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Abstract. The search for weak periodic signals in time series data is an active 
topic of research. Given the fact that rarely a real world dataset is perfectly pe-
riodic, this paper approaches this problem in terms of data mining, trying to 
discover approximate and partial periodicities, when no period length is 
known in advance. We utilize the autocorrelation function in order to extract 
partial periodicities from large time series. In existing time series mining algo-
rithms, the period length is user-specified. We propose an algorithm that ex-
tracts a set of candidate periods featured in a time series that satisfy a mini-
mum confidence threshold, by utilizing the autocorrelation function and FFT 
as a filter. We extend this technique for capturing approximate periodicities. 
We provide some mathematical background as well as experimental results. 

1. Introduction 

Periodicity is a particularly interesting feature that could be used for understand-
ing time series data and predicting future trends. However, little attention has been 
paid on the study of the periodic behavior of a temporal attribute. In real world data, 
rarely a pattern is perfectly periodic (according to the strict mathematical definition 
of periodicity) and therefore an almost periodic pattern can be considered as periodic 
with some confidence measure. Partial periodic patterns are patterns that are periodic 
over some but not all the points in it. An interesting extension of the problem of 
capturing all kinds of periodicities that might occur in real world time series data is 
the discovery of approximate periodicities. That is, periodicities where a small num-
ber of occurrences are not 100% punctual. 

Early work in time-series data mining addresses the pattern-matching problem. 
Agrawal et al. in the early 90’s developed algorithms for pattern matching and simi-
larity search in time series databases [1, 2, 3]. Mannila et al. [4] introduce an effi-
cient solution to the discovery of frequent patterns in a sequence database. Chan et 
al. [5] study the use of wavelets in time series matching and Faloutsos et al. in [6] 
and Keogh et al. in [7] propose indexing methods for fast sequence matching using 



R* trees, the Discrete Fourier Transform and the Discrete Wavelet Transform. Toro-
slu et al. [8] introduce the problem of mining cyclically repeated patterns. Han et al. 
[9] introduce the concept of partial periodic patterns and propose a data structure 
called the Max Subpattern Tree for finding partial periodic patterns in a time series. 
Aref et al. in [10] extend this work by introducing algorithms for incremental, on-
line and merge mining of partial periodic patterns. 

The algorithms proposed in the above articles discover periodic patterns for a 
user-defined period length. If the period length is not known in advance, then these 
algorithms are not directly applicable. One would have to exhaustively apply them 
for each possible period length, which is impractical. In other words, it is assumed 
that the period is known in advance thus making the process essentially ad-hoc, 
since unsuspected periodicities will be missed. 

In this paper we attempt to detect weak periodic signals in large, real world time 
series. By “weak periodic signals”  we mean partial and approximate periodicities. 
We introduce the notion of approximate periodicities, which is the case when some 
periodic instances of a symbol might be appearing a number of time points before or 
after their expected periodic occurrence. Our contribution in this paper is a new 
algorithm for detecting all the periodicities in a time series without any previous 
knowledge of the nature of the data. The time series is considered as a character 
sequence. The algorithm follows a filter-refine paradigm. In the filter step, the algo-
rithm utilizes the Fast Fourier Transform to compute a Circular Autocorrelation 
Function that provides us with a conservative set of candidate period lengths for 
every letter in the alphabet of our time series. In the refine step, we apply Han’s 
algorithm [9] for each candidate period length. The complexity of our algorithm is 
O(ANlogN), where A is the size of the alphabet and N the size of the time series. The 
algorithm speeds up linearly both to the number of time points and the size of the 
alphabet. 
The rest of this paper proceeds as follows: the next section contains notation and 
definitions for the problem. In section 3 we outline the steps of the algorithm we 
propose for discovering partial periodicities and we explain how it works in detail. 
We provide some theoretical background and we discuss the computational complex-
ity of the algorithm. We test our algorithm with various data sets, produce some 
experimental results and verify them using Han’s algorithm. In section 4 we discuss 
an extension to the partial periodicity algorithm of section 3, for finding approximate 
periodicities. In the last section we conclude this paper and suggest some directions 
for further research. 

