
CERIAS Tech Report 2002-62
Taxonomy of Data Management via Broadcasting in a Mobile Computing Environment

 by I Chung, B Bhargava, S Madria
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Chapter 7

A TAXONOMY OF DATA MANAGEMENTS
VIA BROADCASTING IN MOBILE COMPUTING*

Ilyoung Chung, Bharat Bhargava, Sanjay K. Madria
Dept. of Computer Sciences, Purdue University; Dept. of Computer Sciences, Purdue Univer-

sity; Dept. of Computer Science, University of Missouri-Rolla

Abstract: Data management for distributed computing has spawned a variety of research
work and commercial products. At the same time, recent technical advances in
the development of portable computing devices and the rapidly expanding cord-
less technologies have made the mobile computing a reality. In conjunction with
the existing computing infrastructure, data management for mobile computing
gives rise to significant challenges and performance opportunities. Most mobile
technologies physically support broadcast to all mobile users inside a cell. In
mobile client-server models, a server can take advantage of this characteristics
to broadcast information to all mobile clients in its cell. This fact introduces
new mechanisms of data management which are different from the traditional
algorithms proposed for distributed database systems. In this chapter, we give
executive summary and discuss topics such as data dissemination techniques,
transaction models and caching strategies that utilize broadcasting medium for
data management. There is a wide range of options for the design of model and
algorithms for mobile client-server database systems. We present taxonomies
that categorize algorithms proposed under each topic. Those taxonomies pro-
vide insights into the tradeoffs inherent in each field of data management in
mobile computing environments.

Keywords: Broadcasting, Cache Invalidation, Data Dissemination, Transaction management

*This research is supported by CERIAS and NSF grants CCR-9901712 and CCR-0001788

140 Chapter 7

1. INTRODUCTION

The widespread adoption of a client-server system has made this architec-
ture the conventional mode for distributed database systems. At the same
time, recent technological advances in the development of portable comput-
ing devices and rapidly expanding cordless technologies have made the mobile
computing a reality. The combination of these factors gives rise to significant
challenges and performance opportunities in the design of mobile client-server
database systems. Broadcasting is widely accepted as a medium of disseminat-
ing information from the server to mobile clients in a cell. In this chapter, we
consider three important topics which utilize broadcasting facility in mobile
computing environments: the management of transactions which access data
using mobile devices, data dissemination which adopts broadcast as a means
of delivering data to mobile devices, and data caching strategies which lessen
the dependency on the server.

Approaches to handling weak connectivity in data management systems aim
at minimizing communication and surviving short disconnections. However,
due to the complicated dependencies among database items, the problem is a
complex one. Algorithms on such topics have been proposed to achieve high
performance while surviving resource restrictions of resources and connections
using broadcasting facility. In this chapter, we present taxonomies that describe
the design spaces for transaction management, data dissemination, and caching
for data management, and show how proposed algorithms are related to one
another. We provide a unified treatment of proposed algorithms that can be
used to help understanding the design alternatives and performance tradeoffs
for each topic.

The rest of this chapter is organized as follows. In Section 2, alternative
architectures for mobile data management are discussed. In Section 3, the
taxonomy of concurrency control algorithms which utilize broadcasting is pre-
sented and tradeoffs for each level of design options are discussed. In Section
4, we shall focus on mechanisms for data dissemination which broadcasts data
to all mobile devices inside a cell. In Section 5, taxonomy for cache invalida-
tion schemes is proposed and discussed, and finally we state our concluding
remarks in Section 6.

2. ARCHITECTURAL ALTERNATIVES

A mobile client-server database architecture can be categorized according
to some design alternatives, which will be discussed in this section. A mobile
client-server database architecture can be categorized according to the four
design alternatives namely 1) the unit of interaction between clients and server,
2) data delivery method, 3) caching at mobile client, and 4) communication

Data Management via Broadcasting 141

method. The tradeoffs of these architectural alternatives will be discussed in
this section.

2.1 The Unit of Interaction

A mobile client-server database architecture can be categorized according to
the unit of interaction between mobile clients and servers. In general, mobile
clients can send data requests to the server as queries or as requests for specific
data item. Systems of the former type are referred to as query-shipping system
and those of the latter type are referred to as data-shipping. In query-shipping
systems, a client sends a query to the server. The server then processes the
query and sends the results back to the client. Queries may be sent as plain text
(e.g.,SQL), in a compiled representation, or as calls to precompiled queries
that are stored at the server. In query-shipping architecture, communication
costs and client buffer space requirements are reduced since only the data items
that satisfy a given query are transferred from the server to clients. In con-
trast, data-shipping system perform the bulk of the work of query processing
at the clients, and as a result, much more database functionality is placed at
the clients. It offloads functionality from the server to mobile clients. This
may prove crucial for performance, as the computing power and the amount
of resources at mobile clients get stronger and increase. Also, the frequency
of communications between servers and mobile clients reduces, as the appli-
cations at mobile clients access data items which resides in the mobile clients.
Reduced frequency of communications is crucial for the performance of mo-
bile DBMSs, considering the limited bandwidth of wireless channel. These
two alternatives are shown in Fig. 1.

2.2 Data Delivery Method

In a data-shipping client-server system, the server is the repository of the
data and the clients are the consumers of the data. Thus, when a client appli-
cation requires a data item, it has to be delivered from the server to the client.
Broadly, there are two ways to achieve the data transfer.

In the client-initiated approach, the client requests a data item from the
server on demand, i.e., when the client application requests it. In response
to the request, the server locates the data item and transfers it to the client. To
make this transfer feasible, the clients and the server typically use a mutually
agreed upon request/response protocol. As part of the protocol, the client is
allowed to make a predetermined set of request to which the server responds
appropriately. On the other hand, in the server-initiated approach, the respon-
sibility of transferring the data rests with the server. Here, the server delivers
data items to mobile clients without any explicit request from it, and in antici-
pation of an access in the future. Thus, unlike in the first approach, the transfer

142 Chapter 7

is initiated by the server and not by the client. Thus the server has to have some
knowledge of the client data requirements in this case.

