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Abstract

We design and implement a linear hash algorithm in nested transaction environment to handle large amount of data with in-

creased concurrency. Nested transactions allow parallel execution of transactions, and handle transaction aborts, thus provides

more concurrency and efficient recovery. We use object-oriented methodology in the implementation which helped in designing the

programming components independently. In our model, buckets are modeled as objects and linear hash operations are modeled as

methods. The papers contribution is novel in the sense that the system, to our knowledge, is the first to implement linear hashing in a

nested transactions environment. We have build a system simulator to analyze the performance. A subtle benefit of the simulator is

that it works as the real system with only minor changes.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Nested transaction processing and concurrency con-
trol (Moss, 1985) issues play a major role in providing
higher concurrency and better handling of transactions
abort and hence have been an important area of research
in database systems. Such a mechanism allows for the
dynamic decomposition of a transaction into a hierarchy
of subtransactions thereby preserving all properties of a
transaction as a unit and assuring atomicity and iso-
lated execution for every individual subtransaction. The
motivation for using nested transactions is to allow
transactions to exploit parallelism that might naturally
occur within themselves. The benefits of parallel execu-
tion of transactions include performance improvements
and better control over recovery.

Attention is being given to the designing of concur-
rency control algorithms which take advantage of the
knowledge of particular data structures and the se-
mantics of operations such as insert, delete, find, etc. to
improve availability and expedite accesses. Data struc-

tures that have been studied with above in mind are B-
trees (Sagiv, 1985; Lehman and Yao, 1981) and hashing
techniques (Enbody and Du, 1988; Kumar, 1989; Lar-
son, 1988; Ellis, 1987; Mohan, 1993).

Hashing is one of many addressing techniques used to
find a record based on its unique key value. When a
record is to be updated, the system takes the value of the
key and performs some type of calculations to derive a
target address for the record. Among various hashing
techniques, Linear Hashing (Ellis, 1987; Hsu et al.,
1990) is interesting because of its simplicity, ability to
handle large amount of data with increased concur-
rency, and is known to be very fast in retrieving data.
Linear Hashing allows storing records in a file without
changing significantly its access time, independently of
the number of record insertions or deletions that occur
in it (Baeza-Yates and Soza-Pollman, 1998).

In Fu and Kameda (1989), B-tree algorithm in nested
transaction environment has been presented to show its
correctness but no implementation issues have been
discussed. In Madria et al. (1998), linear hashing using
nested transactions has been studied only with the aim
of formalizing and proving the correctness of the algo-
rithm using I/O automaton model (Lynch et al., 1994).
In our work, we present a system implementation of a
nested transaction version of the linear hash structure
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algorithm using object-oriented concepts and multith-
reading paradigm. In our model, buckets are modeled
as objects and linear hash operations are modeled as
methods. These methods correspond to nested transac-
tions and are implemented using multithreading para-
digm. To our knowledge, no implementation and the
performance of nested transactions accessing linear hash
structure has been available in literature.

Multithreading is a programming paradigm that al-
lows the application processes to run concurrently.
Multithreading can be used very efficiently to imple-
ment the behaviors of nested transactions. We have
designed and implemented our system using layered
system architecture in a three-tier client/server environ-
ment, which allows more flexibility in term of decom-
posing of application programs whose modules may be
designed and implemented independently. The three-
tiers of the system are split into the client, the database,
and the application server (middleware) that resides
between the client tier and the database tier. The imple-
mentation of our system was done in Microsoft VCþþ
using Microsoft Foundation Class (MFC).

The relationship between a client and a server is
conducted by means of transactions consisting of well-
defined requests and responses. More precisely, client/
server technology is a paradigm or model for the inter-
action between concurrently executing software pro-
cesses.

To test the performance and the efficiency of our
system, we build two simulators; Client simulator and
middleware simulator. They work as the client and the
application server (middleware) applications, respectively.
We randomly generate 10,000 keys accessed by ran-
domly initiated operations (i.e., insert, delete, and find).
More than one client simulator can run on each work-
station whereas only one middleware simulator per
workstation is needed. We test the performance of con-
current operations by reducing the sleep time between
each client�s request in the client simulator.

We run six simulations split into two parts. In the first
part, we test the performance of the system running only
insert operations. In the second part, we test the system
running different operations randomly. We gradually
increase the number of clients, or the number of oper-
ations in each experiment. The experiments mainly de-
pict the performance of the system by presenting the
average concurrency, elapsed time, and the number of
times an operation occurs (operation occurrence).

According to the insert-operation simulation results:
(1) Average concurrency increases proportionately with
the increasing number of clients. (2) Average concur-
rency increases proportionately with the increasing num-
ber of insertions. (3) Elapsed time for the transactions in
the insertions simulations does not change significantly.
(4) Elapsed time does not affect the increasing number of
clients, number of insertions, and the size of the data-

base, (5) Split operation occurrence decreases when the
database becomes larger.

According to our random-operation simulation re-
sults: (1) Average concurrency increases proportionately
when number of clients, and consequently with number
of operations increase. (2) Elapsed time for the trans-
actions in the simulations does not change significantly.
This implies that elapsed time does not affect the in-
creasing number of clients, number of insertions, and
the size of the database. (3) Merge elapsed time is lower
than other operations elapsed time. (4) Average occur-
rence of split and merge operations is only 1% to 2%
and in many cases, it is 0% which makes the system
faster.

Rest of the paper is as follows. In Section 2, we
present an overview of linear hash algorithm. Section 3
discusses our layered system architecture design in a
three-tier client/server environment. Section 4 discusses
the object-oriented implementation of the system. In
Section 5, we present a simulation model to measure the
systems performance and its evaluation. We conclude
the paper in Section 6.

2. Background

2.1. Concurrency in linear hashing

In a linear hash structure (Ellis, 1987), there are pri-
mary buckets where each holds some constant number b
of records. The function h0 : k ! f0; 1; . . . ;N � 1g is
initially used to load the file. There exists a sequence of
functions h1; h2; . . . ; hi; . . ., such that for any key value k,
either hiðkÞ ¼ hi�1ðkÞ or hiðkÞ ¼ hi�1ðkÞ þ 2i�1N , where
N is the initial number of buckets. The hash functions
change as the hash structure grows or shrinks. The op-
erations defined on a linear hash structure are find, in-
sert, delete, split, and merge.

A variable level is used to determine the appropriate
hash function for find, insert, or delete operations. A
pointer called next is used to point to the bucket to be
split or points to the bucket involved in the merge op-
eration. Level and next are both initially set to 0, and
together they referred to as root variables. Each bucket
keeps an additional field local-level that specifies the
hash function appropriate to that bucket. The private
variable lev keeps the value of level at the time root
variables are read. To access a bucket, the process
checks whether lev value matches that buckets local-
level, and if not, it increments lev value and recalculates
the address hlevðkeyÞ until a match is found. This oper-
ation is called rehashing. A process in its search phase
behaves as follows: the root variables are read and
their values determine the hash function to be used
initially. The bucket and hash function are updated as
follows:
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lev ¼ level
bucket no: hlevðkeyÞ

if bucket no: < next then
f

lev! levþ 1
bucket no: hlevðkeyÞ

g
where hlevðkeyÞ ¼ key mod ð2levNÞ

Attempting to insert a key into a full primary bucket
leads to collision. The problem of collision is handled by
creating a chain of overflow bucket associated with that
particular bucket address. If any bucket overflows, the
bucket pointed by the pointer next will be split by
moving some keys from its original bucket to a new
primary bucket to be appended at the end of the hash
file. The split operation is applied cyclically. Split op-
eration increases the address space of primary buckets in
order to reduce the accumulation of overflow chains.
Since the bucket to split is chosen in round-robin fash-
ion, eventually all buckets are split, thereby redistri-
buting the data entries in overflow chains before the
chains get to be more than one or two pages long. All
bucket chains with addresses less than the value of next,
and buckets with addresses greater than or equal to
2levelN have local-level values equal to levelþ 1. All the
buckets in between have local-level ¼ level, which in-
dicates that they have not efficiently been split in the
current round of restructuring.