2. Notation 

A pattern is a string s = s1…sp over an alphabet L � {*  }, where the letter *  
stands for any single symbol from L. A pattern s’  = s1’…sp’  is a subpattern of an-

other pattern s if for each position i, ii ss �
�

 or �
�

is * . For example, ab*d is a sub-

pattern of abcd. Assume that a pattern is periodic in a time series S of length N with 



a per iod of length p. Then, S can be divided into 
� �

pN /  segments of size p. These 

segments are called per iodic segments. The frequency count of a pattern is the 
number of the periodic segments of the time series that match this pattern. The con-
fidence of a pattern is defined as the division of its frequency count by the number of 
period segments in the time series ( � �pN / ). For example, in the series 

abcdabddabfcccba, the pattern ab** is periodic with a period length of 4, a fre-
quency count of 3, and a confidence of 3/4. 
According to the Apr ior i proper ty on per iodicity discussed in [9] “each subpattern 
of a frequent pattern of period p is itself a frequent pattern of period p” . For example, 
assume that ab** is a periodic pattern with a period of 4, then a*** and *b** are 
also periodic with the same period. Conversely, knowing that a*** and *b** are 
periodic with period 4 does not necessarily imply that ab** is periodic with period 4. 

3. Discovering Partial Periodicities – The PPD Algorithm 

Based on the Apriori property described in the previous section, we present a new 
algorithm that generates a set of candidate periods for the symbols of a time series. 
We call this algorithm PPD, which stands for Partial Periodicity Detection. 

The filter/refine paradigm is a technique that has been used in several contexts, 
e.g., in spatial query processing [11]. The filter phase reduces the search space by 
eliminating those objects that are unlikely to contribute to the final solution. The 
refine phase, which is CPU-intensive, involves testing the candidate set produced at 
the filter step in order to verify which objects fulfill the query condition.  

The filter/refine paradigm can be applied in various search problems such as the 
search for periodicity in a time series. We use the circular autocorrelation function 
as a tool to filter out those periods that are definitely not valid.  

We outline the major steps performed by our algorithm. The explanation of the 
steps is given further down in this section. 
1. Scan the time series once and create a binary vector of size N for every symbol in 

the alphabet of the time series. 
2. For each symbol of the alphabet, compute the circular autocorrelation function 

vector over the corresponding binary vector. This operation results in an output 
autocorrelation vector that contains frequency counts. 

3. Scan only half the autocorrelation vector (maximum possible period is N/2) and 
filter out those values that do not satisfy the minimum confidence threshold and 
keep the rest as candidate periods. 

4. Apply Han’s algorithm to discover periodic patterns for the candidate periods 
produced in the previous step. 
Steps 1—3 correspond to the filter phase while Step 4 corresponds to the refine 

phase. For brevity, we will not describe Step 4. We refer the reader to [9] for further 
details. 



3.1. The Filter Step 

The first step of our method is the creation of a number of binary vectors. Assume 
we have a time series of size N. We create a binary vector of size N for every letter in 
our alphabet. An ace will be present for every occurrence of the corresponding letter 
and a zero for every other letter.  

The next step is to calculate the Circular Autocorrelation Function for every bi-
nary vector. The term autocorrelation means self-correlation, i.e., discovering corre-
lations among the elements of the same vector. We use Autocorrelation as a tool to 
discover estimates for every possible period length.  

The computation of autocorrelation function is the sum of N dot products between 
the original signal and itself shifted every time by a lag k. In circular autocorrela-
tion, one point, at the end of the series, is shifted out of the product in every step and 
is moved to the beginning of the shifting vector. Hence in every step we compute the 
following dot product, for all N points: 
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This convolution-like formula calculates the discrete 1D circular autocorrelation 
function for a lag k. For our purposes we need to calculate the value of this function 
for every lag, that is for N lags. Therefore, (1) is computed for all k=1 ... N. The 
complexity of this operation is O(N2), which is quite expensive, especially when 
dealing with very large time series. Utilizing the Fast Fourier Transform (FFT) effec-
tively reduces the cost down to O(NlogN), as follows: 
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In the above formula )(*)( xFxF  is the dot product of F(x) with its complex 

conjugate. The mathematical proof can be found in the bibliography.  
Example 1: Consider the series abcdabebadfcacdcfcaa of length 20, where a is 

periodic with a period of 4 and a confidence of 3/4. We create the binary vector 
10001000100010000011. The autocorrelation of this vector is given in Figure 1. 
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Fig. 1. Circular Autocorrelation Function when the length is a multiple of the period. 

