
CERIAS Tech Report 2002-64
On-Demand Media Streaming Over the Internet

 by M Hefeeda, B Bhargava
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



On-Demand Media Streaming Over the Internet

Mohamed M. Hefeeda and Bharat K. Bhargava
CERIAS and Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

{mhefeeda, bb}@cs.purdue.edu

Abstract

We propose a new model for on-demand media stream-
ing centered around the peer-to-peer (P2P) paradigm. The
proposed P2P model can support a large number of clients
with a low overall system cost. The P2P model allows for
peers to share some of their resources with the system and
in return, they get some incentives or rewards. We describe
how to realize (or deploy) the proposed model. In addition,
we present a new dispersion algorithm (for disseminating
the media files into the system) and a searching algorithm
(for locating peers with the required objects).

We demonstrate the potential of the P2P model as an
infrastructure for a large-scale on-demand media stream-
ing service through an extensive simulation study on large,
Internet-like, topologies. Starting with a limited stream-
ing capacity (hence, low cost), the simulation shows that
the capacity is rapidly increased and many clients can be
served even if they come according to different arrival pat-
terns such as constant rate arrivals, flash crowd arrivals,
and Poisson arrivals.

1. Introduction

Streaming multimedia files to a large number of cus-
tomers imposes a high load on the underlying network and
the streaming server. The voluminous nature of the multi-
media traffic along with its timing constraints make deploy-
ing a large-scale, cost effective, media streaming architec-
ture over the current Internet a challenge.

The current media streaming architectures are mainly
composed of a streaming entity and a set of requesting
clients. The supplying entity could be one server, a set
of servers, a set of servers and caches, or a set of servers
and proxies. This entity is responsible for providing the
requested media files to all clients. The total number of
concurrent clients the system can support, called the overall
system capacity, is limited by the resources of the stream-

ing entity. The limitation mainly comes from the out bound
network bandwidth, but it could also be due to the process-
ing power, memory size, or the I/O speed of the server ma-
chine. For instance, a streaming server hooked to the Inter-
net through a T3 link (∼ 45 Mb/s) would be able to support
up to 45 concurrent users requesting a media file recorded
at 1 Mb/s. These approaches have limitations in reliability
and scalability. The reliability concern arises from the fact
that only one entity is feeding all clients, i.e., a single point
of failure. The scalability of these approaches is not on a
par with the requirements of a media distribution service
that spans Internet-scale potential users, since adding more
users requires adding a commensurate amount of resources
to the supplying server.

Whereas deploying proxies and caches at several loca-
tions over the Internet increases the overall system capacity,
it multiplies the overall system cost and introduces many
administrative challenges such as cache consistency and
load balancing problems. The system capacity is still lim-
ited by the aggregate resources of the caches and proxies.
This shifts the bottleneck from one central point to a “few”
distributed points, but it does not eliminate it.

We propose a peer-to-peer (P2P) media distribution
model that can support a large number of clients with a low
overall system cost. The key idea of the model is that peers
share some of their resources with the system. In return,
they get incentives or rewards from the service provider. As
peers contribute resources to the system, the capacity in-
creases and more clients can be served. By properly moti-
vating peers, the service provider can achieve a large system
capacity with a relatively small initial investment. A peer-
to-peer architecture has the potential to provide the desired
large-scale media distribution service.

There is a difference between a file-sharing system and
a media streaming system [12]. In file-sharing systems, a
client first downloads the entire file before using it. The
shared files are typically small (few Mbytes) and take a rel-
atively short time to download. A file is stored entirely by
one peer and hence, a requesting peer needs to establish

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE



only one connection to download it. There are no timing
constraints on downloading the fragments of the file, rather
the total download time is more important. This means
that the system can tolerate inter-packet delays. In media
streaming systems, a client overlaps downloading with the
consumption of the file. It uses one part while downloading
another to be used in the immediate future. The files are
large (on the order of Gbytes) and take long time to stream.
A large media file is expected to be stored by several peers,
which requires the requesting peer to manage several con-
nections concurrently. Finally, timing constraints are cru-
cial, since a packet arriving after its scheduled play back
time is useless and considered lost.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the P2P model. Section 3 presents the pro-
tocol to be run by a participating peer in the system. The
architecture along with the searching and dispersion algo-
rithms are presented in Section 4. The simulation study is
presented in Section 5. Section 6 summarizes the related
research effort. Section 7 concludes the paper and proposes
future extensions for this research.

