary 2.1 For any time interval [t; t0℄, if i is continuously runnable throughout the interval and �jrj � 1, then i
will be scheduled by FRC to run for at least[t0 � t� (j�j � 1)� q℄� ri � q (8)

time, where� is the set of threads that are ever runnable in [t; t0℄.
3 ARC Scheduling for Heterogeneous Services

The experience with ARC is that while it performs well in guaranteeing progress to diverse applications, it suffers

from some practical problems. One observation is that we accommodate best-effort applications by giving each such

application a very low rate (say 0.02). This approach has reasonable scalability, since the low rates add up slowly, and

we can admit a good number of best-effort applications before being rejected by the admission control. However, CPU

scheduling using ARC still imposes an artificial limit on the number of best-effort applications that can be admitted at

the same time. Moreover, best-effort and real-time applications compete for the same pool of reserved rate. This may

not always be desirable.

ARC for heterogeneous services (ARC-H) is an extension to ARC to overcome practical limitations. Its major

departure from ARC lies in its explicit recognition of diverse classes of applications discussed in Section 1. ARC-H

still retains the use of an integrated scheduling algorithm (such asRC or FRC described in Section 2.1). Heterogeneity
of applications is supported by differential admission control.

An ARC-H system administrator can partition the total CPU capacity into rates form service classes, i.e., service
class k is allocated rate Rk; 1 � k � m, such that Rk > 0 and �Rk = 1. For k = 1 : : :m, an overbooking parameter,bk, (0 � bk � 1) is also specified.
Thread j can request from service class k a reservation specified by two parameters: nominal rate r̂j and periodpj . The request is granted if �i2Ck r̂i + r̂j � Rk(1 + bk);

where Ck denotes the subset of threads already admitted into service class k.
After thread j has been admitted, it receives an effective rate given byrj = Rk � (r̂j=�i2Ck r̂i);

where Ck is the subset of threads admitted into service class k, which by now includes thread j. These effective rates,rj ; j = 1 : : : n (n is the total number of threads) in ARC-H are then used as the thread rates in section 2.1. Notice that
the effective rate of a thread depends not only on its own nominal rate, but also on the nominal rates of other threads

admitted to its service class. However, it can be shown that�i2fCs:1�s�mgri � �1�k�mRk = 1
Hence, Corollary 2.1 provides a hard guarantee of the effective rate ri to thread i.
The overbooking parameters can be used for specifying different levels of service. For bk = 0, threads in service

class k get a hard guarantee of their reserved rates. This service class is called guaranteed rate or GR, and is suitable
6



for applications with stringent timing constraints. For bk = 1, service class k can be used for flexible rate allocation
with excellent scalability (but threads in this class receive no guarantee besides non-zero progress). This service class

is called flexible rate or FR, and is suitable for conventional best effort applications. Other values of bk lead to service
classes with a statistical guarantee of different strengths. Such service classes are called overbooking or OBn, where n
is the percentage of overbook. They are suitable for adaptive multimedia applications which can gracefully shed work

to accommodate controlled periods of system overload.

4 Priority Inversion

In a multiprocessor operating system like Solaris, threads can contend inside the kernel for synchronization resources

such as mutex locks, semaphores, condition variables, and readers/writer locks. In such a system, priority inversion

inside the kernel becomes an important problem.

To solve the problem, ARC-H leverages existing mechanisms in Solaris 2.5.1 to provide priority inheritance. A

thread in ARC-H can inherit the finish value of another thread that it blocks. An inherited finish value is not rate
controlled (i.e. it will not be increased by a clock tick). However, the original finish value of the inheriting thread
is, so that CPU usage at an inherited priority is accounted for. In principle it is possible for two threads, say P andQ, to conspire with each other to hoard resources. For example, when P is running, it can acquire a lock, say L,
which it then does not give up. When later, P is preempted and Q gets scheduled, Q attempts to acquire L. P ,
blocking Q, will inherit Q’s finish value. P then runs with this inherited priority without ever giving up L. In our
system priority inheritance is implemented for synchronization of resources managed by kernel code. Since kernel

code is trusted, we reasonably assume that such conspiracy cannot occur. Section 6 demonstrates the practical utility

of priority inheritance in our system.