The client-initiated delivery is also called pull-based delivery and systems
based on it are termed pull-based systems. In effect, in this approach, clients
”pull” data from the server on demand. Conversely, the data delivery us-
ing the server-centric approach is called push-based delivery, since the server
”pushes” data out to clients. These two different alternatives are shown in
Fig. 2.

2.3 Caching at Mobile Clients

Client caching refers to the ability of mobile clients to retain copies of data
items locally once they have been obtained from the server. In client-server

Data Management via Broadcasting 143

database systems, client caching can be characterized by the following con-
cepts: dynamic replication and second class ownership. Dynamic replication
means that data copies are created and destroyed based on the runtime de-
mands of clients. When a client needs to access a data item, a copy of that
item is placed in the mobile client’s cache if it does not already exist. In some
schemes, data items are removed from a client’s cache in order to make room
for more recently requested ones because they become invalid. Therefore, the
amount of replication that exists in the system at any given time is driven by
the recent activity of the mobile clients. This is in contrast to static replication
in which the replication of data is determined as part of the physical database
design process.

It is well known that replication can reduce data availability in the presence
of updates and failures in a distributed environments. Second-class ownership
allows consistency to be preserved without sacrificing availability. Second-
class ownership refers to the fact that in client caching, the cached copies of
pages are not considered to be the equals of actual data items, which are kept
at the server.

Mobile client caching is a compromise between the utilization of mobile
client resources and the correctness and availability concerns. Mobile client
resources are exploited by maintaining the cache, thereby reducing the need to
obtain data from the servers. Data that is in a mobile client’s local cache can
typically be accessed faster than data that is at a server, considering the limited
bandwidth of wireless links. Caching, however, does not transfer ownership
of data to mobile clients. Servers remain the only true owners of data, and
therefore are ultimately responsible for ensuring the correctness of transaction

144 Chapter 7

execution. Client autonomy is sacrificed in the sense that servers maintain data
ownership and must remain involved in the execution of transactions. How-
ever, the pay off here is that the server’s participation in transactions execution
is minimized.

2.4 Communication Method

In mobile client-server database systems, the server should maintain com-
munication to mobile clients in order to transfer many control information as
well as data items. Those control information are used at mobile clients in
processing transactions, which include control of concurrent transactions and
maintenance of data consistency. First, the server should send concurrency
control information that includes conflict relations of transactions which are
executed concurrently at mobile clients. Also, the server should notify a trans-
action about the commit result of the certification process, according to the
correctness criteria. Secondly, update information of data items should be
transferred to mobile clients in order to ensure the consistency between the
server and mobile clients. When mobile clients maintain local cache and keep
a portion of data, applications at mobile clients assume that the local copies of
data have up-to-data value of those items. In order to satisfy such assumption,
consistency information should be sent to mobile clients, whenever data items
are updated.

For sending the control information from the server to mobile clients, there
are two communication methods; unicast and broadcast. With unicast method,
the server sends each control information to a specific mobile client, with the
knowledge about the clients’ information. This method requires that a mobile
client register its presence and that a server keep information about mobile
clients. The server in this case is stateful since it knows about the state of the
mobile clients. On the other hand, with broadcast method, the server sends
the control information to all the mobile clients periodically or aperiodically,
with the same message. Since clients may require different control information
simultaneously, the broadcasting message should be well defined. The server
in this case is stateless since it does not know about the state of mobile clients.

3. TRANSACTION MANAGEMENT

In mobile client-server database systems, transactions are initiated by each
mobile client as a string of read and write operations. Because multiple trans-
actions which access common data items may be issued concurrently, there
should be a protocol which guarantees the correct execution of concurrent
transactions. Several protocols have been proposed in the literature to con-
trol concurrent transactions in mobile database systems, and those protocols

Data Management via Broadcasting 145

can be evaluated based on some criteria. In this section, considering the char-
acteristics of mobile environments, we define the following:

Concurrency: The degree of concurrency represents the ability of a pro-
tocol which can process multiple transactions simultaneously, without
violating the correctness of transactions. Increasing the possible num-
ber of concurrent transactions is an important technique to improve the
throughput of transaction processing.

Autonomy: Autonomous execution of mobile clients represents the abil-
ity to reduce the dependency upon the server while executing transac-
tions. Autonomous execution of transactions at mobile clients can sig-
nificantly enhance the performance, since it reduces the contention on
the bandwidth of wireless link, which is scarce resource in mobile envi-
ronments.

The design space of concurrency control protocols in mobile database sys-
tems is presented in this section, which presents a taxonomy of such protocols.

146 Chapter 7

This taxonomy can be used to help understanding the design alternatives and
performance tradeoffs for concurrency control algorithms.

The taxonomy is restricted to algorithms that are applicable to mobile client-
server databases and that provide serializability as the correctness criterion.
Algorithms that provide lower levels of correctness are not considered here.
The taxonomy is shown in Fig. 3. There are a wide range of options for the de-
sign of such protocols. We present four levels of classification in the taxonomy,
and at the top level of the taxonomy, algorithms are classified according to the
unit of certification that they employ. This is a fundamental consideration,
as it determines when a mobile client initiates the concurrency control action.
Three more levels of lower classifications are presented in the taxonomy, but
only one of them is applicable to the protocols whose unit of certification is
an operation. For the protocols that are classified in the other group at the first
level of taxonomy, all of three lower levels, checking duration, local conflict
action and read-only transaction can be applied. Each level of the taxonomy
is described in the next subsections.

3.1 Unit of Certification

Mobile clients send the certification request to the server, as transactions
initiated at mobile clients should be checked by the server whether they satisfy
the correctness criterion. Concurrency control protocols can thus be classified
based on the unit of certification sent to the server. The protocols that have been
proposed for mobile client-server database systems can be partitioned into two
classes based on this criterion: operation-based and transaction-based.

From another point of view, the difference between the operation-based and
transaction-based approaches lies in the type of operations a mobile client ex-
pects from the initiated transaction in future [1,2]. If a mobile client thinks that
there will be conflicts related to the initiated transaction, it adopts an approach
which prevents such conflicts by checking each operation of the transaction,
thus it is also called pessimistic approach. On the other hand, if a mobile client
expects that most of transactions will not conflict with others; that is there
will be few sharing data items in the entire database, it just executes the entire
transaction locally. The transaction is checked for consistency preservation
only once at the server, thus it is called optimistic approach.