2. P2P Model for Media Streaming

In the P2P model, a peer may act as a client and/or as
a mini-server. As a client, it requests media files from the
system. A peer may opt to store segments of the media files
that it has already consumed for a specific period of time.
As a mini-server, it can provide these segments to other
requesting peers in the system. We emphasize the minia-
ture attribute of the mini-server, since the peer was never
intended to function as a full server. Instead, it serves a
few peers for a limited duration. Each of these mini-servers
adds only a little to the overall system capacity. Combining
a large number of them can significantly amplify the capac-
ity of the system. Peers join the system along with their
resources. More cooperating peers results in an increase in
the system capacity. This leads to a scalable system that can
potentially support an enormous number of clients.

The system as a whole benefits from the cooperative
peers. A well designed peer-to-peer system should provide
sufficient incentives to motivate peers to share their stor-
age capacity as well as their network bandwidth. In a recent
study of two popular peer-to-peer file sharing systems (Nap-
ster and Gnutella), Saroui et al. [11] discovered that peers
tend to avoid sharing their resources without enough incen-
tives. The incentives may include lower rates ($/Byte) for
those who store and supply media files to other peers in the
system. Another way to encourage peers to share their re-
sources is the “rewards for sharing” mechanism [5]. By this
mechanism, points or credits are given to a cooperative peer
as it increases the sharing. Consuming peers, get penalized
by paying more to get resources from the system. In [6],

we propose and analyze a simple revenue sharing incentive
mechanism by which a service provider can motivate peers
to contribute resources to the system.

2.1. The Model

The P2P model consists of a set of peers. We have a set
of seeding peers that provide or seed the newly published
media files into the system. They stream these files to a
limited number of peers, which in turn, will feed another set
of peers. After a short period of time, the system will have
sufficient peers that already have the newly published media
to satisfy almost all requests for the file without having to
overload the seeding peers. We formally define the entities
involved in our model as well as their roles and how they
interact with each other in the following.

1. Peers. This is the set of nodes currently participat-
ing in the system. We denote P = {P1, P2, · · · , PN }
as the set of all peers in the system. Every peer
Pi, 1 ≤ i ≤ N , specifies three parameters: (1) Ri

(in Kb/s), the maximum rate peer Pi is willing to share
with others; (2) Gi (in bytes), the maximum storage
space the peer is willing to allocate to store segments
of one or more media files; and (3) Ci, the maximum
number of concurrent connections that can be opened
to serve requesting peers. By using these three param-
eters, a peer has the ability to control its level of coop-
eration with other peers in the system.

2. Seeding peer. One of the peers or a subset of them
may seed the new files into the system. We chose the
name seeding peers to indicate that their main func-
tionality is to initiate the service and not to serve all
clients at all times.

3. Stream. A stream is a time-ordered sequence of pack-
ets belonging to a specific media file. This sequence of
packets is not necessarily downloaded from the same
serving node. Neither is it required to be downloaded
in order. It must be displayed by the client in a specific
order. It is the responsibility of the scheduler to down-
load the packets from a set of possible nodes before
their scheduled display time to guarantee non disrup-
tive playing of the media.

4. Media files. The set of movies currently available in
the system. Every movie has a size in bytes, and is
recorded at a specific bit rate R Kb/s. A media file is
divided into N segments. A segment is the minimum
unit which a peer can cache. A supplying peer may
provide the cached copy of the segment at a rate lower
than the required rate R. In general, one segment can
be streamed to the requesting peer from multiple peers

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE



at the same time. According to our protocol (see Sec-
tion 3), every peer will supply a different piece of the
segment proportional to its streaming rate.

3. P2P Streaming Protocol

In this section, we describe the building blocks of the
protocol used by a participating peer in the system. The
protocol is composed of three phases and is to be run by
a peer requesting a media file (pseudo code is give in [6]).
In phase I, the requesting peer checks for the availability of
the desired media file in the system. The phase starts with a
crucial searching step. We describe the searching technique
in Section 4.