The next pointer travels from 0 to 2j�1N with hash
function hj. After the split, the next is updated as fol-
lows:

next ðnextþ 1Þ modð2levelNÞ
if next ¼ 0 then level levelþ 1

When a primary bucket becomes empty, a merge
operation is called. Here, the next bucket (that is the
bucket pointed to by pointer next) will be merged
with its partner (where partner ¼ next þ 2levelN ). That
is, keys will be moved from the partner bucket to the
next bucket. After merge the following changes will be
made:

if next ¼ 0 then level level � 1
next ðnext� 1Þ modð2levelNÞ
The goal in (Ellis, 1987) is to allow a high degree of

concurrency among processes executing find, insert, and
delete operations on a shared linear hash file. In linear
hashing algorithm (Ellis, 1987), the find operation can
be performed concurrently with find, insert, delete, and
split operations. Insert and delete operations may op-
erate in parallel if they are accessing different bucket
chains. A split may be performed in parallel with insert
and delete operations that are not accessing the partic-
ular chain being split. No concurrency is possible be-
tween a merge and processes doing find, insert, or delete
operations. That is, these processes can neither access

the two buckets being merged nor they can read the
values of level and next while merging process is using
them. At most, one restructuring operation either merge
or split is executable at a time.

Locking protocol in (Ellis, 1987) uses three types of
locks mode as shown in Table 1. The primary bucket,
and all its overflow buckets are locked as a unit. The find
algorithm uses lock-coupled read-lock on the root vari-
ables and holds the lock until a read-lock is placed on
the bucket. Lock-coupling provides the particular flow
of locking in which next component is locked before
releasing the lock on the current component. The insert
and delete processes hold read-lock on root variables and
selective-lock on buckets with lock-coupling. The split
operation uses selective-lock on the root variables as well
as on the buckets. Exclusive-locks are used on the root
variables and on both the buckets involved in merge
when old overflow buckets are de-allocated. If rehashing
is required, a lock is placed on the subsequent bucket
before the lock is released on the current bucket. The
read-lock on the root variables held by the searching
process prevents a merge from decreasing the size of the
address space (by updating level and next) during the
initial bucket access.

2.2. Linear hash structures in nested transactions envi-
ronment

In Madria et al. (1998), they have presented a nested
transaction version of the concurrency control algo-
rithm using a linear hash structure. Their new algorithm
increases concurrency and handles transaction aborts.
The new algorithm in Madria et al. (1998) has been
formalized using I/O automaton model and it is proved
that the concurrent linear hash structure algorithm in
nested transaction environment is ‘‘serially correct’’.
Our implementation verifies the claim aroused by Ma-
dria et al. (1998). Fig. 1 presents the structure of our
model. The path of the nested transaction tree starts
at the user level to the key level consisting of various
levels of abstraction.

In the nested transaction tree, we have a level of
transaction managers (TMs). Each TM corresponds to
an operation invocation. The scheduler, as shown in
Fig. 1, directs the user-transaction to the appropriate
TM depending on the user�s operation request. User�s

Table 1

The lock compatibility matrix

Lock request Existing locks

Read-

locks

Selective-

locks

Exclusive-

locks

Read-locks Yes Yes No

Selective-locks Yes No No

Exclusive-locks No No No
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request can be any of the operations find, insert, or
delete. TMs can be thought of as separate, concurrently
running processes. Each TM handles transaction-related
processing requests like when transactions are created
and when they are to be committed or aborted. The find
operation is performed logically by an equivalent read-
TM whereas insert and delete operations are performed
by write-TM. The search-read (for find) and search-write
(for insert/delete) are access subtransactions created by
read-TM and write-TM, respectively, to accomplish the
desired operation. Search-read accesses read the target
bucket whereas search-write accesses physically modify
or delete the target bucket. For split and merge opera-
tions, a split-TM and a merge-TM are provided re-
spectively. During an insert operation, an overflow
means a split is required whereas a delete operation may
account for an underflow, which signals the need for
merge. If the root transaction T (at the scheduler) in-
tercepts an ‘‘overflow’’ message, it triggers a split-TM
whereas if it intercepts an ‘‘underflow’’ message, it in-
vokes a merge-TM. These TMs invoke access sub-
transactions of the type split-write and merge-write
respectively to physically accomplish the split and merge
operations. When the key is found, new subtransactions
will be initiated. The read-key and write-key accesses
will be created to read and write the key respectively.
These accesses subtransactions are situated at the leaf
level.

On the system building side, when a user requests an
operation to be performed, the scheduler creates a root
transaction that initiates the corresponding TM to ac-
complish the desired operation. The scheduler deter-
mines the order in which transactions are to be executed.
TMs run independently of each other and the scheduler
works as a connector and synchronizer for the TMs. In
our model, the scheduler holds a lock on the shared
variables level and next, which are referred to as root

variables. The benefit of locking the root variables is due
to ensuring the consistency of the variables level and
next, and to the bucket chains. The value of the root
variables would be returned to the scheduler when a
lock is granted to a transaction. This is called lock-
coupling protocols given in Ellis (1987). The scheduler
receives two types of request from the TMs. A request to
create a transaction (REQUEST-CREATE) or request
to commit a transaction (REQUEST-COMMIT). In
return, the scheduler responds by creating, committing,
or aborting the transaction as shown in Fig. 1. For ex-
ample, when write-TM reports to the scheduler the state
of its current transaction, the scheduler will decide
whether to commit the transaction or initiate split-TM
to perform the split operation. The scheduler controls
operations of the transactions, makes a decision about
the completion of the transaction, reports to their par-
ent (a REPORT-COMMIT or REPORT-ABORT), and
informs objects the fate of the transactions.

When TM receives the transaction from the sched-
uler, it can then initiate various subtransactions, which
are passed to the appropriate bucket containing the
needed data. TM receives back the data from the sub-
transaction, processes the collected data, and may ini-
tiate some more subtransactions if needed.

For the transactions to work concurrently in consis-
tency, Madria et al. (1998) have implemented two levels
of locking mechanism. The first locking level is called
bucket managers (BMs) whereas the other locking level
is called key managers (KMs). BMs grant locks to the
subtransactions, created by TMs, before accessing the
buckets whereas KMs grant locks to the subtransactions
before accessing the keys. This is done to ensure that
changing of data at a vertex is done in an atomic step
to ensure serializability.

A BM handles one bucket and all its overflow buckets
(bucket chain). BM provides the status and the lock type
of each transaction accessing the bucket. BM handles
the transactions by determining the appropriate time to
release each transaction or halting it. In addition, BM
determines whether to execute one transaction or more
depending on each transactions lock type.

Lock management on the root variables and on
buckets is done using Moss�s two-phase locking algo-
rithm (Moss, 1985) and locking algorithm using lock-
coupling protocols given in Ellis (1987), while the locks
on the keys are managed using read/write lock algorithm
(Madria et al., 1998).

3. Architecture of the layered system

We have designed our system as a layered architec-
ture (see Fig. 2) which is compliant with the new model
of the three-tier client/server architecture. Each module
in the layered system is designed and implemented sep-

Fig. 1. Linear hash structure in a nested transaction tree.
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arately. The layered architecture is helpful in the im-
plementation of the nested transactions.