The operation-based scheme requires mobile clients to contact server for
every operation of transactions [3,4,5,6]. The server checks if the operation
can be processed without violating the correctness criterion, and notifies this
information to the mobile client. Then the mobile client can process the next
operation. When the mobile client completes all operations of a transaction,
the mobile client can decide the commit of the transaction autonomously. This

Data Management via Broadcasting 147

is because all the operations of the transaction have been verified by the server
at the time of request.

In contrast, under the transaction-based scheme, mobile clients are not re-
quired to interact with the server while executing transactions [7,8,9,10,11].
Instead, when all operations of the transaction are completed, the mobile client
sends the history of the executed transaction to the server in order to verify it.
If the server replies that the transaction satisfies the correctness criterion as ex-
pected, the mobile client commits the transaction. Otherwise, the transaction
should be aborted.

The main argument for the operation-based approach is that it can ensure
correct execution. Because each operation of a transaction is checked sepa-
rately when it is requested, it is impossible for a mobile client to execute any
operation which does not satisfy the correctness criterion. Thus, once a trans-
action completes all the operations, it means that the execution of the trans-
action ensures the correctness criterion, and it can be committed immediately.
As a result, no transaction produces a history which is not serializable. Thus,
no transaction is aborted once it completes all operations. (Aborts can occur
due to other reasons, such as deadlock between transactions or accessing stale
cached data). The disadvantage of the operation-based scheme, however, is a
greater dependency on the server. This can result in significant performance
overhead, such as increased communication on wireless network.

Avoiding the drawback of the operation-based scheme is the main contribu-
tion of the transaction-based scheme. Because a mobile client executes a trans-
action autonomously until all operations are completed, the transaction-based
scheme does not suffer from communication overhead which is fatal in mobile
environments. However, this advantage of transaction-based scheme can be
achieved at the cost of increased aborts of transactions. If the optimism which
is the basis of the transaction-based scheme turns out to be unfounded, then
the large portion of transactions which have been executed locally at mobile
clients must be aborted. This can degrade the throughput of entire transaction
processing.

3.2 Checking Duration

The second level of differentiation for the taxonomy is based on the duration
for which the server maintains the checking information of each operation for
a transaction (operation-based scheme), or on the point at which the server
checks the correctness of transactions (transaction-based scheme).

First, in case of operation-based scheme, conflicting operations of different
transactions cannot be granted to be executed concurrently by the server. As
a result, the server should prevent two or more operations of conflicting trans-
actions from accessing the same data concurrently. In the operation-based

148 Chapter 7

schemes, whenever an operation is requested by a mobile client, the server
gives the right to access the data, which is mutually exclusive (e.g., locking).
In the taxonomy, there are two classes of checking duration strategies for the
operation-based schemes.

Immediate Release With this strategy, an access privilege of an operation is
released immediately after the execution of the operation is completed. As a
result, transactions can access a data which has been accessed by a conflicting
operation of other transactions which are still active. The main advantage of
the immediate release scheme is the higher throughput of the transactions due
to the increased concurrency. Since transactions do not hold accessed data un-
til they terminate, more transactions can be executed concurrently. However,
in general, accessing data that are written by uncommitted transactions cannot
guarantee the correct execution. [4] has proposed speculative lock manage-
ment algorithm as the way of ensuring the correctness of the immediate release
scheme. In this algorithm, a transaction releases locks on a data item when-
ever it writes corresponding data. The waiting transaction reads before- and
after- images and carries out speculative execution. In order to satisfy the se-
rializability, the transaction which has carried out speculative executions can
commit only after termination of preceding transactions. On the termination
of preceding transactions, it selects appropriate execution based on the termi-
nation decisions (i.e., commit or abort).

Delayed Release In the operation-based scheme, it is more general to release
the access privilege when all the operations of a transaction are completed, and
we classified such algorithms as delayed release scheme. With this scheme,
once a privilege for a data item is acquired by a transaction, other transactions
cannot access that data until the preceding transaction commits or aborts. Al-
though the degree of concurrency is lower compared to the immediate release
scheme, it is guaranteed that the schedule produced always ensures the correct-
ness criterion. [5], [6] and [7] proposed concurrency control strategies that use
locking with delayed release approach.

On the other hand, several transaction-based protocols have been proposed
and studied in the literature. As mobile clients execute the entire transac-
tion locally without any communication with the server, transactions should
be checked for correctness before they terminate. Thus, a mobile client sends
a messages to the server that request the commit of the transaction. When the
server receives such a commit requesting message, it checks if the transaction
satifies the correctness criterion. In the taxonomy, we can differentiate the
transaction-based scheme into the following two classes according to the point
at which the checking is performed.

Data Management via Broadcasting 149

Immediate Certification With this approach, whenever a mobile client re-
quests commit of a transaction to a server, the server makes the decision of a
transaction (i.e., commit or abort) immediately after the server receives commit
requesting message [7,8,9]. The main argument for the immediate certification
scheme is simplicity. Because certification actions of a transaction in this
case is performed against the transactions which have requested commit ear-
lier than the server does not have to consider transactions whose commit
requesting messages arrive after As a result, in this scheme, the order of
arrival of commit requesting message is the main parameter which decides the
commit or abort of the transaction.

Delayed Certification In the transaction-based scheme, the server can delay
the decision of commit requesting transactions until the result of decision is
actually sentsentsent to mobile clients. The delayed certification scheme was
proposed and studied in [10], in order to increase concurrency of transactions.
With the delayed certification process, the server can select transactions which
are related to a large number of conflicts, and by aborting such transactions, the
throughput can be improved. The delayed certification scheme can be applied
when the server sends the results of certifications to mobile clients periodically.

3.3 Local Conflict Action

The next level of differentiation for the taxonomy is local conflict action,
which is applicable only to the transaction-based scheme. This level is based
on the priority given to the committing transactions at remote mobile clients to
which they are sent. When the committing transaction shows a conflict with
an active transaction at a mobile client, there are two options: preemption and
non-preemption.