The information returned by the searching step is ar-
ranged into a two-dimensional table. Each row j of the
table contains peers that are currently caching segment sj

of the requested file. Certain information about each peer
is stored; e.g., its IP address, the available streaming rate,
and some reliability information from the peer’s history.
Each row is then sorted to select the most suitable peers
to stream from. Several criteria can be used for sorting,
such as proximity to the client (in terms of network hops),
available streaming rate, and peer’s average on-line time. A
weighted sum of some (or all) criteria could also be used. In
our experiments, we use the proximity as the sorting crite-
rion. This reduces the load on the network, since traffic will
traverse fewer domains. In addition, the delay is expected
to be shorter and less variable, i.e., smaller jitter. Phase I
ends with a verification step to make sure that all segments
are available. Otherwise, the requesting client backs off and
tries later after exponentially increasing the waiting time.

The streaming phase starts only if phase I successfully
finds all segments. Phase II streams segment by segment. It
overlaps the streaming of one segment with the consump-
tion of the previous segment. The playback of the media
file starts right after getting the first segment. Because of
the variability in network and peer conditions, buffering few
segments ahead would result in a better playback of the me-
dia file. The buffering time can hide transient extra delays in
packet arrivals. In case that one of the supplying peers fails
or goes off line, this buffering time may hide delays due
to finding and connecting to another peer from the standby
table.

For every segment sj , the protocol concurrently connects
to all peers that are scheduled to provide pieces of that
segment. The connections remain alive for time δ, which
is the time to stream the whole segment. Different non-
overlapping pieces of the segment are brought from differ-
ent peers and put together after they all arrive. The size
of each piece is proportional to the rate of its supplying
peer. Let us define P

j as the set of peers supplying seg-
ment j. If a peer Px ∈ P

j has a rate Rx ≤ R, it will pro-

vide |sj |(Rx/R) bytes starting at wherever peer Px−1 ends.
Since every peer supplies a different piece of the segment

and
∑|Pj |

x=1 |sj |(Rx/R) ≥ |sj |, all pieces of the segment
will be downloaded by the end of the δ period.

Finally, in phase III, the peer may be allowed to cache
some segments. This depends on the dispersion algorithm
used. We present dispersion algorithms in Section 4.

4. Architecture

Two approaches may be used to realize the P2P stream-
ing service model. The first approach relies on having a
special entity to maintain information about the currently
participating peers. We call it the index approach. If the
seeding entity is a set of servers owned by a provider, the
index will typically be maintained by this set of servers.
The details of this approach are in the following subsec-
tions. The second approach does not assign special roles
to any peer. It needs to logically interconnect peers in the
system, we call this the overlay approach. We are currently
working out the details of this approach. Both approaches
follow the P2P paradigm, in which peers help each other in
providing the streaming service. The two approaches are
different in handling the preparatory steps of the stream-
ing phase. The most important of these steps are: locating
peers with the required media file (searching), and quickly
disseminating media files into the system (dispersion).

Before we present the index approach, we describe the
client clustering idea, which is a key issue in the architec-
ture. A cluster is defined as a logical grouping of clients
that are topologically close to each other and likely to be
within the same network domain [7]. It is highly beneficial
for both the client and the network if a request can be ful-
filled by peers within the same domain. For the network, it
means that the traffic will travel fewer hops and hence will
impose less load on the backbone links. The traffic delay
will be shorter and less variable within the same domain,
which is a desirable property for the streaming service.

We use a client clustering technique similar to the one
proposed in [7]. The technique uses routing tables gath-
ered from several core BGP routers. Client IP addresses
that have the same longest prefix match with one of the
routing table entries are assigned the same cluster ID. To il-
lustrate the idea, consider five peers P1, P2, P3, P4, and P5,
with IP addresses 128.10.3.60, 128.10.3.100, 128.10.7.22,
128.2.10.1 and 128.2.11.43, respectively. Suppose that
among many entries in the routing tables, we have the fol-
lowing two entries: 128.10.0.0/16 and 128.2.0.0/16. The
first three peers (all within Purdue University) share the
same prefix of length 16 with the entry 128.10.0.0/16
(Purdue domain) and a prefix of length 12 with the en-
try 128.2.0.0/16 (CMU domain). Therefore, peers P1, P2,
and P3 will be grouped together in one cluster with ID

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE



128.10.0.0/16. Similarly, peers P4 and P5 will be grouped
together in another cluster with ID 128.2.0.0/16. Notice
that, using the same idea, a finer clustering within the same
domain is also possible. For instance, P1 and P2 may be
grouped in a smaller cluster with ID 128.10.3.0/24. This
clustering technique does not incur much overhead, since it
is performed once when the peer first joins the system.