Besides synchronization primitives, priority inversion can also occur when different applications request service

from a system server. The major problem is that using the traditional RPC, the server thread will run at a priority

unrelated to the priority of its client. To tackle the problem, we have implemented a trains abstraction in Solaris. A

train allows a thread of control to access services in multiple processes while carrying its resource and scheduling

state intact. This ability is achieved by decoupling a thread (which we view as purely a scheduling entity) from its

associated process (which provides resource context – albeit non-permanently – to the thread). Hence, while a thread

still has a home process (i.e. the process in which it is created), it is free to leave a process and enter a new one,

through a well-defined stop exported by the latter. A stop is exported as a secure entry point to server code, when a

server offers a service. At the time of service invocation, the server additionally provides a stack for executing the new

client request. We are planning to incorporate trains into real applications, and will report on their performance in a

later paper.

To avoid the effects of priority inversion due to interrupt processing, our scheduler is designed to work best when

such processing is reduced to a minimum. Our protocol processing system of Migrating Sockets [21], for example,

minimizes the use of interrupts in handling packet arrivals from the network. However, a small amount of performance

critical activities, such as periodic system clock ticks for CPU rate control, is still allowed to take place at interrupt

priority, higher than the priorities of ARC-H threads.

5 Proxied Class

FRC can be used as a single level CPU scheduler. Theorem 2 says that a runnable thread with effective rate r may
not get scheduled in a time interval of length (n � 1)q + q=r, where n is the number of threads admitted into the
system. Since q is non-negligible in a real system (we expect it to have value from 1 ms to 10 ms), this time interval
can become excessive when n is large. The presence of best-effort applications is of particular concern, since their
service class is explicitly designed to be highly scalable.

To solve this, our system allows a service class to be configured as a proxied class. A proxied class introduces two-

level scheduling into ARC-H: the system level and the class level. At the system level, a proxied class is represented

by a proxy thread that can join the ARC-H system dispatch queue and hence compete for system CPU time. At the

class level, a proxied class maintains a private dispatch queue of all runnable threads in the class, in and increasing

finish value order.

A proxy thread is considered running if any thread in its class is running. If it is not running, then it is runnable if

at least one of the threads in its class is runnable. Otherwise, it is blocked. It has effective rate equal to the configured
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Algorithm PRIVATE FRC(C, Q, event)
L1. if (event = unblock)
L2. vtime := minffinish(R) : R 2 C:�g+ q=r(Q);
L3. finish(Q) := max(finish(Q); vtime);
L4. if (C:� = �)
L5. call FRC(C:proxy, unblock);

fi;

L6. C:� := C:�SfQg;
else

L7. runtime := time Q has run since PRIVATE FRC

was last executed for it;

L8. finish(Q) := finish(Q) + runtime=r(Q);
L9. if (event = block)
L10. C:� := C:�� fQg;
L11. if (C:� = �)
L12. call FRC(C:proxy, block);

else

L13. call FRC(C:proxy, tick);
fi;

else

L14. call FRC(C:proxy, tick);
fi;

fi;

Figure 3: Specification of Algorithm PRIVATE FRC for proxied scheduling.

class rate, and has scheduling state, such as finish value, just like a usual thread. When a proxy thread is selected for

execution (because it currently has a highest priority), however, it is not dispatched, but instead selects the highest

priority thread from the private runnable queue of the class and dispatches it.