In this section, we will categorize our discussion in
three parts. In the first part, we study the structure of
our model. In the second part, we discuss how the dif-
ferent components in the system communicate among
themselves. Finally, we will discuss the main system
components consisting of insert, delete, and find oper-
ations.

3.1. Three-tier client/server model

Splitting the processing load is a central client/server
concept. Three-tier servers split processing load between
(I) clients running the graphical user interface (GUI)
layer, (II) the application server (or middleware), and
(III) the database server (see Fig. 2).

The architecture of our model consists of seven layers
distributed among our three-tier model. One layer at
the client side, another one at the database server side,
and the remaining layers reside at the application server.
The layers are assembled at the application server which
does all the heavy work. The layer at the client side is
called GUI layer, and the layer at the database server is
called data layer. The layers at the application server
side are ordered as scheduler layer, transaction pro-
cessing monitor (TP monitor) layer, TM layer, BM
layer, bucket object (BO) layer, and finally KM layer
respectively. All layers at the three tiers work in

chronological order to achieve the transactions compu-
tation.

3.1.1. Presentation tier
Presentation tier deals directly with the end-users.

This tier is designed to capture request from the users
via the GUI that resides at the client�s machine. This tier
contains only GUI layer.

3.1.1.1. Graphical user interface layer. In the two-tier
client/server, the majority of the application logic runs
on the client. This architecture is called fat client and
it can request data directly from the server-resident
database. In three-tier client/server, the client is less
engaged as the application logic is moved to the appli-
cation server. This provides better security by not ex-
posing the database schema to the client. The client in
the three-tier client/server is called thin client. The thin
client contains only the GUI. This is the only layer that
has been implemented at the client side. It works as an
interface between the users and the server. GUI layers
task is to capture an operation request from the user and
pass it to the scheduler layer at the application server
tier. GUI will send a message to the application server
containing the key and the type of operation (i.e., find,
insert, or delete) upon user has requested.

3.1.2. Application server tier
Application server or middleware consists mainly an

important component called Transaction Processing
Monitor (TP Monitor), as shown in Fig. 2. TP Monitor
acts as an operating system for transaction processing
applications. It is also a framework for running middle-
tier server applications. The job of a TP Monitor is to
guarantee the ACID properties while maintaining high
transaction throughput. To do that, it must manage the
execution, distribution, and synchronization of trans-
action workloads. TP monitor ensures that all the
updates associated with an aborted transaction are re-
moved or ‘‘rolled back’’. When the resource managers
are across networks, the TP Monitor synchronizes all
the transactions updates.

To help TP Monitor performs its job efficiently, we
have designed the following layers:

3.1.2.1. Scheduler layer. This layer is considered the
main layer in the application server as it works as the
root of the transaction. The scheduler works as the co-
ordinator in the nested transaction tree. The scheduler
layer is the only layer that communicates with the
database server layer. When a client sends a request to
the middleware, TP Monitor will capture this request
and pass it to the scheduler. The scheduler contains
three operations; these are Find, Insert, and Delete. The
scheduler will direct the request for one of these oper-
ations to the appropriate TMs at the TM layer to

Fig. 2. Layered architecture of three-tier client/server model.
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accomplish the user�s request. The scheduler receives
REPORT-COMMIT message from the TMs layer when
the transaction is successfully committed. The scheduler
will then send a message to the database server to update
the DB file. After successfully committing the transac-
tion and updating the DB file, the scheduler will inform
the TP Monitor that the transaction had been commit-
ted. In turn, TP Monitor will send back to the client the
result of the operation requested.

The root variables� lock, as mentioned earlier, is
handled by the scheduler. Before the transaction passed
to the next layer (i.e., the TMs layer), the scheduler will
check the lock on the root variables. The scheduler will
grant a lock to the root variables whenever a new
transaction is received. If the new transaction is com-
patible with the roots lock, it will pass the transaction to
the next layer otherwise the scheduler will hold the
transaction until the appropriate time.

3.1.2.2. Transaction manager layer. TM layer contains
four TMs; read-TM, write-TM, split-TM, and merge-
TM as explained before. Each TM creates a number of
subtransactions to complete the required operation. TMs
work concurrently and independently of each others.
The scheduler will synchronize transactions created at
this layer by controlling the root�s variable lock. Sub-
transactions created by TMs can also work concurrently
and only leaf level subtransactions will access the keys
directly. TM will send its subtransaction to the BO layer
to perform the required operation on the target key. In
case of insert or delete operation, a split or merge op-
eration may encounter. In this case, write-TM will send
a message to the scheduler which in return will initiate
split-TM or merge-TM respectively. This is because TMs
do not communicate among themselves which helps in
keeping the database consistent. This is due to the fact
that split and merge locks are different from insert and
delete locks. Hence, to ensure that the roots lock is
changed when split or merge is encountered, write-TM
will communicate with the scheduler to grant a suitable
lock on the root variables according to the requested
operation.

3.1.2.3. Bucket manager layer. We consider this layer as
a shield layer for the buckets. Subtransactions created
by TMs will be granted locks before accessing the
buckets. Each BM handles a bucket and all its overflow
buckets. Before a transaction accesses any bucket, the
corresponding BM will determine whether to permit the
transaction to access the bucket or suspend it with
the help of the lock compatibility-matrix as shown in
Table 1. If two transactions accessing the same bucket
interfere with each other, BM will permit one of the
transactions to access the bucket while suspend the
other until the other transaction finishes. Thus, BMs
restrict access to the buckets that lead to an inconsis-

tent database state. BMs work independently of each
other.

In our model, we have considered lock on the bucket
(page) rather than on the object, as each object in our
implementation contains two buckets.

3.1.2.4. Bucket object layer. In our model, each BO
contains two buckets. We have considered two buckets
in each object rather than one to reduce the systems
overhead during split and merge operations. This is due
to the fact that when the first bucket of any object say
O1 needs to be split, a new object say O2 will be created
with two buckets. However, when the second bucket
from the object O1 splits, no new object (bucket) has to
be created as the keys from this bucket can move to the
second bucket of the object O2. Similarly, no object
needs to be deleted when one of the buckets becomes
empty after a merge operation as the other bucket may
contain some data. An object will be deleted to free
memory space, only if both the buckets become empty.
On the other hand, having more buckets in each object
will waste memory space. Thus, having two buckets in
an object is a compromise between speediness and space
utilization. In addition, we have implemented these
buckets to be dynamic which will not waste any space
before adding keys to them.

3.1.2.5. Key manager layer. To insure serializability, KM
handles the keys lock within the bucket chain. The
subtransactions, which run through the KMs, are called
decisive subtransactions as they are the only subtrans-
actions that access the keys directly and any interference
between transactions at this layer will lead to an in-
consistency. KM will insure that there is always one
accessible version of the key.

When the key is updated, the data layer at the dat-
abase server tier will be initiated. When the transaction
is successfully committed, scheduler will send a message
to the database server to update the DB file.

3.1.3. Database server tier
Our model contains a centralized database server.

Our database server is called a thin server. This is be-
cause the database server is responsible only for storing
or loading the data. The database server tier contains
only one layer as shown below:

3.1.3.1. Data layer. This is the last layer in our system.
Database server insures the durability of the transaction.
Any updates on the buckets will be stored in the data-
base file (i.e., DB File shown in Fig. 2) which resides on
a permanent disk space. Updating of the database file
will be performed after the commit of a top-level
transaction (at the scheduler layer) to insure the con-
sistency of our database file. Database server is also
responsible for storing and loading the keys from/to the
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database file. It can also restore the current database
state in case of a system crash.