Preemption With the preemption scheme, ongoing transactions at mobile clients
are aborted as the result of an incoming transaction which shows conflicts. Un-
der this scheme, the optimism that is assumed in mobile clients regarding the
execution of a transaction is somewhat weaker than under the non-preemption
scheme. This is because the non-preemption scheme will force a committing
transaction to serialize behind a locally ongoing transaction if a conflict is de-
tected, whereas under the preemption scheme, committing transactions always
have priority over ongoing transactions, so conflicting local transactions are
aborted. When an active transaction which conflicts with committing trans-
actions completes all operations, it can not be committed by the server, as it
performed operations that conflict with already committed transactions. Thus,
aborting such local transactions early in mobile clients can reduce unnecessary
communication overhead. The preemption scheme was firstly proposed in [7],
which proposed a concurrency control protocol called Wound Certifier. The

150 Chapter 7

key to the algorithm is the use of the broadcast channel to transmit informa-
tion about read and write sets so mobile clients can decide whether their active
transactions can continue or should be aborted. By checking in every period
whether the current read and write set of the transaction intersects with those
of committed transactions, the mobile client is acting as a Wound Certifier
for its own transactions. The decision of aborting a transaction is done if the
transaction’s read or write set intersects with a committing transaction’s read
or write sets. [11] also has proposed two preemption schemes, versioning and
invalidation method, which can abort active transaction at mobile clients using
information broadcasted from the server. In this way, the algorithm downloads
some of the work of validating transactions to the mobile clients, as a result,
can increase the autonomy.

Non-preemption In contrast to the preemption scheme, with the non-preemption
scheme, committing transactions does not preempt the ongoing conflicting
transaction. Ongoing transactions continue their operations regardless of the
committing transaction which conflicts. Then, most of such active transac-
tions cannot be committed when they complete their operations. Although the
procedure at mobile clients is simple with non-preemption scheme, it is quite
wasteful to send a commit request message of a transaction that cannot be
committed.

3.4 Commit of Read-only Transactions

When all operations of a transaction are read operations, we can consider a
special commit process which is performed independently by mobile clients.
We classify the concurrency control protocols according to the commit process
of read-only transactions. This level of differentiation also is only applicable to
the transaction-based scheme. In case of the operation-based scheme, as each
operation should be guaranteed by the server, it is impossible to apply local
commit policy.

Local Commit of Read-only Transactions As described in the previous sec-
tion, using the transaction-based scheme, transactions executed locally at mo-
bile clients must be sent to the server to be checked for the correctness. If
mobile clients can decide commit or abort of a locally executed transaction
only with information which is broadcasted from the server (without uplink
message), the overall pathlength of transactions can be significantly shortened,
and the throughput can be improved through the offloading of the wireless net-
work. Although transactions which updated data items should be sent to the
server because of the update installation, special consideration can be given
to read-only transactions [10,11]. With the local commit policy for read-only
transactions, a mobile client commits a transaction autonomously, if all opera-

Data Management via Broadcasting 151

tions of the transaction are read operations. Of course, there should be a special
consideration to commit a read-only transaction locally, in order to ensure the
correctness criterion.

Global Commit of Read-only Transactions If a protocol has no consideration
for the local commit of read-only transactions, all transactions should be sent
to the server to be guaranteed the correctness. Most of transaction-based proto-
cols proposed in the literature adopted the global commit strategy for read-only
transactions.

4. DATA DISSEMINATION

Traditionally, the mode of data delivery has largely been on request-response
style. Users explicitly requests data items from the server. When a data request
is received at a server, the server locates the information of interest and returns
it to the client. This form of data delivery is called pull-based. In wireless
computing environments, the stationary server machines are provided with a
relatively high bandwidth channel which supports broadcast delivery to mobile
devices in their cell. As a result, in recent years, different models of data de-
livery have been explored, particularly the periodic push-based model where
servers repetitively broadcasts data to mobile clients without any explicit re-
quests.

In mobile computing environments, several criteria can be used to evaluate
the performance of a data delivery method.

Responsiveness: The most important criterion of a data delivery scheme
is its ability to get the requested data to the user quickly. In this regard,
two metrics can be considered. The first one is the average access time,
which is the amount of time spent, on average, from the instant the re-
quest is made to the time that the requested data item is received. The
second metric is the worst-case access time that measures the maximum
access time for any user request to be satisfied.

Scalability In mobile client-server systems, one of the most important
criteria is the cell capacity that measures the number of mobile devices
which can be handled by a server. The effectiveness of a scheme is also
determined by how well it adapts to workload or environmental changes.
The scheme should be able to support increasingly large number of pop-
ulation of users.

Power Efficiency As battery power is a precious resource for mobile
devices, it has to be minimized.

Tuning Time Another metric that is commonly used as an indication of
the energy consumption of an data delivery strategy is the tuning time.

152 Chapter 7

The tuning time measures the amount time that a mobile client listens to
the channel. Thus, it measures the time during which the mobile client
stays in the active mode and therefore determines the power consumed
by the client to retrieve the relevant data.

We shall present an alternative taxonomy of data delivery mechanisms based
on the design issues that need to be addressed in developing those schemes.
This taxonomy is restricted to algorithms in the literature that were proposed
for the mobile computing environments. The taxonomy is shown in Fig. 4. We
present also four levels of the classification that can be broadly categorized as
delivery initiation, point of delivery, delivery organization and selective tuning.
The top level of classification is fundamental consideration, as it determines

Data Management via Broadcasting 153

which part is obligated to initiate the delivery of data items. Three more levels
of lower classifications are presented in the taxonomy, and all of them are
applicable to the protocols whose delivery is initiated by the server. Each level
of the taxonomy is described in the following.

4.1 Delivery Initiation

Data delivery can be initiated by the mobile client (client-initiated) or by
the server (server-initiated). Under the client-initiated approach, mobile clients
pull the desired data object from the server by submitting queries to the server,
the server accesses the relevant data items from the database and returns them
to the mobile clients. The server initiated approach operates in a different
manner. The server initiates data delivery and sends data objects to mobile
clients, possibly without any explicit requests from clients. In this case, to
receive the data items, mobile clients must listen to the broadcast channel to
filter the incoming stream for their desired data.