We specify algorithm PRIVATE FRC in Figure 3 for proxied class scheduling. The algorithm is to be used in

conjunction with algorithm FRC in Figure 2b, which is for a non-proxied or proxy thread, i.e. for scheduling at
the system level. PRIVATE FRC itself is called when a rescheduling event occurs for a thread in a proxied class

(the proxied thread). In the algorithm, Q is the proxied thread, C is the proxy class to which Q belongs, and event
specifies the rescheduling event that triggered the algorithm. For the proxy class C, C:� denotes the set of threads
in C that are runnable, and C:proxy denotes the proxy thread that represents C in system level scheduling. Notice
that PRIVATE FRC invoked for C may call FRC with C:proxy and a suitable rescheduling event as parameters. For
example, when threadQ in C becomes blocked, FRC is called with a block event if Q was the last runnable thread inC, and with a tick event otherwise.
To see the benefits of proxied scheduling, consider a video thread with rate rv competing with 1000 threads in

the FR class for CPU time. If the FR class is not configured as a proxied class, then from Theorem 2, there is a time

interval of length 999q + q=rv during which the video thread may not be scheduled at all. If the FR class is proxied,
however, the time interval is reduced to q + q=rv.
6 Experimental Results

We present performance results showing the different aspects of ARC-H scheduling, including guaranteed perfor-

mance, overload performance, suitability for heterogeneous services, scalability, flexible and proportional rate sharing,

stability, and efficiency. The ARC-H scheduler used runs as part of Solaris 2.5.1 on a Sun UltraSPARC-1 workstation.

Five applications representing a multimedia workload were used inour experiments. We measured the performance

of the first four applications under various conditions. The fifth, radio xmit, ran on a computer different from the

measurement platform, and was used only for sending network audio packets read by radio recv. No performance

data was taken for radio xmit. We list the applications as follows:
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� greedy: compute-intensive application that is always enabled. It repeatedly does a round of 2.5 ms of computa-
tion and prints a timestamp.� periodic: an application that wakes up every 30 ms, performs 2.5 ms of computation, and outputs a timestamp.� mpeg2play: a CM application that plays MPEG-2 encoded video at 30 fps. The video contents played are
IPPPP encoded and are a 60 second segment of tennis instruction.� radio recv: a CM application that receives a PCM-encoded audio sample every 100 ms from the network.� radio xmit: an audio application that captures PCM-encoded audio from a microphone and sends the audio
samples to the network. Samples are generated at 100 ms intervals. They are for reading by radio recv.

We have experimentally determined the CPU requirement of mpeg2play. To do this, we ran one to four copies

of mpeg2play (with minimal competing load) in Solaris TS, and noted the achievable frame rates. For one or two

applications, the frame rates were full 30 per second. For three applications, the frame rates became 29.13, 29.85

and 27.61, respectively. For four applications, the frame rates further went down to 20.79, 20.59, 19.63 and 19.10,

respectively. We conclude that the full CPU capacity can support up to three mpeg2play’s at 30 frames per second.

Unless noted otherwise, the experimental CPU was configured with FR rate 0.25 and GR rate 0.75, and the system

clock tick interval used was 10 ms. FR was configured as a proxied class, whereas GR was not.

6.1 Flexible rates and high utilization performance

We performed an experiment to demonstrate that ARC-H achieves flexible allocation of rates in a graceful manner.

The CPU was configured to have a GR rate of 1.0 in this experiment. Five copies of greedy and six copies of the

periodic application were run, all with the same rate in the GR class. Figure 4a plots the timestamp value (relative to

the first timestamp of its application) against the timestamp number for each application. Figure 4b is a close-up view

of the first 100 seconds, for only the greedy applications. The graphs show how the execution rates gracefully adapted

as the applications started and finished at different times (hence changing the offered CPU load).

To examine system performance under high utilization, say that a periodic or greedy application in our experiment

is on time if it completes at least one round of computation every 30 ms. Since a round of computation takes about

2.5 ms, the rate requirement for an application to be on time is about 2.5 ms / 30 ms = 0.083. With a total of 11

applications running in the system, the aggregate CPU rate required for all the applications to be on time was about0:083� 11 = 92%. To see the performance of the periodic applications under this rate requirement (the actual CPU
load was 100% throughout the experiment), refer to Figure 5 (for clarity, only three applications are shown, but the

profiles are representative). The reference line y = 30� (x+1) shows that a periodic application was mostly on time
under our experimental setup.