3.2. Communications via tiers

The communications among various components in
our system are done viamessages. In the previous section,
we have seen how transactions have been used to com-
municate among various objects. In this section, we will
see how the multithreads have been used to implement
nested transactions in our system and how these mul-
tithreads pass the messages from one object to another.

In our system, multithreads are managed in such a
way that they can not interfere with each other. Life
cycle of a thread is hidden from clients. During a threads
life cycle, many multithreads may be created. A thread
may be halted, or an inconsistency may occur, how-
ever, these situations will not affect clients. For the cli-
ents, a creation and a commit of the top-level thread are
important.

As clients operate concurrently, many multithreads
will be created. To control these threads from interfer-
ing, a locking scheme explained earlier is implemented.
The operations in our model will require multithreads to
complete their jobs such as searching for the object,
inserting, deleting, etc. The arrows in Fig. 3 represent
the beginning and the end of the thread route. Each
arrow is designated by a number to show the sequence
of creation of the multithreads. Only threads at the leaf
level will access the data directly.

In Fig. 3, we would like to think of the interface be-
tween the clients and the scheduler as a multithreads

manager. Multithreads manager is responsible for cre-
ating a new thread for each notification of a client�s
request. Threads created by the multithreads manager
are handled by the scheduler which in return pass the
thread to the appropriate TM.

To follow a thread cycle, we will take an example of
userA�s request as shown in Fig. 3. Suppose userA initi-
ates a thread to insert a key. UserA will send thread TA1

to the middleware. Multithreads manager will create a
new thread to handle this insert request and pass it to
the scheduler. When the scheduler receives the new
created thread (i.e., TA1), it will grant a read-lock to the
root variables. However, before the scheduler grant a
lock to the root variables, it will check the root variables�
current lock mode. If the lock formerly granted to the
root variables is compatible with the new lock, the
scheduler will pass the TA1 thread to the appropriate
TM. Otherwise, the scheduler will suspend the TA1

thread until the lock on the root variables becomes
compatible with the new lock mode (i.e., read-lock). The
scheduler then will send the insert-thread TA2 to the
appropriate TM, that is write-TM.Write-TM will create
a subthread TA3 to search for the target bucket. The
search-writeA access subthread will be granted a selec-
tive-lock before accessing the target bucket. When the
target bucket is found search-writeA will pass the thread
TA4 to read the key. The KM will grant a read-lock to
the read-keyA subthread before reading the key. If the
key does not exist in the bucket, search-writeA will pass
a new subthread TA5 to insert the key. Meanwhile, KM
will grant a write-lock to thread TA5 before inserting the
key. After inserting the key, write-TM will report back a

Fig. 3. Multithreading scenario.
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transaction-commit to the scheduler, which will inform
the TP Monitor the result of the insertion.

In case an overflow occurs, write-TM will send a
message to the scheduler to inform about the overflow.
The scheduler then will create a new subthread TA6 and
send it to the split-TM. Split-TM will create another
subthread TA5 to access the split-writeA operation. Be-
fore the splitting the target bucket, BM will grant a se-
lective-lock to TA7 subthread. Split-writeA will rehash
all the keys in the bucket to check whether the key will
be moved to the parent bucket or stay at the same
bucket. Before rehashing any key, KM will grant a read-
lock to the read-keyA subthread TA8. In addition, KM
will grant a write-lock to the write-keyA subthread TA9.
The same scenario can be followed in case of delete
or find operation as shown in Fig. 3.

4. Object-oriented implementation

We have implemented our layered system architec-
ture discussed before using object-oriented methodology
since it provides the way for objects to communicate
among themselves via methods. Each method invoca-
tion corresponds to the initiation of a subtransaction.
Each time a method is called, a message is created which
is either sent to other object or used by the same object.

A variable of the class type is called an object. Any
object can be created from a class, and an object is said
to be an instance of a class. The main program and the
subprograms that oversee the interaction among objects
handle the accesses. The control code directs an object
to access its data by using one of its methods or oper-
ations. A sender passes a message to a receiving object
and asks the object to perform a task. The receiving
object may return the information to the sender or pass
messages to other objects requesting the execution of
additional tasks. Each object is designated by an id,
called object id (OID), to distinguish from other objects.

Our system contains three applications: (1) the client,
(2) the application server (middleware), and (3) the
database server. The communications among the three
applications are done via Windows Socket. The purpose
of Windows Socket is to abstract away the underlying
network and so the application can run on any network
that supports sockets.

Following, we will study each application (i.e., the
client, the application server, and the database server) in
more details along with their classes. The study of each
application contains an explanation of the methods that
construct each class. In addition, we will explain how the
classes and their methods interact among each others.
While implementing, we have considered the efficiency
of including a class within another class and the orga-
nizing of the classes within the application. To make the
discussion clearer and easier, we will support our dis-

cussion with more figures and programming codes that
will help in understanding the explanation of the classes.

Generally, each application contains four main clas-
ses (components). These classes are responsible for:

1. Initialization: This class initiates Windows Socket and
the main components of the application.

2. Methods Monitor: This part is the main component
and it contains number of classes that work together
to accomplish the application�s main task. The name
Methods Monitor depicts that this part of the appli-
cation is responsible for calling the appropriate
method(s) to do a required task.

3. Connections: This class is responsible for the network-
ing between two applications.

4. Messages: This class is responsible for passing re-
quests and results from and to the applications.

4.1. Client classes

The four main classes (components) as shown in Fig.
4 are the initialization: CClientApp, controlling trans-
actions: CClientDlg, Connections: CClientSocket, and
messages: CClientMsg. Our client application is a dia-
log-window-based program that is easy to interact with
the users and better handling notification messages from
the other dialog boxes. Following is an explanation of
each of these classes in detail:

4.1.1. Initialization
CClientApp is the start up and the base class for the

client�s dialog interface application. CClientApp starts
by initiating Windows Socket, by calling AfxSocketInit
command.

After initiating the Windows Socket, CClientApp in-
stantiates an object from the CClientDlg class to create
the user interface dialog. This dialog box interface re-
ceives requests directly from the user or receives the
result of the request from the middleware via the net-
work connection.

4.1.2. Methods monitor
This class is the main class at the client site.

CClientDlg creates Windows Sockets, initiating con-
nection to the middleware, and controlling sending/re-
ceiving of the messages to and from the client and the
middleware. In general, it manages all the components
in the client application. As shown in Fig. 4, CClientDlg
is responsible for creating the GUI. CClientDlg contains
four methods that handle the operations of the Win-
dows Socket and the sending or receiving of messages
along with the user interface operations:

The Create&ConnectSocket method task is to handle
the Windows Socket, that is, creating sockets and con-
necting to the application server. MFC supports pro-
gramming with the Windows Socket by providing two
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classes. One of these classes, CSocket, provides a high
level of abstraction to simplify the network communi-
cations programming. The other class CAsyncSocket
object represents a Windows Socket––an endpoint of
network communication. CAsyncSocket encapsulates
the Windows Sockets API, providing an object-oriented
abstraction for programmers who want to use Windows
Sockets in conjunction with MFC.
CSocket works with classes CSocketFile and CAr-

chive to manage the sending and receiving of data.
CSocket derives from CAsyncSocket and inherits its
encapsulation of the Windows Sockets API. A socket is
a communication endpoint an object through which a
Windows Sockets application sends or receives packets
of data across a network. CSocket uses a version of the
MFC serialization protocol to pass data to and from a
socket object via an MFC CArchive object. The CAr-
chive class allows saving a complex network of objects in
a permanent binary form (usually disk storage) that
persists after those objects are deleted. Later these ob-
jects can be loaded from persistent storage, reconsti-
tuting them in memory. This process of making data
persistent is called serialization. Like an input/output
stream, an archive is associated with a file (i.e., the
CSocketFile class) and permits the buffered writing and
reading of data to and from storage. An input/output
stream processes sequences of ASCII characters, but an
archive processes binary object data in an efficient,
nonredundant format. Server socket will create a socket
file for sending and receiving data across the network. In
the Create&ConnectSocket method, there are two CAr-

chive variables, one for loading data (m_ pArchiveOut)
and the other for storing the data (m_ pArchiveIn).
SendMsg method sends a message, containing the

specified key and the type of operation (i.e., find, insert,
or delete) requested by the user, to the middleware via
CClientMsg class. SendMsg initiates Serialize method,
from the CClientMsg. The function Flush ensures that
all data is transferred from the memory to the sending/
receiving file, that is, the socket file classCSocketFile.
ProcessPendingRead is initiated by the virtual On-

Receive method in the CClientSocket class whenever a
new message is sent from the application server. The
message sent from the application server to the client is
the response message of the client�s request.