The first value of the autocorrelation vector is the dot product of the binary vector 
with itself, since the shifting lag is 0 and therefore the two vectors align perfectly. 



Thus, the resulting value is the total number of aces, which is the total number of 
occurrences of the letter a. The peak identified in the above chart at position 5 im-
plies that there is probably a period of length 4 and the value of 3 at this position is 
an estimate of the frequency count of this period. According to this observation, we 
can extract those peaks, hence acquiring a set of candidate periods. Notice that a 
period of length 4 also results in peaks at positions 5, 9, 13 etc.  

The user can specify a minimum confidence threshold c and the algorithm will 
simply extract those autocorrelation values that are greater than or equal to cN/p, 
where p is the current position where a period could exist. 

The computation of the autocorrelation function over binary vectors eliminates a 
large number of non-periodic aces due to their multiplication with zeroes, and hence 
leaving the periodic aces basically to contribute to the resulting value. Consequently, 
this value could be an acceptable estimate of the frequency count of a period. Note 
that the value of the estimate can never be smaller than the real one. Therefore, all 
the valid periodicities will be included in the candidate set together with a number of 
false ones that are the effect of the accumulation of random, non-periodic occur-
rences with the periodic ones.  

One major weakness of the circular autocorrelation is that when the length of the 
series is not an integer multiple of the period, the circularly shifting mechanism 
results in vectors where noise and unexpected values are present. This is usually 
further enhanced by the randomness of real world data and the presence of noise. In 
our example the length of the series is N=20, which is an integer multiple of the 
period p=4. When the length of the series is 21 (e.g., by adding a zero at the end of 
the binary vector), this results in the circular autocorrelation given in Figure 2a.  

Another problem could arise when a number of successive occurrences of a letter 
are repeated periodically. For example the periodic repetition of aa* would result in 
an unusually high autocorrelation value. Consider the series aabaacaadacdbdbdabc, 
where aa* is repeated in 3 out of 6 periodic segments, while a** is repeated in 4 
periodic segments.  The circular autocorrelation chart for the symbol a is given in 
Figure 2b. A clear peak at position 4 can be seen, implying the existence of a period 
of 3. The frequency estimate according to the autocorrelation function is 6, which 
happens to be two times the actual frequency count, which is 3. 
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Fig. 2. (a) Circular Autocorrelation Function when the length is not a multiple of the pe-
riod. (b) Circular Autocorrelation Function when successive occurrences of a letter are 

repeated periodically. 



Repeating the algorithm described so far, for every symbol in the alphabet of our 
time series will result in a set of possible periods for each one of them. Note that a 
letter might have more than one period. For every candidate period, there will be an 
estimate of its confidence, according to their autocorrelation value. Utilizing the 
Apriori property on periodicity discussed earlier in this article, we can create perio-
dicity groups, that is, groups of letters that have the same period. Han’s algorithm 
[9] can be applied to verify the valid periods and extract the periodic patterns.  

 
Theorem: Consider a time series with N points. Also let a letter of that time series 
feature periodicity with a period p1 with a confidence c1. We can prove that this 
letter is also periodic with a period of p2 and confidence c2 �  c1, when p2 is a multi-
ple of p1. 

For example, if a is periodic with a period length of 4 and a confidence of 75% 
then it is also periodic with a period of 8, 12, 16 etc. and the corresponding confi-
dence measures are equal to or greater than 0.75. Assume that b is periodic with a 
period of 8. Based on the previous theorem we know that a is also periodic with a 
period of 8 and therefore, we can create a periodicity group consisting of those two 
letters and apply Han’s algorithm to check whether there is a periodic pattern with a 
period of 8 or any of its multiples.  