4.1. Index Approach

The index approach requires one (or a small subset) of
the participants to maintain an index to all other peers in the
system. The index can be maintained by the same machine
seeding the media files, or by a separate machine. In any
case, we call the maintainer of the index as the index server.
This approach may be described as a hybrid scheme because
the streaming process is peer-to-peer, while the searching
and the dispersion processes are server-assisted. The main
role of this special node is not to provide the streaming ser-
vice, but to facilitate the searching and the dispersion pro-
cesses. The load, in terms of CPU, bandwidth, and stor-
age, imposed by the control information required by the
searching and dispersion processes is a small fraction of
the load imposed by the streaming service. To some ex-
tent, this alleviates the scalability and the single point of
failure concerns that typically arise in such architectures.
This approach greatly simplifies the searching process and
reduces the overhead associated with it. Without the index,
the overhead traffic puts a non-negligible load on the sys-
tem. The index approach is practically easier and faster
to deploy and more appropriate for a commercial media
provider, since a commercial media provider would keep
a server for accounting and charging customers and to seed
the newly available media files into the system.

4.1.1 Index Searching

A key issue in the index approach is to keep the index cur-
rent. First, notice that peers who are currently caching some
of the media files are known to the index. Because they
initially contact the index server to get served those me-
dia files. And, it is the index server that decides for them
what to cache, as explained in the next subsection. Therefor,
the index already knows who has what. The index server,
though, does not know whether a peer is currently on or off
line. Several techniques may be employed to keep the index
up to date. In the case that a peer gracefully shuts down, a
daemon running on the peer can send a notification message
to the index server. Since it is unlikely that too many peers
shut down synchronously, these notification messages will
not cause message implosion at the index server. Another
way to keep the index server current is to have the request-
ing client checks the list of candidate peers returned by the

Algorithm IndexSearch
/* Index server: upon receiving a query from peer Pr */
c ← getCluster(Pr)
for j = 1 to N do /* for every segment in the file */

candList[j] ← peers in c that have segment sj

if
∑

Px∈candList[j] Rx < R then
if Peers from other clusters can provide the shortage then

Append to candList[j] sufficient peers from the closest clusters
else

return empty list to Pr /* Pr backs off */
end if

end if
end for
return candList to Pr

Figure 1. Index-based Searching algorithm

index server by, for example, pinging them. The client then
reports to the index server the status of all peers in the can-
didate list in one message.

Figure 1 summarizes the searching process in the index
approach. We assume that the index server gets the BGP
routing tables and builds the clustering database apriori.
Upon receiving a query from a client asking for a specific
file, the index server first identifies the cluster to which the
client belongs. If peers within the same cluster can satisfy
the request, those peers will be returned to the client as a
set of candidates to stream the request. Otherwise, peers
from the closest clusters are chosen to serve the request. To
find the closest clusters in terms of network hops, the same
clustering idea can be applied recursively, that is, several
smaller clusters are grouped together into a larger cluster
if they share the same common network prefix. The in-
dex server, then, tries to satisfy the client’s request from the
larger cluster. For example, if we have peers P1, P2, P3, P4,
and P5, as described above, and P1 is requesting a file.
The index server will first try to satisfy the request from
peers located within the cluster with ID 128.10.3.0/24, i.e.,
from peer P2. If P2 can not fulfill the request, the in-
dex server will try peers within the larger cluster with ID
128.10.0.0/16, i.e., from peers P2 and P3. If P2 and P3 can
not fulfill the request, the index server will try to find peers
from other clusters to make up the shortage. If the request
can be fulfilled by any set of peers, this set is returned to the
requesting client as a list of candidate peers. If the system
does not have sufficient capacity, an empty candidate peers
list is sent to the client. The client then backs off and tries
after an exponentially increased waiting time.