When a new message is received, ProcessPendingRead
calls ReceiveMsg method to read this message.

4.1.3. Connections
CClientSocket works as an interface between the cli-

ent and the middleware. When the middleware sends a
message (response) to the client, OnReceive method in
the CClientSocket class will be initiated. This means that
a message from the middleware is sent and it needs to
be read. OnReceive, then, will call ProcessPendingRead
to handle this incoming message.

4.1.4. Messages
This class is responsible for the serialization. The

Serialize method will be called twice in every single user
request. First time, it is called in the SendMsg at the
CClientDlg (i.e., msg.Serialize (
m pArchiveOut)) to

Fig. 4. Client�s structure.
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send the data to the middleware. Next it is called in
the ReceiveMsg at the CClientDlg (i.e., msg.Serialize
(
m pArchiveIn)) to read the data that came from the
middleware.

4.2. Application server (middleware) classes

The middleware resides between the clients and the
database server. Thus, the middleware works as a server
(i.e., when listen the clients) and as a client (i.e., when
connected to the database server). TP Monitor is the
component that is responsible for listening the clients
whereas the scheduler is responsible for connecting the
middleware to the database server.

The main component in this tier is the TP Monitor.
TP Monitor contains number of components (classes)
that help in achieving a transaction�s task when spawn
into subtransactions. This characteristic increases the
concurrency by allowing each component to perform a
small part of the transaction. Hence, the component
spends less time on each task which allows more trans-
actions to be performed.

Next, we will split the discussion of the middleware to
two sections. In the first section, we will study the
middleware as a server and in the second section, then
we will study the middleware as a client.

4.2.1. Middleware as a server
As we mentioned earlier, one part of the middlewares

function is to accept the clients� connections. This is
done by CTPMonitor class. In this section, we will dis-
cuss the components that are responsible for the com-
munication between the clients and the middleware.

4.2.1.1. Methods monitor. CTPMonitor is the main
component in this tier. It starts by creating the Windows
Socket and then initiating Listen function so the mid-
dleware will be ready to accept the clients connections.
In this section, we will study the methods responsible for
the connection between the middleware and the clients:
ProcessPendingAccept creates a new client socket and

then checks whether the client connection is successful
or not. If the client connection to the middleware is
accepted, ProcessPendingAccept will call CCLientSocket
to create a new socket file for message passing between
the client and the middleware. Eventually, Proces-
sPendingAccept adds the new client to the connection
list to keep track of the successful connected clients.
ProcessPendingRead method is initiated when a client

sends a new request to the middleware. Consequently,
ProcessPendingRead calls ReadMsg to read this new
incoming message.
ReadMsg is responsible for reading the request sent

by the client and then directing this request to the ap-
propriate operation that will accomplish the request. As
shown in Fig. 5, ReadMsg calls ReceiveMsg method to

fetch the message through serialization. As we men-
tioned earlier, the message contains the specified key and
the type of the operation requested. Depending on the
operation type, ReadMsg sends the message to one of
the three operations in thread manager component to
create a thread (transaction) to accomplish the user�s
request. The three threads initiators are: (1) CreateIn-
sertThread, (2) CreateFindThread, or (3) CreateFind-
Thread.
CTPMonitor is responsible for creating the threads

and then directing these threads to the scheduler. Afx-
BeginThread is an MFC function that creates a new
thread. For example, creating an insert thread initiates
StartInsertThread which completes a user�s request for
inserting a specified key. While StartInsertThread is
processing the request, CreateInsertThread will be free
to receive more requests for creating another insert
threads. StartInsertThread calls FindAndLock to check if
the key exists or not. In case the key already exits, it
sends a message to the client to inform the user that
the key is already exists. Otherwise, it calls InsertTo-
Object to insert the key. We will explain FindAndLock
and InsertToObject methods in more detail later in this
chapter.
UpdateClients notifies the clients when a change in

the DB file has occurred. The client is notified after
accomplishing the user�s request. The client is also no-
tified when the key requested does not exist such as in
case of delete or find operation. In addition, if the key is
already exist as in case of insert operation, a suitable
message will be sent to the client.

4.2.1.2. Connections. CClientSocket helps CTPMonitor
transferring messages between the middleware and the
clients. OnReceive method notifies the middleware when
a new message is received whereas ReceiveMsg reads
this message. After processing the request, SendMsg
passes the result of the request to the client via serial-
ization.

4.2.2. Middleware as a Client
Since we have explained in detail about the commu-

nication in the client tier, we are not going to discuss the
communication of the middleware as a client to the
database server. Rather, we will dedicate this section to
discuss the implementation of the components (classes)
in the middleware that are responsible for managing and
executing client�s requests.

We will begin our discussion by studying the physical
building structure of the buckets in our linear hash file.
In our system, the linear hash file starts with two empty
buckets. This is because we have implemented two buck-
ets as one object. When a new bucket is needed after a
split operation, instead of creating a new primary bucket,
a new object will be created which contains two buckets.
As we mentioned earlier, this technique is to reduce the
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systems overhead during split and merge operations. In
addition, there is no need to delete the bucket whenever
it becomes empty. Rather, the whole object will be de-
leted when the two buckets in this object become empty.
Hence, the system will have more free resources for the
user�s request instead of spending this time in managing
the linear hash file.

4.2.2.1. Scheduler class. CScheduler works as an inter-
face between the middleware and the database server.
As CScheduler is responsible for sending and receiving
data from and to the database server, we like to name
the CScheduler as a client to the database server. We are
not going to explain how the scheduler connects to the
database server as we have discussed this earlier, when
we studied the connection of the clients to the applica-

tion server. CScheduler considered the top-level (the
root) of the transaction (thread). When CTPMonitor
creates a thread to perform a request by the user,
CScheduler is the first component to start processing this
task. As the transaction�s characteristic is that it is per-
formed either in entirety or not at all, CScheduler will
only send a message to the database server to update the
DB file when the transaction is successfully committed.
This will ensure the consistency of DB file.

The three methods in the scheduler: (1) FindAndLock,
(2) InsertToObject, and (3) DeleteFromObject, will only
send the result of the operation to the client after com-
mitting the whole transaction. Hence, the DB file is
only updated after the transaction (at the scheduler)
commits and all its subtransactions (at the lower level)
commit, too.

Fig. 5. Application server�s structure.
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When a user request for an operation, the client will
send a message containing the key with the type of the
operation required. CTPMonitor will direct this request
to the CScheduler which in turn will search for the key
in which object and then in which bucket resides. The
searching for the key is done by FindAndLock method.
Another two methods that exist in the CScheduler are
InsertToObject and DeleteFromObject.