Client-initiated Delivery In traditional client-server systems, data are deliv-
ered on a demand basis. A client explicitly requests data items from the server.
When a data request is received at a server, the server locates the data of in-
terest and returns it to the mobile client. This form of data delivery is called
client-initiated or pull based data delivery. The client-initiated approach is
effective when the client population is small; otherwise, the communication
channel and the server can become a bottleneck quickly. Moreover, it requires
an uplink channel to be available and that the mobile client must have trans-
mission capacity. In addition, mobile clients need to be able to know what they
want to retrieve. The client-initiated data delivery is adopted in [12,13].

Server-initiated Delivery In the server-initiated approach, the responsibility
of transferring data rests with the server. With this approach, the server de-
livers data items to mobile clients without any explicit request from it, and in
anticipation of an access in the future. Thus, unlike in the pull based approach,
the transfer is initiated by the server and not by the client, and this approach
is called server-initiated approach or push based data delivery. The server has
to have some knowledge of the client data requirements for this method to
work well. Server-initiated approach is an effective mechanism for large client
population, and avoids the limitations of the client-initiated schemes in mobile
computing environments. However, it is also limited with a problem that it is
difficult to predict accurately the needs of mobile clients. Sending irrelevant
data results in poor use of the channel bandwidth, and data may not reach the
mobile clients in time. The server-initiated data delivery has been explored in
[14,15,16,17].

154 Chapter 7

Hybrid Delivery Push and pull based delivery can be combined by consid-
ering systems in which besides the broadcast channel, mobile clients are pro-
vided with an uplink channel from the clients to the server, also called back
channel, used to send messages to the server. This approach is called hybrid
data delivery. In a hybrid approach, some data items are delivered by the server
initiation, while the remaining data items are to be requested by mobile clients
before they are delivered. One important factor in hybrid delivery is whether
the same channel from the server to the clients is used for both broadcast deliv-
ery and for the transmission of the replies to on demand requests. In this case,
techniques for efficiently sharing the channel are of interest. Mobile clients
can use back channel to provide feedback and profile information to the server.
They can also use the back channel to directly request data, for instance critical
data for which they cannot wait to appear on the broadcast [18].

Instead of broadcasting all data items in the database, one way to realize hy-
brid data delivery is to partition data items into two sets: one being broadcasted
and the other being available only on demand [19]. Determining which part of
the database to broadcast is a complicated task since the decision depends on
many factors including mobile clients’ access patterns and the server’s capacity
to service requests.

Mobility of users is also critical in determining the set of broadcast items.
Cells may differ in their type of communication infrastructure and thus in their
capacity to service requests. Furthermore, as users move between cells, the
distribution of requests for specific data at each cell changes. An adaptive
algorithm that takes into account mobility of users between cells is proposed
in [20].

4.2 Point of Delivery

This dimension of data delivery examines the schedulability of the data, i.e.,
whether the data items are delivered based on event-driven or schedule driven.
This level of differentiation is only applicable to the server-initiated delivery
scheme or the hybrid delivery scheme. In case of the client-initiates scheme, as
the server delivers data items in response to the requests from mobile clients,
it is impossible to apply schedule-driven policy.

Event-driven In data delivery scheme which adopts event-driven strategy, there
is no predetermined schedule on how data items are to be delivered. Data items
are disseminated in response to events such as requests or triggered by updates.
Thus all the proposed client-initiated schemes are classified as event-driven
data delivery.

Schedule-driven Data delivery schemes, which adopt schedule-driven policy,
deliver data based on some predetermined schedule. For example, information

Data Management via Broadcasting 155

may be sent out daily or weekly, or information may be polled periodically as
in the remote-sensing application.

4.3 Delivery Organization

The data items to be delivered have to be organized for dissemination. The
data items to be delivered may be organized in consideration of bandwidth
utilization and performance improvements. Mobile clients are interested in
accessing specific data items from the delivered data. The access time is the
average time elapsed from the moment a mobile client expresses its interest
to an item by submitting a query to the receipt of the item on the broadcast
channel. The broadcasted data should be organized so that the access time is
minimized. This level of classification is based on the strategy to organize the
contents of information which is delivered by the server, and as a result, this
lever is applicable to schedule-driven data delivery schemes. In the schedule-
driven scheme, data items disseminated follows a regular, repeating program,
and this program may be flat or non-flat.

Flat The simplest way to organize the transmission of broadcast data is a flat
organization. In flat programs, all data items are of equal importance, and
broadcasted once in a broadcast cycle [14,16]. Given an indication of the data
items desired by each mobile client listening to the broadcast, the server simply
takes the union of the required items and broadcast the resulting set cyclicly.
The regularity of a flat organization makes it easier to design mechanisms that
allow mobile clients to search the desired portion of data.

Non-flat The basic idea of the non-flat organization is to broadcast data items
that are most likely to be of interest to a larger part of the client community
more frequently than others. Thus, the non-flat program favors objects with
higher access frequencies. Hence, in a broadcast cycle of a non-flat organiza-
tion, while all data items are broadcasted, some will appear more often than
others. Doing so, in effect, creates an arbitrary fine grained memory hierar-
chy as the expected delay in obtaining an item depends on how often that item
is broadcasted. Non-flat programs yields shorter access time for popular data
items as compared to flat programs at the expense of longer access time for data
items that are less frequently accessed. Non-flat programs also provide a bet-
ter average access time than flat programs. However, it has higher bandwidth
requirement as its broadcast cycle length is longer than than of flat programs.
Non-flat strategies have been explored in [15,17].

156 Chapter 7

4.4 Selective Tuning
In a server-initiated delivery mechanism, a mobile client listening to the

channel needs to examine every data item that is broadcasted. The tuning time
of data delivery is the amount of time spent listening to the broadcast channel.
Listening to the broadcast channel requires the mobile client to be in the active
mode and increase power consumption. Some mechanisms that adopted in-
dexing have been proposed to minimize this power consuming process, which
is scarce resource at mobile device, thus the last level of differentiation is se-
lective tuning.

Non-index With the non-indexing data delivery mechanism, the server just
broadcast data items in flat or non-flat organization. Mobile clients should then
listen to the broadcast’s channel until they obtain requested data items. This
process requires the CPU to be in the active mode, which is a power consuming
operation at mobile device. Since the mobile client is typically interested in
only a small subset of the broadcasted data, the overhead of scanning the other
objects is wasted.