3.2. Analysis 

Our algorithm requires 1 scan over the database in order for the binary vectors to 
be created. Then it runs in O(NlogN) time for every letter in the alphabet of the se-
ries. Consequently the total run time depends on the size of the alphabet. Generally 
speaking we can say that this number is usually relatively small since it is a number 
of user specified classes in order to divide a range of continuous values. Despite the 
fact that some non-periodic peaks might occur, the method we propose is complete 
since all valid periods are extracted. 

3.3. Experimental Results 

We tested our algorithm over a number of data sets. The most interesting data sets 
we used were supermarket and power consumption data. The former contain sani-
tized data of timed sales transactions for some Wal-Mart stores over a period of 15 
months. The latter contain power consumption rates of some customers over a period 
of one year and were made available through a funded project. Synthetic control data 
taken from the Machine Learning Repository [12] were also used. Different runs 
over different portions of the data sets showed that the execution time is linearly 
proportional to the size of the time series as well as the size of the alphabet. Figure 4 
shows the behavior of the algorithm against the number of the time points in the 
time series.  



Figure 5 shows that the algorithm speeds up linearly to alphabets of different size. 
The size of the alphabet implies the number FFT computations of size N required. 
The times shown on the chart below correspond to a synthetic control data set of N = 
524288 time points. 

 

Fig. 3. Run time against data sets of different size. 
Experiments have confirmed our expectation regarding the completeness of PPD. 

In three datasets containing the number of customers per hour in three Wal-Mart 
stores, the algorithm returned the period that is most likely to be correct. Alterna-
tively, instead of searching for a single candidate period, we could mine for a larger 
set of candidates. Table 1a summarizes the results. The “ACF”  column is the Auto-
correlation estimate produced for the periodic occurrences of a letter, while the “Fre-
q.”  column is the number of occurrences of each letter. Notice that for most letters in 
all three datasets the suggested period is 24 or a multiple of it (e.g. 168, 336). Table 
1b contains the patterns produced by Han’s algorithm for a period length of 24. 
 
Table 1. (a) Results for the Wal-Mart stores. (b) Verification with Han’s algorithm. 
 (a) (b) 

 

Data Symbols Period ACF  Freq. 
 A 24 228 3532 

Store  B 168 1140 2272 
C 24 94 1774 
D 336 648 874 
E 504 2782 2492 

1 

F 4105 81 48 
 A 24 252 3760 

B 168 1750 2872 
C 168 936 2199 
D 168 851 2093 

Store 
2 

E 1176 90 140 
 A 168 2034 3920 

B 168 1436 2331 
C 168 950 2305 
D 336 434 655 
E 24 99 1830 

Store  
3 

F - - 23 

Pattern Conf. 
AAAAAABBBB***********B*A 62.4 
AAAAAA**BB************AA 72.6 
AAAAAA***BC***********AA 60.9 
AAAAAA***B************AA 75.7 
AAAAAA*BB************BAA 63.3 
AAAAAA*BBB************AA 60.9 
AAAAAABBB************BAA 61.3 
AAAAAABBB************B*A 69.6 
AAAAAABBB*************AA 65.7 



4. Capturing Approximate Periodicities – The APPD Algorithm 

We define approximate per iodicity as a periodicity, some periodic instances of 
which, might be shifted a user-limited number of time points before or after their 
expected periodic occurrence. Normally, these instances would be considered miss-
ing and therefore this periodicity would be considered partial. Capturing those in-
stances is a particularly interesting task that provides us with useful information 
regarding the strength of a periodicity. We try to capture those “shifted”  occurrences 
in terms of frequency estimate. In other words, we use the autocorrelation function 
over the binary vectors of the occurrences of a letter, as a means in order to acquire a 
reliable measure of the strength of a periodicity. We call our algorithm APPD, which 
stands for Approximate Periodicity Detection. 