To gain access to a specific object, we simply specify
the object id (OID). For the BM objects, the OID is the
bucket number as every BM handles one primary bucket
and its chain buckets. Whereas, for the TM objects the
OID can be obtained by dividing current bucket number
by number of buckets in one object (i.e, objectNo ¼
bucketNo=No Buckets, where No Buckets ¼ 2). This is
due to that each TM object contains one BM object and
each BM object contains two buckets.

Following we will study each one of these methods in
detail:
FindAndLock method is called for every request of an

operation. FindAndLock starts by holding a read-lock on
the root variables. After locking the root variables, it
searches for the appropriate BM object that is associ-
ated to the target bucket to pass it the appropriate lock.
The lock granted to the bucket depends on the operation
type requested. As we mentioned earlier, locking the
bucket is done in the scheduler to accelerate the un-
locking of the root variables.

To search for the key, FindAndlock calls the appro-
priate TM object that contains the target BO. BM locks
the bucket before accessing it. If the key is not found in
this specified bucket, TM increases the lev variable and
calculate the value of the bucketNo again (rehashing is
needed, at this stage, as the target key may be moved to
another bucket due to a former split operation). The
new bucket is locked before releasing the lock on the
current bucket. This process will continue until the key
is found or it is the end of search.
InsertToObject method calls insert-TM to perform

the insert operation. After successfully inserting the key,
it sends a message to the database server to save the new
inserted key into the DB file. In case an overflow oc-
curred, InsertToObject calls split-TM to perform the
split operation.
DeleteFromObject method calls delete-TM to per-

form the delete operation. After successfully deleting
the key, it sends a message to the database server to
update the DB file. In case an underflow occurred,
DeleteFromObject calls merge-TM to perform the merge
operation.

The garbage collection part of our implementation
resides at this method. The technique is that whenever a
merge operation occurs, a method called CheckEmpty-
Object checks whether the last object is empty or not.
If the last object is empty, then this object will be de-
leted along with the two BMs handling the buckets.

CScheduler checks for garbage collection after a merge
operation and only after the last object becomes empty,
it deletes this empty object. Allowing garbage collection
to occur when the last object becomes empty instead of
after the last bucket becomes empty, increases the con-
currency and expedites operations. This is because more
resources will be free, and hence, more transactions can
run concurrently.

4.2.2.2. Transaction manager class. Every TM object
contains one BO which in turn contains two bucket lists.
Each list is a collection of buckets and each buckets
capacity is three keys. Every object instantiated from the
CBucket class is a three keys bucket size. To find a
specific bucket we traverse the target bucket chain.

If the target buckets level does not equal to lev vari-
able, rehashing is needed. This means that the target key
was moved to another bucket due to a former split op-
eration, as we mentioned earlier. The previousBucket
variable is used to keep the previous bucket locked be-
fore locking the new bucket (lock-coupling protocol)
when rehashing to the new bucket.

To insert or delete a specific key, the same technique
will be done as in find operation. The target bucket
chain will be traversed and then updating the target
bucket. In case of a split operation, the whole bucket
chain will be updated and every key in the target bucket
within the bucket chain list (i.e., the next bucket chain)
will be rehashed. If the key, after rehashing, has larger
bucket number value than the current one, then the key
will be moved to the new bucket chain. Otherwise, the
key will remain in its current bucket.

In case a merge operation occurs, the keys in the
bucket chain will be moved to the partner bucket.

4.2.2.3. Bucket manager class. CBucketManager is re-
sponsible for managing the locks granted to the trans-
actions that access the buckets before reading or
updating them. BMs are implemented as objects. Hence,
whenever a new bucket is created, a new BM object will
be instantiated from CBucketManager, and associated
to that bucket. Buckets are locked using the compati-
bility-matrix shown in Table 1.

The LockBucket method checks the current lock
mode of the bucket before granting a new lock to the
target bucket. In case the current lock mode is not
compatible with the new lock mode, BM will wait until
the current lock mode becomes compatible with the new
lock mode.

4.2.2.4. Key manager class. Every bucket in our imple-
mentation can store up to three keys. A key in a bucket
is handled by a KM. KM will determine when a key is
accessible or not. When updating a key, KM holds a
write-lock on the key whereas when reading a key, KM
holds a read-lock on the key.

230 M.A. Tubaishat et al. / The Journal of Systems and Software 63 (2002) 219–239



4.3. Database server classes

Database server tier is responsible for reading and
writing the data from and to the DB file. The structure
of this tier is shown in Fig. 6. Following are the main
classes that handle a transactions operation.

4.3.1. Initialization
The first application that should starts in our system

is the database server as it contains the DB file. When
the database server starts, the first thing it does is to
prepare the networking for the up coming client (i.e., the
middleware). Next, CDBServerApp prepares the database
server for work. As soon as the middleware connects to
the database server, it loads the DB file so the objects
can be fetched from the memory for faster retrieval.

4.3.2. Methods monitor
CDBSever starts by creating the Windows Socket and

then initiating Listen function to make the CDBSever
class ready to receive the client connection (i.e., the
application server).

In addition, CDBSever contains two types of meth-
ods. The first type is the one that is responsible for the
connection between the database server and the mid-
dleware. The other type is the one that is responsible for
managing the DB file. As we explained how the server
works while studying the application server, we will
concentrate here on studying the methods that are re-
sponsible for managing the DB file.

When the middleware connects to the database ser-
ver, database server loads the DB file and sends it to the

middleware. We have used CFile class to handle the DB
file. CFile is the base class for MFC. It directly provides
unbuffered, binary disk input/output services, and it
indirectly supports text files and memory files through
its derived classes. CFile works in conjunction with
the CArchive class to support serialization of MFC ob-
jects.
ReadMsg method reads the message sent by the

middleware and directs the message to the appropriate
operation depending on the type of operation requested:

The two methods that are responsible for reading and
writing data are:

1. Load method loads a key from the CArchive and then
sends the key to the middleware,

2. Store method stores a key in the DB file.

5. Simulation

In this section, we will study the performance of our
system. We have built two system simulators to analyze
the performance. These two simulators are the client
simulator and the middleware simulator. A subtle benefit
of both the simulators is that they work as the real ap-
plications with only minor changes. For the middleware
simulator, we have added a thread performance class to
track the transactions starting and finishing time. In the
client simulator, we have added a new method called
Simulator that will access random keys under random
operations. No changes have been made in the other
components.

Fig. 6. DBServer�s structure.
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5.1. Simulation preparation

The performance evaluation factors for the simula-
tion are based on the following assumptions:

5.1.1. Assumptions

1. The keys are randomly generated among 10,000 keys.
2. Insert, delete, and find operations are randomly cho-

sen with equal probability.
3. The bucket capacity is fixed to three keys in terms of

the number of keys it can hold.
4. Each workstation can run more than one client sim-

ulator.
5. A client simulator can run random operations or run

only insert, delete, or find operations separately.
6. To test the robustness of the concurrency, we have

considered only 500 ms sleep time between each cli-
ent�s request. Hence, more transactions can run con-
currently.

7. Only one middleware simulator is needed.

5.1.2. Performance notations and factors
Table 2 lists performance parameters in our simula-

tion:

5.2. Simulation results

The simulation was split into two parts. First group
of the experiments was to measure the insert opera-
tions performance only. The second group of experi-
ments are to measure the performance of the three
operations (i.e., insert, delete, and find) running con-
currently at random

5.2.1. Simulation of insert operations
Here, we have performed three simulations. Every

simulation consists of group of experiments. In each
experiment, we have gradually increased the number
of insertions. In addition, we have also increased the
number of clients from one simulation to another (see
Figs. 7–9).