Index Mobile clients may be interested in fetching from the broadcast individ-
ual data items identified by some key. To minimize the scarce energy resources
in mobile devices, methods to index data have been proposed so that mobile
clients only need to selectively tune to the desired data [14,16,19]. Thus, most
of the time clients will remain in doze mode and thus save energy. The ob-
jective is to develop methods for allocating indeces together with data on the
broadcast channel so that both access and tuning time are optimized.

5. CACHE CONSISTENCY

The bandwidth of the wireless channel is rather limited, and as a result,
caching of frequently accessed data in a mobile client can be an effective
approach for reducing contention on the narrow bandwidth wireless channel.
Caching allows the database systems to use the resource of mobile clients in
order to reduce the number of data requests that must be sent to the server. The
effectiveness of caching depends on the assumption that there is significant lo-
cality of access in the system workload. Locality can be considered along two
dimensions:

Temporal Locality: References to items are clustered in time. If an item
is accessed, it is likely to be accessed again in the near future.

Spatial Locality: References to items are clustered in space. If an item
is accessed, it is likely that items that are physically near it will be refer-
enced in the near future.

Data Management via Broadcasting 157

However, once caching is used, a consistency maintenance strategy is re-
quired to ensure the consistency of cached data. Because data items are al-
lowed to be cached by multiple mobile clients, a mechanism for ensuring that
all mobile clients see a consistent view of database should be used. This is
referred to as the cache consistency problem. This is, unfortunately, difficult
to enforce in a mobile computing environments due to the frequent disconnec-
tion and mobility of clients. Clients who resume connection no longer know
whether their cached content is still valid.

Traditional techniques require either the server to transmit invalidation mes-
sages to the clients every time an object is updated or the mobile client to
query the server to verify the validity of the cache contents. Both approaches,
however, are not adequate for mobile computing environments. In the first ap-
proach, which has also been referred to as stateful based approach, the server
must keep track of the mobile clients’ cache content and locate the appropriate
clients whenever a data item is updated. Moreover, even if a mobile client is
not using a particular cached data item, it gets notified about its invalid status,
which is a potential waste of bandwidth. In the second approach, the mobile
client must send a message every time they want to use their cache. This is
both wasteful of bandwidth and battery power of mobile devices.

This section provides a taxonomy of consistency maintenance protocols that
encompasses the algorithms proposed in the literature. The taxonomy is re-
stricted to algorithms that are applicable to mobile client-server database sys-
tems. In stateless-based cache consistency schemes, the server has no infor-
mation about which clients are currently under its cell and what data items are
cached by mobile clients. Most of cache consistency schemes proposed in the
literature are stateless-based. The taxonomy is shown in Fig. 5. We present
three levels of classification in the taxonomy, and at the top level, algorithms
are classified according to by whom the consistency action is initiated. This is
a fundamental consideration, as it determines which part is obligated to main-
tain the consistency. Each level of the taxonomy is described in the subsections
that follow.

5.1 Consistency Action Initiation

Because cached data is replicated data, it follows that traditional methods
for managing updates to replicated data can be used or extended to manage
cached copies at mobile clients. Cache consistency maintenance protocols can
thus be classified based on the result of a particular update. The protocols that
have been proposed for mobile client-server databases can be partitioned into
two classes based on this criterion: client-initiated and server-initiated.

From a qualitative point of view, the difference between the client-initiated
and server-initiated approaches lies in how access to stale data is prevented.

158 Chapter 7

Specifically, a data item is considered to be stale if its value is older than the
item’s latest committed value. Consider the concurrency control algorithms
proposed in the previous section, in which data items are tagged with sequence
numbers, and where the sequence number of an item is increased when a trans-
action that has updated the item commits. A copy of a data item is then con-
sidered to be stale, if its sequence number is lower than the latest sequence
number assigned to any copy of the data item.

The client-initiated scheme allows stale data copies to reside in a mobile
client’s cache. The validity of cached data items are checked when they are ac-
tually used by a transaction [21,22]. As a result, mobile clients are responsible
for checking the consistency of data. The client-initiated scheme is so named
because the validity checking of cached data is explicitly performed by mobile
clients.

In contrast, under the server-initiated scheme, the consistency of data copies
at mobile clients is maintained by the server, with periodic or aperiodic broad-

Data Management via Broadcasting 159

casting messages [12,23,24,25]. As a result, most of cached data at mobile
clients are likely to have up-to-date value. However, the consistency of cached
data is not strictly guaranteed, because there exists an interval for a committed
updated transaction until it is notified to mobile clients.

The main argument for the client-initiated scheme is that mobile clients can-
not execute transactions with stale data copies, as mobile clients check the
validity of data whenever they are accessed by transactions. With the client-
initiated scheme, stale data copies in mobile clients’ cache are detected imme-
diately during the execution of transactions, thus aborts can be avoided. The
disadvantage of the client-initiated scheme, however, is increased communi-
cations between mobile clients and servers, especially uplink communications
which occurs whenever cached copies are accessed. This can result in signifi-
cant performance overhead, considering the asymmetric environment of wire-
less channel.

On the other hand, the server-initiated scheme does not require any uplink
communication for the consistency check, although the consistency of cached
data is not strictly guaranteed. Because the server is responsible for main-
taining the consistency, mobile clients just listen for consistency information
broadcasted from the server, instead of sending messages to check the valid-
ity. If a transaction accesses data which has been updated in the server. If the
mobile client is not yet informed the update, the transaction will be aborted, as
the inconsistency is detected at the end of the transaction.

5.2 Point of Consistency Action

The second level of differentiation for the taxonomy is based on the strategy
which is adopted to check the validity of data items which are accessed by
an active transaction (client-initiated scheme), or to send information about
updated data items by the server (server-initiated scheme).

At first, the client-initiated scheme can be classified based on the time when
mobile clients check the consistency of data touched by a transaction. The
client-initiated scheme does not guarantee the consistency of data in mobile
clients’ cache, and as a result, the consistency of data items accessed by a
transaction must be determined before the transaction can be allowed to com-
mit. Thus, the consistency checks should begin and complete during the exe-
cution of a transaction. In the taxonomy, there are two classes of consistency
checking strategies: Synchronous and Asynchronous.