4.1.2 Index Dispersion

Caching the right segments of the media file at the right
places is crucial to the incremental expansion of the sys-
tem capacity. The objective of the dispersion algorithm is
to store enough copies of the media files in each cluster to
serve all expected client requests from that cluster. As de-

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE



scribed in [6], peers are given incentives to cooperate; espe-
cially, if the service is provided by a commercial provider.
These incentives are costs imposed on the provider. For this
reason, it is important to keep just the required capacity in
the system. To do so, we propose a dynamic dispersion
algorithm that adjusts the capacity within each cluster ac-
cording to the average number of client requests from that
cluster.

The dispersion algorithm works in the following setting.
At a specific instant of time, the system can serve a certain
number of requests concurrently. A client Py sends a re-
quest to the system to get the media file. The client also
declares its willingness to cache up to Ny segments to serve
them to other clients with rate Ry in the future. The dis-
persion algorithm decides whether or not this peer should
cache, and if so, which specific segments it should cache.
The algorithm should ensure that, on the average, the same
number of copies of each segment is cached, since all seg-
ments are equally important. To clarify, consider a file with
only two segments. Keeping 90 copies of segment 1 and
10 copies of segment 2 means that we have effectively 10
copies of the media file available. In contrast, keeping 50
copies of each segment would result in 50 copies of the me-
dia file.

The IndexDisperse algorithm, shown in Figure 2, is
to be run by the index server. Consider one media file with
N segments, rate R Kb/s, and duration T hours. The al-
gorithm requires the index server to maintain three types of
information: per-peer information, per-cluster information,
and per-system (or global) information.

For every peer Px, the index server maintains: (1) Nx,
the number of segments which are currently cached by Px;
(2) Rx, the rate at which Px is willing to stream the cached
segments; and (3) ux, 0 ≤ ux ≤ 1, the fraction of time Px

is online. Recall that the peer is not available all the time.
For every cluster c, the index server maintains the fol-

lowing: (1) Lc, 1 ≤ Lc ≤ N, the next segment to cache.
(2) qc, the average request rate (per hour) the media file is
being requested by clients from c. qc represents the required
capacity in the cluster c per hour. (3) ac, the average num-
ber of copies of the movie cached by peers in cluster c. c is
computed from the following equation:

ac =
∑

Px in c

Rx

R

Nx

N
ux. (1)

The summation in Equation (1) computes the effective num-
ber of copies available in the cluster. It accounts for two
facts: first, peers are not always online (through the term
ux), and second, peers do not cache all segments at the
full rate (through the term RxNx/RN ). Dividing ac by
T results in the number of requests that can be satisfied per
hour, since every request takes T hours to stream. Hence,

Algorithm IndexDisperse
Lc ← 1, ∀c
while TRUE do

Wait for a caching request
/* Got request from peer Py to cache Ny segments with rate Ry */
c ← getCluster(Py) /* identify client’s cluster */
Compute ac, qc, A, Q
if qc > ac or Q � (1/T )A then /* need to cache in round robin */

if (Lc + Ny − 1) ≤ N then
Le = Lc + Ny − 1

else
Le = Ny − (N − Lc + 1)

end if
Peer Py caches from segment Lc to segment Le

Lc = Le + 1
end if

end while

Figure 2. Index-based dispersion algorithm.

(1/T )ac represents the available capacity in the cluster c
per hour.

The index server maintains two global variables: (1)
A =

∑
c ac, the average number of copies of the movie

cached by all peers in the system. (2) Q =
∑

c qc, the av-
erage movie request rate in the system. Q and (1/T )A rep-
resent the global required capacity and the global available
capacity in the system, respectively.

The algorithm proceeds as follows. Upon getting a re-
quest from peer Py to cache Ny segments, the index server
identifies the cluster c of the requesting peer. Then, it com-
putes ac, qc, A, and Q. The algorithm decides whether Py

caches based on the available and the required capacities in
the cluster. If the demand is larger than the available ca-
pacity in the cluster, Py is allowed to cache Ny segments in
a cluster-wide round robin fashion. To clarify, suppose we
have a 10-segment file. Lc is initially set to 1. If peer P1

sends a request to cache 4 segments, it will cache segments
1, 2, 3, and 4. Lc, the next segment to cache, is now set to
5. Then, peer P2 sends a request to cache 7 segments. P2

will cache segments 5, 6, 7, 8, 9, 10, and 1. Lc is updated to
2, and so on. This ensures that we do not over cache some
segments and ignore others.