In each simulation, we measure the following four
characteristics:

1. Average concurrency: We measure average concur-
rency by counting number of times concurrency oc-
curred in a simulation experiment (i.e., two more
insertions occurred concurrently). Then, we divide
this number by the number of insertions requested
in the simulation experiment. For example, if in a
simulation experiment 90 insertions were processed
and the concurrency occurred 30 times then average
concurrency will equal to 30%.

2. Elapsed time: In the simulation tables below, elapsed
time refer to the average elapsed time in each simu-

lation experiment. Elapsed time of an operation
is the period between the time of requesting an oper-
ation to the time of receiving the result of this request.
Elapsed time is measured in milliseconds (ms).

3. Insert vs. split (elapsed time): We have measured the
elapsed time of the insert operations and the split op-
erations separately. The objective of this part of the
experiment is to prove the claim that our model re-
duces the overhead system by reducing the number
of times a new object is created whenever a split op-
eration is initiated. Although a split operation occurs
more frequently than an insert operation, we will
see later that the elapsed time of the insert and split
operations are almost equal.

4. Insert vs. split (number of occurrence): Here, we track
the average number of times split occurred in correla-
tion with number of insertions and with the size of
the DB file.

From the simulation charts below, we conclude the
following:

Table 2

Performance parameters

DB Number of keys in the

database file

FET Find elapsed time

(ms)

NC Number of clients connected

to the middleware

NIET Not insert elapsed

time (ms)

NOP Number of operations

assigned to each client

simulator

NDET Not delete elapsed

time (ms)

NT Number of transactions,

NT ¼ NCNOP

NFET Not find elapsed

time (ms)

NI Number of insert

transactions

Conc Number of times

concurrency

occurred

NS Number of split transactions AC Average

concurrency,

AC ¼ Conc=NT

ND Number of delete

transactions

AI Average insertions,

AI ¼ NI=NT

NN Number of merge

transactions

AD Average deletions,

AD ¼ ND=NT

NF Number of find transactions AF Average finds,

AF ¼ NF=NT

NNI Number of not insert trans-

actions, unsuccessful insert

AS Average split,

AS ¼ NS=NT

NND Number of not delete trans-

actions, unsuccessful delete

AM Average merge,

AM ¼ NM=NT

NNF Number of not find transac-

tions, unsuccessful find

NBM Total number of

BMs

ET Elapsed time in milliseconds

(ms)

NO Total number of

objects

IET Insert elapsed time (ms) NPB Total number of

primary buckets

SET Split elapsed time (ms) Task Type of operation

DET Delete elapsed time (ms) Start The time the oper-

ation thread start

MET Merge elapsed time (ms) End The time the oper-

ation thread finish
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1. From Figs. 7a, 8a and 9a, we have proved that the
concurrency increases proportionately with the in-
creasing number of clients. In addition, the increasing
number of clients implies an increasing number of in-
sertions. Hence, we can affirm that concurrency also
increases proportionately with the increasing number
of insertions.

2. From Figs. 7b, 8b and 9b, we find that the elapsed
time for the transactions in the insertions simulations

does not change significantly. The elapsed time in the
three insertion simulations keeps an average of 32 ms.
This implies that elapsed time does not affect the in-
creasing number of clients, number of insertions,
and the size of the DB file.

3. From Figs. 7c, 8c and 9c, we find that the split oper-
ations elapsed time tend to be equal. When the DB
size becomes large we noticed that split elapsed time
becomes zero, as in Figs. 8c, and 9c. In Fig. 7c, the

Fig. 7. Simulation 1: (a) average concurrency, (b) elapsed time, (c) insert vs. split elapsed time and (d) insert vs. split occurrence number.

Fig. 8. Simulation 2: (a) average concurrency, (b) elapsed time, (c) insert vs. split elapsed time and (d) insert vs. split occurrence number.
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DB size is still small and hence split operations occurs
more frequently to compensate due to the lack of the
primary buckets.

4. Although in some cases splits elapsed time is a
slightly higher than inserts elapsed time, this does
not degrade the performance of our system. This is
because number of split operations decrease when
the size of the DB file becomes large.

5. From Figs. 8d and 9d, we find that number of split
decreases proportionately with the increase in the size
of the DB file. In Fig. 7a, this is not true. The reason
is that split decreases only when there is enough buck-
ets in the memory. As simulation 1 has a small DB
file size due to fewer insertions, not enough buckets
exist to compromise the number of split operations.

Simulation 1: 30 insert transactions per client
In simulation 1, we have done 5 experiments. The

simulation starts with 3 clients in the first experiment

and we gradually increase number of clients up to 15 in
the last experiment. As we assigned 30 insertions for
each client, number of insertions increase with the in-
creasing number of clients. In addition, as we can see
from Table 3, the size of the DB file increases from one
experiment to the next due to insertions only. So, in
simulation 1 DB file starts with zero keys and end with a
size of 729 keys.

In Table 3, we have categorized the table to three
parts. The first part gives information about the exper-
iment, such as number of clients and number of op-
erations in each experiment. In addition, the first part
of the table shows the average elapsed time of the ex-
periment and the average concurrency in this experi-
ment. Second part of the table shows number of
occurrence of each operation. That is, we count number
of times a specific operation occurred in one experiment.
Finally, the last part shows the elapsed time of each
operation. Other simulation tables have the same spec-
ifications.

Table 3

Simulation 1: 30 insertions per client

Experiment data Operation occurrence Elapsed time

Experiment NC NT DB ET AC (%) NI NS AS (%) NNI IET SET NIET

1 3 90 0 37 26 82 7 9 1 38 25 25

2 6 180 82 34 28 158 13 8 9 35 34 31

3 9 270 240 30 30 229 11 5 30 31 25 27

4 12 360 469 32 34 260 13 5 87 33 33 31

5 15 450 729 37 34 272 18 7 160 37 53 37

Average – 34 30 – – 7 – 35 34 30

Fig. 9. Simulation 3: (a) average concurrency, (b) elapsed time, (c) insert vs. split elapsed time and (d) insert vs. split occurrence number.
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Simulation 3: 90 insert transactions per client
As shown in the Tables 4 and 5, we have increased the

number of insertions assigned to each client simulator.
This is to test our system with more running insertion
operations and with larger DB size. Studying the simu-
lation results in Tables 3–5, we conclude that split op-
erations decrease with the increasing size of the DB. As
we mentioned earlier, this is because number of primary
buckets increase with the increasing size of the DB. This
result is very valuable as it supports our claim of
building a system that increases concurrency with the
increasing size of the DB. This is because decreasing the
occurrence of split operations will consequently increase
the concurrent operations as no selective-lock will be
granted to the root variables, which is more restrictive
than the read-lock in case of insert operation.

5.2.2. Simulation of random operations
In this part, we have done three simulations. Each

simulation consists of a group of experiments. In each
experiment, we have gradually increased the number of
transactions assigned to each client simulator. In addi-
tion, we have also increased the number of clients from
one simulation to another.

In each simulation, we measure the following four
characteristics:

1. Average concurrency: We calculate average concur-
rency by counting number of cases where two or
more operations run concurrently. Then, we divide
this number by the number of all operations assigned
to the simulation experiment.

2. Elapsed time: It is the elapsed time of one experiment
including all its operations.

3. Insert, delete, find, split, and merge operations (elapsed
time): In this part, we separate the elapsed time of
each operation. This will allow us to compare the
elapsed time among different operations.

4. Insert, delete, find, split, and merge operations (average
number of occurrence): Here, we count number of
times each operation occurred individually and then
divide the result by the total number of operations
in this experiment.