To demonstrate differential rate sharing in FR, we ran ten greedy applications in the service class. Six had nominal

rate 0.05, two had nominal rate 0.1, and the remaining two had nominal rate 0.2. Figure 6 shows the execution profiles

for all the applications. The figure shows that when all the applications were active, greedy with rate 0.2, 0.1 and 0.05

achieved 222, 105, and 52 rounds/second, respectively. The achieved ratios of 1 : 0.47 : 0.24 are close to the expected

ratios of 1 : 0.5 : 0.25.

6.2 Heterogeneous services

This set of experiments demonstrates that ARC-H is able to provide heterogeneous services with firewall protection

among service classes. We ran two different experiments. In the first, we ran five greedy applications each with

nominal rate 0.1 in the FR class, together with two mpeg2play, each with rate 0.3 in the GR class. In the second, we

increased the number of greedy applications to thirteen. Figure 7a shows the execution profiles of all the applications

in the first experiment. Figure 7b shows the corresponding profiles for the second experiment. As shown in Figure 7a,

the greedy applications ran with a slope of 45.74 when the mpeg2play’s were still running. The slope increased to

186.87 when the mpeg2play’s finished execution. The equal slopes show that each greedy application was receiving

the same share of the CPU. From Figure 7b, we note that, with their increased number, each greedy achieved a lower

execution rate than before (notice that one of the greedy applications started earlier than the rest). The mpeg2play’s,

however, were unaffected, showing that the greedies in FR are sharing among their own resources. From Figure 8a, a

close-up view of Figure 7a during 10–25 seconds, the mpeg2play’s were not affected by starting up of the greedy
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Figure 4: (a) Execution profile of five greedy and six periodic applications, each with a equal rate. The top-most line

shows the coincided periodic applications; the other lines are for the various greedy’s. (b) Execution profile of the

greedy applications during the first 100 rounds – the graphs show graceful adaptation of execution rates as the offered

CPU load increases.
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Figure 5: Magnified view of three of the periodic applications.
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(a) (b)

100

200

300

400

500

600

700

800

900

10 12 14 16 18 20 22 24

ro
u

n
d

 n
u

m
b

e
r 

time (seconds)

greedy.1
greedy.2
greedy.3
greedy.4
greedy.5
mpeg2.1
mpeg2.2

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

in
te

r-
fr

a
m

e
 t

im
e

 (
m

s
)

picture number

mpeg2.1

Figure 8: (a) Close-up view of two mpeg2play’s with five greedy applications during the first 100 seconds; the thin

straight line shows the coincided mpeg2play’s. (b) Plot of interframe times of an mpeg2play running with five

greedy applications.

applications. Figure 7b shows a representative plot of the inter-frame times for mpeg2play; the expected frame rate

of 30 per second was achieved.

6.3 Graceful load shedding

We show that certain CM applications can gracefully adapt to CPU overload, and hence can be run in an overbooking

service class. For this purpose, we configured an OB70 service class with overbook fraction 0.7. The CPU was then

partitioned to have FR rate 0.1, GR rate 0.3, and OB70 rate 0.6. In our experiment, we ran three copies of mpeg2play

each with nominal rate 0.3 in OB70, and obtained their execution profiles. Throughout the experiment, two greedy

applications were running in the GR and FR classes, respectively. Figure 9a shows the execution profile for all of the

applications. An mpeg2play achieved a frame rate of about 24 frames per second in the experiment. Figure 9b gives

a plot of inter-frame times for a representative mpeg2play application. The plot shows that good picture continuity

was achieved despite the reduced frame rate.
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Figure 9: (a) Execution profile of three mpeg2play’s running in the OB70 class together with two greedy applica-

tions in the GR and FR classes, respectively. The most slanted line is greedy in GR; the most flat one is greedy in

FR; the middle one shows the coincided mpeg2play’s. (b) Plot of inter-frame times for the first 60 seconds for a

representative mpeg2play.