Synchronous Checking On the first access that a transaction makes to a par-
ticular data item, the mobile client must communicate with the server to ensure
that its copy of the item is valid [21,22]. In immediate checking scheme, this
is done in a synchronous manner - the transaction is not allowed to access the
data item until its validity has been verified. Once the validity of the mobile

160 Chapter 7

client’s copy of the data has been established, the copy is guaranteed to remain
valid at least until the transaction completes. The main argument of the im-
mediate checking scheme is the strict consistency of accessed data. When a
transaction completes all operations with the immediate checking scheme, it is
always guaranteed that all data accessed by the transaction is valid, and as a
result, can be committed. However, such guarantee of consistency is achieved
at the cost of increased communications with the server.

Asynchronous Checking Delayed checking is an optimistic approach com-
pared to the immediate checking. No consistency action is sent to the server
until the transaction has completed its operations and is ready to commit. At
this point, information on all the data items read and written by the transac-
tion is sent to the server, and the server determines whether or not the trans-
action should be allowed to commit. This scheme can have two advantages.
First, consistency actions can be bundled together in order to reduce consis-
tency maintenance overhead. Secondly, any consistency maintenance work
performed for a transaction that ultimately aborts is wasted; delayed checking
can avoid some of this work. The main disadvantage of the scheme is, however,
that the delay can result in the late detection of data conflicts. The resolution
of inconsistency that are detected after they have occurred typically requires
aborting one or more transactions.

On the other hand, in the server-initiated scheme, the server sends the con-
sistency information to mobile clients by broadcasting messages, and in the
taxonomy, we classified the server-initiated scheme into three classes based on
the point at which such broadcasting messages are sent: synchronous broad-
casting, asynchronous broadcasting and hybrid broadcasting.

Synchronous Broadcasting The synchronous broadcasting method is based
on periodic broadcasting of invalidation reports. The server keeps track of the
data items that are recently updated, and broadcast these information periodi-
cally. With this scheme, at a periodic broadcasting point, the server sends the
list of data items which have been updated after the last broadcasting point.
Since the broadcasting occurs periodically, the message overhead for the syn-
chronous broadcasting scheme can be stable, and as a result, the communica-
tion overhead on wireless network is relatively low. However, it cannot adapt
to the update frequency, and as a result, many cached copies at mobile clients
can have inconsistent value, when frequent updates by transactions exist. A
mobile client has to listen to the report to decide whether its cache is valid or
not. Thus, each mobile client is confident for the validity of of its cache only
as of the last invalidation report. That adds some latency to query processing,
since to answer a query, a mobile client has to wait for the next invalidation re-

Data Management via Broadcasting 161

port. This overhead in query latency can be avoided if a less strict consistency
model is adopted. Three synchronous broadcasting strategies have been pro-
posed in [12]. In the broadcasting timestamps strategy, the invalidation reports
contain the timestamps of the latest change for data items updated in the last
w seconds. In the amnestic terminals strategy, the server only broadcasts the
identifiers of data items changed since the last invalidation report. In the signa-
ture strategy, signatures are broadcasted. A signature is a checksum computed
over the value of a number of data items by applying compression technique.

Asynchronous Broadcasting The consistency information can be broadcasted
immediately after changes to data items occur, in order to adapt to update fre-
quency by transactions. This approach is called the asynchronous broadcasting
scheme, which is proposed in the following section. With the asynchronous
broadcasting scheme, the server can adjust the broadcasting period according
the frequency of updates on data items, and as a result, is effective for con-
nected mobile clients, and allows them to be notified immediately of updates.
However, for a mobile client who reconnects after a period of disconnection,
the client has no idea of what has been updated and so the entirety of its cache
content has to be invalidated. An asynchronous technique based on bit se-
quences has been proposed in [23]. In this strategy, the invalidation report is
organized as a set of bit sequences with an associated set of timestamps. Each
bit in the sequence represents a data item in the database. The set of bit se-
quences is organized in a hierarchical structure. It is shown that the algorithm
performs consistently well under conditions of variable update rate and client
disconnection time.

Hybrid Broadcasting The hybrid broadcasting scheme is an hybrid approach
between synchronous and asynchronous broadcasting. In order to adapt to the
caching pattern of each data item, this scheme selects asynchronous broad-
casting for widely cached data items. and synchronous broadcasting for exclu-
sively used data items [24]. As a result, this scheme can reduce communication
overhead which is indispensable for the asynchronous broadcasting, while still
adapting to the update frequency.

5.3 Consistency Action at Mobile Clients

The next level of differentiation for the taxonomy is consistency action
which is performed at mobile clients when they receive the broadcasted consis-
tency information. This level of differentiation is applicable only to the server-
initiated schemes, and there are two options here: invalidation and propaga-
tion.

162 Chapter 7

Invalidation With the invalidation scheme, when mobile clients receive the
list of updated data items which is broadcasted from the server, they remove
the stale copy of data items from the cache, so it will not be accessed by any
subsequent transactions. After a data item is invalidated at a mobile client, a
subsequent transaction that wishes to access the data item at that mobile client
must obtain a new copy from the server. The invalidation scheme is adopted
in most of cache consistency algorithms proposed for mobile environments
[12,22,23,24].

Propagation Propagation results in the newly updated value being installed
at the mobile client in the place of stale copy [21,22,25]. In this way, mobile
clients do not have to request newly updated data to the server. However,
transmitting the updated value of data items may be an overhead in terms of
wireless communication. Thus, most of propagation schemes are proposed
for the traditional wired client-server database systems. There is a tradeoff
between invalidation and propagation. Under the propagation strategy, when
disconnection time is short, mobile clients can update their cache immediately.
Under invalidation strategy, mobile clients must still submit requests to retrieve
the updated records even if the disconnection is short. However, under the
propagation strategy, since the entire content of a data item is broadcasted, the
report is much larger and can take up a significant portion of downlink channel
capacity which is a scarce resource in mobile computing environments.

6. CONCLUSIONS

This chapter investigated a range of data management techniques which
utilize broadcasting facility in mobile computing environments. Three main
research topics were addressed: concurrency control, data dissemination and
cache consistency. Broadcasting approach to transmit information to numer-
ous concurrent mobile clients is attractive in mobile computing environment,
because a server need not know the location and the connection status of its
clients, and because the clients need not establish an uplink connection which
is expensive in asymmetric communication environment. In this chapter, we
presented design spaces of various algorithms proposed in those research top-
ics. These taxonomies can be used to help understanding the design alterna-
tives and performance tradeoffs of those algorithms.