Our approach is an extension to PPD. At the preprocessing stage, we assume that 
all the occurrences of a letter could be part of a periodicity and that they might be 
shifted. Every such occurrence is represented by an ace. By replacing zeroes around 
every ace with values in the range between 0 and 1, we attempt to capture all these 
possible shiftings. Consider the following example: 

Example 3. Given the following binary vector of the occurrences of a letter in a 
time series: u = [1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, 
1,0,0,0,1,0,0,0], consisting of 44 points and featuring a perfect periodicity with pe-
riod length 4, we shift the 3 last aces by 1 position before or after (arbitrarily), thus 
taking the following vector: v = [1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, 
0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, 0,1,0,0,0,1,0,0,0,1,0,0,0]. The autocorrelation func-
tion of vectors u and v are shown in the following 2 figures. 

 
 (a) (b) 

Fig. 4. Autocorrelation of vectors u and v. 
 

The autocorrelation value of 11 at position 5 of the first vector, implies a periodic-
ity of length 4. Shifting 3 aces by 1 position, results in an autocorrelation value of 8 
at position 5. Thus, those 3 aces were not considered at all. In real world data, where 
randomness and noise is always present, such effects are usually expected, while 
perfectly distributed periodic instances are quite unlikely to occur. Changing the two 
zeroes, before and after every ace, to 0.5 we make them contribute to the accuracy of 
the estimate of the periodicity, implying thus that there is a 50% probability that 
every ace’s natural position might be the one before or the one after.  



 
Fig. 5. Autocorrelation of vector w. 

The above chart shows that the autocorrelation value at position 5 is now 14.3, 
denoting that the implied periodicity might actually be stronger than the one implied 
be the autocorrelation of v. Additionally, we can insert values other than 0.5 before 
and after the aces, depending whether one wants to increase the probability, and 
therefore the contribution, of the possibly shifted aces. It is totally up to the user or 
the domain expert to alter this according to his knowledge about the nature of the 
data. Furthermore, one can also increase the area around every ace to be covered 
with values between 0 and 1. Replacing zeroes around an ace like [0.2, 0.6, 1, 0.6, 
0.2] would be similar to using a triangular membership function in a fuzzification 
process. The main advantage is that the computational cost of our approach is much 
smaller than the one of a fuzzy algorithm. 

Finally, we should make clear that the estimate provided by APPD is a reliable in-
dication of the strength of a periodicity, and not a frequency estimate, like the one 
produced by PPD. It is not evidence but a serious hint that could provide the user 
with useful insight about the data. One should combine the two methods in order to 
mine for weak periodicities in a time series. If the increase of the autocorrelation 
value is significant then it is highly possible that its actual confidence is greater than 
the one produced by the first method.  

APPD’s computational complexity is exactly the same as PPD’s. It engages at the 
preprocessing stage, during the first scan of the data, when the binary vectors are 
created. One can create both sets of vectors during the same scan and then run the 
autocorrelation step twice, avoiding thus another scan over the data on the disk. 

5. Conclusions and Further Work 

In this paper we proposed a method for efficiently discovering a set of candidate 
periods in a large time series. Our algorithm can be used as a filter to discover the 
candidate periods without any previous knowledge of the data along with an accept-
able estimate of the confidence of a candidate periodicity. It is useful when dealing 
with data whose period is not known or when mining for unexpected periodicities. 
Algorithms such as Han’s described in [9] can be used to extract the patterns. We 
tried our method against various data sets and it proved to speed up linearly against 
different alphabets and different numbers of time points. We also verified its ex-
pected completeness using Han’s algorithm.  

We also proposed a method for capturing approximate periodicities in a time se-
ries. Our method is an extension to the partial periodicity detection algorithm, at the 



preprocessing stage. We provide the user with a reliable strength measure for ap-
proximate periodicities. Its usefulness lies on the fact that in real world data several 
instances of a periodic pattern or symbol, might not be accurately distributed over the 
time series. It adds no computational overhead to the previous algorithm, since it can 
be integrated into the first scan of the data, at the preprocessing stage. 

We implemented and tested our algorithm using a main memory FFT algorithm, 
however, a disk-based FFT algorithm [13, 14] would be more appropriate for han-
dling larger time series that do not fit in the main memory. Interesting extension of 
our work would be the development of an algorithm to perform over other kinds of 
temporal data such as distributed.  
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