6.4 Priority inheritance

To demonstrate the practical significance of priority inheritance, we turned it off in a set of experimental runs. The

set of experiments used two mpeg2play (each in GR with rate 0.3), one radio recv (GR with rate 0.1) and two

greedy applications (each in FR with rate 0.1). We observe that in some cases, an execution profile such as the one

shown in Figure 10a is obtained. As shown, instances occurred in which a greedy application completely dominated

the CPU, and no other application was able to make progress until the greedy application completed execution. In the

case of Figure 10a, this occurred on about 60 to 90 seconds.

To understand the problem, we collected trace information inside the kernel. Our traces show that from 60 to 90

seconds, no clock tick occurred for the dominating greedy application. Hence, the application was never preempted,

since its priority was never reduced by rate control. From the kernel source code, this could occur when a clock thread

in Solaris, which handles periodic clock interrupts, is blocked on a synchronization primitive.1 When that happens,
subsequent clock processing will be deferred until the clock thread returns. By collecting more trace information, we

confirm that in the case of Figure 10a, the clock thread was indeed blocked (from 60–90 seconds) on a mutex lock

while attempting to process high priority timer activities in the system. Further data show that one of the mpeg2play

applications was holding the mutex lock in question.

With priority inheritance, an mpeg2play application holding the timer lock required by the clock thread will

inherit the latter’s priority. As an interrupt thread in Solaris, the clock thread has strictly higher priority than any ARC-

H thread. Hence, the blocking mpeg2play will be quickly scheduled (preempting a running greedy application

if necessary), and be able to quickly release the timer lock as a result. In turn, this ensures that the clock thread

can complete its tasks, without delaying subsequent clock processing. When priority inheritance was incorporated,

therefore, the kind of gaps shown in Figure 10a was no longer observed. Figure 10b shows a representative execution

profile of the the same mix of applications used in the preceding paragraph.

6.5 Implementation efficiency

We compare the efficiency of our prototype scheduler with Solaris TS. We ran n copies of greedy concurrently under
GR, FR and Solaris TS, respectively, and noted the average completion time per application. We varied n to be 1,
5, 10 and 15. For Solaris TS, we used its standard quantum sizes. For GR and FR, a preemption quantum of 10 ms

was used. Figure 11 shows that the three schedulers have essentially the same performance: GR and FR have slightly

lower times with up to 10 applications, and slightly higher times at 15 applications.

To see the effects of fine- versus coarse-grained rate control, we further varied the preemption time quantum to

be 10, 30, 50 and 70 ms, for GR and FR. From Figure 12, notice that for both service classes, when the number of1Solaris offers true multi-threading inside the kernel and processes clock interrupts in one of its kernel threads. In certain other systems, clock
activities may be handled by an interrupt handler, which cannot block on unavailable resources.
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Figure 12: Average time (in seconds) to complete a greedy application with 1, 5, 10, and 15 competing applications,

and a preemption quantum size of 10, 30, 50 and 70 ms: (a) for GR class, and (b) for proxied FR class.

applications is large, the completion time drops somewhat as the preemption quantum increases from 10 to 30 ms. It

does not change significantly with further increase in quantum size.

7 Conclusions

We presented a CPU scheduling framework suitable for heterogeneous applications running on general purpose com-

puters. We discussed how our present system has evolved fromARC scheduling. In particular, it retains ARC’s central

features of rate-based sharing with firewall protection, and provision of system feedback for rate re-negotiation. Its ma-

jor design innovation over ARC is the definition of a heterogeneous services architecture based on uniform rate-based

sharing, but service classes with different admission control criteria. Algorithm RC is adapted from VirtualClock

[24], but it uses the expected completion times of previous computations, instead of computations to be scheduled,

for scheduling. FRC’s solution to the fairness problems is similar to several other approaches, such as virtual clock

reset [20], time-shift scheduling [2], and leap forward virtual clock [16]. Other rate-based algorithms with suitable

firewall protection can also be used in our framework. For system integration into a general purpose OS environment,

we discussed issues such as priority inheritance and proxied scheduling. Diverse experimental results demonstrate the

soundness and practical utility of our approach.
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