REFERENCES

[1] R.E. Gruber, “Optimism vs. Locking: A Study of Concurrency Control
for Client-Server Object-Oriented Databases,” Ph.d. Thesis, Dept. of

Data Management via Broadcasting 163

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1997.

I. Chung, J. Lee and C.-S. Hwang, “A Contention Based Dynamic Con-
sistency Maintenance for Client Cache,” in Proc, of International Con-
ference on Information and Knowledge Management, 1997, pp. 363-370.

J. Jing, O. Bukhres and A. Elmgamid, “Distributed Lock Management
for Mobile Transactions,” in Proc. of IEEE International Conference on
Distributed Computing Systems, 1995, pp. 118-125.

P. Reddy and M. Kitsuregawa, “Speculative Lock Management to In-
crease Concurrency in Mobile Environments,” in Proc. of International
Conference on Mobile Data Access, Lecture Note in Computer Science,
vol. 1748, Springer, 1999, pp. 82-96.

Q. Lu and M. Satyanarayanan, “Resouese Conservation in a Mobile
Transaction System,” IEEE Transactions on Computer, vol. 46, no. 3,
1997, pp. 299-311.

A.K. Elmagarmid, J. Jing and O.A. Bukhres, “An Efficient and Reli-
able Reservation Algorithm for Mobile Transactions,” in Proceedings of
International Conference on Information and Knowledge Management,
1995, pp. 90-95.

D. Barbara, “Certification Reports: Supporting Transactions in Wire-
less Systems,” in Proceedings of IEEE International Conference on Dis-
tributed Computing Systems, 1997, pp. 466-473.

V.C.S. Lee and K.-W. Lam, “Optimistic Concurrency Control in Broad-
cast Environments: Looking Forward at the Server and Backward at the
Clients,” in Proceedings of International Conference on Mobile Data
Access, Lecture Note in Computer Science, vol. 1748, Springer, 1999,
pp. 97-106.

J. Shanmugasundaram, A. Nithrakashyap and R. Sivasankaran, “Effi-
cient Concurrency Control for Broadcast Environments,” in Proceedings
of ACM SIGMOD International Conference on Management of Data,
1999, pp. 85-96.

I. Chung and C.-S. Hwang, “Increasing Concurrency of Transactions us-
ing Delayed Certification,” in Proceedings of International Conference
on Mobile Data Management, 2001, pp. 277-278.

E. Pitoura and P.K. Chrysanthis, “Exploiting Versions for Handling Up-
dates in Broadcast Disks,” in Proceedings of International Conference
on Very Large Databases, 1999, pp. 114-125.

164 Chapter 7

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Barbara and T. Imielinsky, “Sleepers and Workaholics: Caching Strat-
egy in Mobile Environments,” VLDB Journal, vol.4, no.4, 1995, pp. 567-
602.

K.L. Tan and B.C. Ooi, “Batch Scheduling for Demand-driven Servers in
Wireless Environments,” Information Sciences, vol. 109, 1998, pp.281-
198.

T. Imielinski, S. Viswanathan and B.R. Badrinath, “Energy Efficient In-
dexing on Air,” in Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, 1994, pp. 25-36.

N. Vaidya and S. Hameed, “Scheduling Data Broadcast in Asymmetric
communication environments,” ACM/Baltzer Wireless Networks, vol. 5,
no. 3, 1999, pp. 171-182.

E. Pitoura and P.K. Chrysanthis, “Scalable Processing of Read-Only
Transactions in Broadcast Push,” in Proceedings of International Con-
ference on Distributed Computing Systems, 1999, pp. 432-439.

S. Acharya, R. Alonso, M.J. Franklin and S.B. Zdonik, “Broadcast
Disks: Data Management for Asymmetric Communications Environ-
ments,” in Proceedings of ACM SIGMOD International Conference on
Management of Data, 1995, pp. 199-210.

S. Acharya, M. Franklin and S. Zdonik, “Balancing Push and Pull for
Data Broadcast,” in Proceedings of ACM SIGMOD International Con-
ference on Management of Data, 1997, pp. 183-194.

K. Stathatos, N. Roussopoulos and J.S. Baras, “Adaptive Data Broad-
cast in Hybrid Networks,” in Proceedings of International Conference
on Very Large Data Bases, 1997, pp. 326-335.

A. Datta, A. Celik, J. Kim, D. Vander and V. Kumar, ”Adaptive Broad-
cast Protocols to Support Efficient and Energy Conserving Retrieval
from Databases in Mobile Computing Environments,” in Proceedings
of International Conference on Data Engineering, pp.124-133, 1997.

M.H. Wong and W.M. Leung, “A Caching Policy to Support Read-only
Transactions in a Mobile Computing Environment,” Technical Report,
Dept. of Computer Science, The Chinese Univ. of Hong Kong, 1995.

W.-C. Peng and M.-S. Chen, “A Dynamic and Adaptive Cache Retrieval
Scheme for Mobile Computing,” in Proceedings of IFCIS International
Conference on Cooperative Information Systems, 1998, pp. 251-259.

Data Management via Broadcasting 165

[23]

[24]

[25]

J. Jing, A. Elmagarmid, A. Helal and A. Alonso, “Bit Sequences: An
Adaptive Cache Invalidation Method in Mobile Client/Server Environ-
ments,” Mobile Networks and Applications, vol. 2, no. 2, 1997, pp. 115-
127.

I. Chung, J. Ryu and C.-S. Hwang, “Efficient Cache Management Pro-
tocol Based on Data Locality in Mobile DBMSs,” in Current Issues in
Databases and Information Systems, Proceedings of Conference on Ad-
vances in Databases and Information Systems, Lecture Note in Com-
puter Science, vol. 1884, Springer, 2000, pp. 51-64.

J. Cai, K.L. Tan and B.C. Ooi, “On Incremental Cache Coherency
Schemes in Mobile Computing Environment,” in Proceedings of Inter-
national Conference on Data Engineering, 1997, pp. 114-123.