Simulation 4: 30 random operations per client, DB file
starts with 2000 keys

From the simulation tables and charts, we conclude
the following:

1. From Figs. 10a, 11a and 12a, we show that average
concurrency increases proportionately when number
of clients, and consequently with increased number
of operations.

Simulation 2: 60 insert transactions per client

Table 4

Simulation 2: 60 insertions per client

Experiment data Operation occurrence Elapsed time

Experiment NC NT DB ET AC (%) NI NS AS (%) NNI IET SET NIET

1 3 180 0 33 10 162 13 8 5 33 33 25

2 6 360 162 31 30 303 17 6 40 31 34 31

3 9 540 465 32 29 405 27 7 108 32 31 33

4 12 720 870 31 37 425 27 6 268 32 31 31

5 15 900 1295 31 35 420 26 6 454 32 29 30

6 15 1080 1725 33 40 102 13 3 665 34 38 32

7 21 1260 2117 33 41 334 0 0 926 33 0 32

Average – 32 32 – – 6 – 32 33 31

Table 5

Simulation 3: 90 insertions per client

Experiment data Operation occurrence Elapsed time

Experiment NC NT DB ET AC (%) NI NS AS (%) NNI IET SET NIET

1 3 270 0 32 14 244 15 6 11 32 36 34

2 6 540 162 29 25 431 30 7 79 30 27 29

3 9 810 593 32 40 545 27 5 238 32 34 33

4 12 1080 1138 30 37 539 32 6 509 30 33 31

5 15 1350 1677 32 44 458 7 2 885 33 41 31

6 18 1620 2135 32 44 207 0 0 1413 32 0 31

Average – 31 34 – – 5 – 32 34 32
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2. From Figs. 10b, 11b and 12b, we find that the elapsed
time for the transactions in the simulations do not
change significantly. The elapsed time in the three sim-
ulations keep an average of 30 ms. This implies that
elapsed time does not affect the increasing number
of clients, number of insertions, and the size of the
DB file. Except for only few cases, as shown in Tables
6–8, merge elapsed time is lower than other opera-

tions elapsed time. This is because, merge operation
suspend other operations from accessing the DB file.
Hence, no concurrency occurs while merge operation
is in progress.

3. From Figs. 10d, 11d and 12d, we find that the aver-
age occurrence of split and merge operations is only
1% to 2% and in many cases it is 0% which proves
that our algorithm is ideal for such system. This is be-

Fig. 10. Simulation 4: (a) average concurrency, (b) elapsed time, (c) comparison between the operations� elapsed time and (d) number of operations

occurrence.

Fig. 11. Simulation 5: (a) average concurrency, (b) elapsed time, (c) comparison between the operations� elapsed time and (d) number of operations

occurrence.
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cause it reduces the time of creating new objects
whenever a split occurs, and deleting garbage objects
whenever a merge operation occurs.

4. Elapsed time of the operations decreases from simula-
tion 4 to simulation 6. This is because when the size of
the DB is small, fewer objects are created in the mem-
ory. Hence, more time is needed to create new objects.

6. Conclusions and future research

In this paper, we have presented a linear hash struc-
ture algorithm (Ellis, 1987) in nested transaction envi-

ronment (Moss, 1985) to expedite concurrency within
large amount of data and to handle transaction aborts.
We discussed the object-oriented client/server model for
the implementation of nested transactions that access
linear hash structures. We exploited nested transactions
in concurrent linear hash structure to robust the con-
currency and handle transaction aborts. We have im-
plemented locking protocol at vertex level using (Moss,
1985) two-phase locking algorithm and locking pro-
tocols of linear hash structure algorithm with lock-
coupling technique (Ellis, 1987). In addition, we have
implemented locking at the key level (Madria et al.,
1998) to ensure serializability.

Fig. 12. Simulation 6: (a) average concurrency, (b) elapsed time, (c) comparison between the operations� elapsed time and (d) number of operations

occurrence.

Table 6

Simulation 4: 30 random operations––average concurrency (panel A) and elapsed time (panel B)

Experiment NC NT AC (%) AI (%) AD (%) AF (%) AS (%) AM (%)

Panel A

1 3 90 1 20 14 13 0 2

2 6 180 9 17 14 7 0 2

3 9 270 9 22 12 20 0 1

4 12 360 14 13 12 17 1 1

5 15 450 15 12 9 13 0 2

Average 9 17 12 14 1 2

ET IET SET DET MET FET NIET NDET NFET

Panel B

1 3 30 31 0 33 25 34 29 25 35

2 6 28 35 0 25 25 25 28 25 25

3 9 29 29 0 32 25 29 30 28 25

4 12 31 28 29 29 25 33 30 33 30

5 15 31 32 0 29 38 28 30 36 28

Average 30 31 29 30 28 30 29 29 29

M.A. Tubaishat et al. / The Journal of Systems and Software 63 (2002) 219–239 237



We used object-oriented technology, which is suitable
for client/server systems as it expedites accessing data at
the server site, and its property to encapsulate commu-
nications from the user. In our model, buckets are
modeled as objects whereas linear hash operations find,
insert, delete, split, and merge are considered as meth-
ods. These methods correspond to nested transactions in
their behavior and are implemented as threads and
multithreads. Analyzing the performance of the system,
we proved that the concurrency increases proportion-
ately with the increasing number of clients. Moreover,

the elapsed time does not affect significantly with the
number of clients, number of transactions, or size of
the DB file. Merging linear hash structure with nested
transactions capabilities and employing the object-ori-
ented paradigm under three-tier client/server architec-
ture robust the system�s behavior and performance in a
centralized database systems.

Another direction of research is to study the model in
a distributed environment (Litwin et al., 1996) where
a linear hash structure can be spread over number of
machines. This involves the studying the benefits of

Simulation 5: 40 random operations per client, DB file starts with 2000 keys

Table 7

Simulation 5: 40 random operations––average concurrency (panel A) and elapsed time (panel B)

Experiment NC NT AC (%) AI (%) AD (%) AF (%) AS (%) AM (%)

Panel A

1 3 120 1 14 3 21 0 3

2 6 240 7 13 10 5 0 1

3 9 360 6 16 9 15 0 1

4 12 480 10 10 9 13 1 1

5 15 600 11 9 7 10 0 2

Average 7 12 8 13 1 1

ET IET SET DET MET FET NIET NDET NFET

Panel B

1 3 31 32 0 25 62 35 28 33 25

2 6 28 35 0 25 25 25 28 25 25

3 9 29 29 0 32 25 29 30 28 25

4 12 31 28 29 29 25 33 30 33 30

5 15 31 32 0 29 38 27 30 36 28

Average 30 31 29 28 35 30 29 31 27

Simulation 6: 50 random operations per client, DB file starts with 2000 keys

Table 8

Simulation 6: 50 random operations––average concurrency (panel A) and elapsed time (panel B)

Experiment NC NT AC (%) AI (%) AD (%) AF (%) AS (%) AM (%)

Panel A

1 3 150 5 5 3 17 0 1

2 6 300 7 7 3 18 0 2

3 9 450 6 3 3 16 0 0

4 12 600 11 4 2 14 0 2

5 15 750 12 5 2 15 0 2

Average 8 5 3 16 0 1

ET IET SET DET MET FET NIET NDET NFET

Panel B

1 3 29 25 0 25 25 27 30 28 34

2 6 30 28 25 25 25 31 31 29 32

3 9 30 33 25 30 25 30 29 31 30

4 12 30 32 0 25 45 30 30 30 28

5 15 29 30 25 29 25 32 29 29 29

Average 30 30 25 27 29 30 30 29 31
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distributed middlewares with either centralized or dis-
tributed databases. Distributed middlewares can handle
more clients� requests with less access time.
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