Furthermore, the IndexDisperse algorithm accounts
for the case in which some clusters receive low request rates
while others receive very high request rates in a short pe-
riod. In this case, the global required capacity Q is likely to
be much higher than the global available capacity (1/T )A,
i.e., Q � (1/T )A. Therefore, even if the intra-cluster ca-
pacity is sufficient to serve all requests within the cluster,
the peer is allowed to cache if Q � (1/T )A in order to
reduce the global shortage in the capacity. The operator �
used in comparison is relative and can be tuned experimen-
tally.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE



5. Evaluation

We study the performance of the P2P model under
various situations, e.g., different client arrival patterns
and different levels of cooperation offered by peers. We
simulate a large (more than 13,000 nodes) hierarchical,
Internet-like, topology. We use the GT-ITM tool [1] for
generating the topology and the Network Simulator ns-2
[8] in the simulation. Due to space limitations, we present a
sample of the results. The reader is referred to the technical
report [6] for a detailed description of the simulation as
well as more results including results for Poisson and
flash crowd arrivals, and the evaluation of the dispersion
algorithm.

We simulate the following scenario. A seeding peer with
a limited capacity introduces a media file into the system.
According to the simulated arrival pattern, a peer joins the
system and requests the media file. Then, the P2PStream
protocol, described in Section 3, is applied. We do not as-
sess the overhead imposed by the searching step in this set
of experiments. If the request can be satisfied, i.e., there
is a sufficient capacity in the system, connections are es-
tablished between the supplying peers and the requesting
peer. Then, a streaming session begins. The connections
are over UDP and carries CBR traffic. If the requesting
peer does not find all segments with the full rate, it backs
off and tries again after an exponentially increased waiting
time. If the waiting time reaches a specific threshold, the
request is considered “rejected” and the peer does not try
again. When the streaming session is over, the requesting
peer caches some of the segments depending on the level
of cooperation, called the caching percentage. For instance,
if the caching percentage is 10% and the media file has 20
segments, the peer stores two randomly-chosen segments.
The peer also selects a rate at which it wants to stream the
cached segments to other peers.

Figure 3 shows how the system capacity evolves over the
time. The average service rate increases with the time, be-
cause as the time passes more peers join the system and con-
tribute resources to serve other requesting peers. The aver-
age waiting time, shown in Figure 4, is decreasing over the
time, even though the system has more concurrent clients.
This is due to the rapid capacity amplification. The capacity
is rapidly amplified, especially with high caching percent-
age. For instance, with 50% caching, the system is able to
satisfy all the requests submitted at 5 requests/minute after
about 250 minutes from the starting point.

Figure 5 verifies the diminishing role of the seeding peer.
Although the number of simultaneous clients increases until
it reaches the maximum (limited by the arrival rate), the pro-
portion of these clients that are served by the seeding peer

0

1

2

3

4

5

0 50 100 150 200 250 300 350

A
ve

ra
ge

 s
er

vi
ce

 r
at

e 
(r

eq
ue

st
/m

in
)

Time (min)

0% caching
10% caching
30% caching
50% caching

Figure 3. Average service rate.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

A
ve

ra
ge

 w
ai

tin
g 

tim
e 

(m
in

)

Time (min)

0% caching
10% caching
30% caching
50% caching

Figure 4. Average waiting time.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

Se
ed

 s
er

ve
r 

lo
ad

 (
%

)

Time (min)

0% caching
10% caching
30% caching
50% caching

Figure 5. Load on the seeding peer.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE



decreases over the time, especially with high caching per-
centages. For instance, with 50% caching and after about 5
hours, we have 100 concurrent clients (6.7 times the orig-
inal capacity) and none of them is served by the seeding
peer. Reducing the load on the seeding peers is an impor-
tant feature of the P2P streaming architecture, because it
means that the seeding peers need not to be powerful ma-
chines with high network connectivity. Besides being mod-
erate machines, the seeding peers are used only for a short
period of time. Therefore, the cost of deploying and run-
ning these seeding peers (in case of a commercial service)
is greatly reduced.

6. Related Work

Significant research effort has addressed the problem of
efficiently streaming multimedia, both live and on demand,
over the best-effort Internet. Directly related to our work
are systems like SpreadIt [2] for streaming live media and
CoopNet [10], [9] for both live and on-demand streaming.
Both systems build distribution trees using application-layer
multicast and, like ours, they rely on cooperating peers.
Multicast (network- or application-layer) is the basis for
several other media delivery systems [3] [4]. Our work is
different from these systems, since we do not use multi-
cast in any form and our system is more appropriate for on-
demand media service.

In the client/server world, proxies and caches are de-
ployed at strategic locations in the Internet to reduce and
balance load on servers and to achieve a better service. Con-
tent Delivery Network (CDN) companies such Akamai and
Digital Island follow similar approaches to provide media
streaming and other services. Our approach does not re-
quire any powerful proxies or caches. Rather, it uses peers’
extra resources as numerous tiny caches. These tiny caches
do not require large investment and collectively enlarge the
capacity of the system in a way that potentially outperforms
any powerful caches.

7. Conclusions and Future Work

We presented a P2P media streaming model that can
serve many clients in a cost effective manner. We presented
the details of the model and showed how it can be deployed
over the current Internet. Specifically, we presented a P2P
streaming protocol used by a participating peer to request
a media file from the system; a cluster-based dispersion al-
gorithm, which efficiently disseminates the media into the
system; and a searching algorithm to locate nearby peers
who have segments of the requested media file. Through a
large-scale simulation, we showed that our model can han-
dle several types of client arrival patterns, including sud-
denly increased arrivals, i.e., flash crowds.

We are currently embarking on implementing a proto-
type of the P2P media streaming system. The objective is
to better assess to the proposed model and to demonstrate
its applicability for a wide deployment. Addressing the se-
curity and robustness issues of the model are parts of our
future work.

Acknowledgments

This research is sponsored in part by the National Sci-
ence Foundation grants CCR-991712 and CCR-001788,
and CERIAS.

References

[1] K. Calvert, M. Doar, and E. Zegura. Modeling inter-
net topology. In IEEE Communications Magazine, pages
35:160–163, 1997.

[2] H. Deshpande, M. Bawa, and H. Garcia-Molina. Stream-
ing live media over peer-to-peer network. Technical report,
Stanford University, 2001.

[3] A. Dutta and H. Schulzrinne. A streaming architecture for
next generation internet. In Proc. of ICC’01, Helsinki, Fin-
land, June 2001.

[4] L. Gao and D. Towsley. Threshold-based multicast for con-
tinuous media delivery. IEEE Transactions on Multimedia,
3(4):405–414, December 2001.

[5] P. Golle, K. Leylton-Brown, and I. Mironov. Incentives for
sharing in peer-to-peer networks. In Proc. of Second work-
shop on Electronic Commerce (WELCOM’01), Heidelberg,
Germany, November 2001.

[6] M. Hefeeda, B. Bhargava, and D. Yau. A cost-effective ar-
chitecture for on-demand media streaming. Technical report,
CERIAS TR 2002-20, Purdue University, November 2002.

[7] B. Krishnamurthy and J. Wang. On network-aware cluster-
ing of web clients. In Proc. of ACM SIGCOMM’00, Stock-
holm, Sweden, August 2000.

[8] The network simulator. http://www.isi.edu/nsnam/ns/.
[9] V. Padmanabhan and K. Sripanidkulchai. The case for co-

operative networking. In Proc. of 1st International Work-
shop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA,
USA, March 2002.

[10] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative net-
working. In Proc. of NOSSDAV’02, Miami Beach ,FL, USA,
May 2002.

[11] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of Mul-
timedia Computing and Networking (MMCN02), San Jose,
CA, USA, January 2002.

[12] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On
peer-to-peer media streaming. In Proc. of IEEE ICDCS’02,
Vienna, Austria, July 2002.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) 

0-7695-1910-5/03 $17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


