

CERIAS Tech Report 2003-24

OPTIMAL SECURE INTEROPERATION IN A
MULTI-DOMAIN ENVIRONMENT

EMPLOYING RBAC POLICIES

by Basit Shafiq, James B. D. Joshi,
Elisa Bertino, Arif Ghafoor

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

 1

Optimal Secure Interoperation in a Multi-Domain
Environment Employing RBAC Policies

Basit Shafiq1, James B. D. Joshi1, Elisa Bertino2, and Arif Ghafoor1

1School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
{ shafiq, joshij, ghafoor} @ecn.purdue.edu

2Dipartimento di Scienze dell’ Informazione, Università di Milano, Milano, Italy

�

�

�

Abstract

Multi-domain application environments where distributed multiple organizations interoperate with each

other are becoming a reality as can be seen in most Internet-based enterprise applications. Composition of

a global security policy that governs information and resource accesses in such environments is a

challenging problem. In this paper, we propose a policy integration mechanism that merges security

policies of multiple collaborating domains into one unified global access control policy. This global policy

ensures that security and autonomy of constituent domains are not compromised due to inter-domain

information and resource sharing.

�

 *Portions of this work were supported by Grant IIS-0209111 from the National Science
Foundation, and by sponsors of the Center for Education and Research in Information Assurance and
Security.

 2

1 Introduction

 Recent advances in high-performance computing and networking technologies have resulted in a

tremendous growth of large-scale distributed applications in medicine, education, e-commerce, digital

libraries, digital government, ubiquitous computing environments and many others. With such rapid

proliferation and increasing importance of IT technologies, security is becoming a major concern. Many

studies show that unauthorized access, in particular by insiders, constitutes a major security problem for

enterprise application environments [Pow00], highlighting the need for robust access control management

systems. This problem can be highly magnified in a multi-domain environment where distributed multiple

organizations, each employing its own security policy, interoperate with each other, allowing highly

intensive inter-domain accesses [Jos01b, Gon96]. Such multi-domain environments are already becoming a

reality, as can be seen in most Internet-based enterprise applications, digital governments, and healthcare

systems [Jos01b]. Each individual domain of a multi-domain environment can have its own security policy.

Integration of these local policies entails various challenges regarding reconciliation of semantic

differences between local policies, secure interoperability, containment of risk propagation, policy

management, etc. [Jos01b]. An access control model that can be used to uniformly represent policies of the

individual domains is desirable. Such a model should allow interoperation and information sharing among

multiple domains and at the same time guarantee that such inter-domain accesses do not violate the

underlying policies of the constituent domains.

 A multi-domain system can be considered as a collection of cooperating single domain systems

which are possibly autonomous and heterogeneous. Heterogeneity in a multi-domain environment may

exist in different forms [Hos91]. For instance, the multi-domain environment may be composed of a

diverse set of interacting and collaborating organizations with different policies. Similarly, the environment

may have more than one security goals, or the variations of the same goal. Furthermore, the environment

may have heterogeneous system components such as operating systems and databases, each with different

security policy [Hos91, Jos01b].

 In a multi-domain system, information and resources belonging to a particular domain can be

accessed by outside users. However, these inter-domain accesses should not result in any violation of the

security policies of constituent domains. In particular, secure interoperation should enforce the following

two principles [Gon96]:

• The autonomy principle, which states that if access is permitted within an individual system, it must

also be permitted under secure interoperation.

• The security principle, which states that if an access is not permitted within an individual system, it

must not be permitted under secure interoperation.

 3

 To achieve these security goals, a unified policy called meta-policy is needed to mediate accesses

across domain boundaries [Hos91]. Such meta-policy is responsible for resolving semantic differences and

inconsistencies among the security policies of different domains. Moreover, the access control mechanism

enforcing such meta-policy should also allow a domain to leave the multi-domain environment without

creating access control loopholes in both itself and the overall environment it belonged to.

 This paper addresses the issue of policy integration in a multi-domain system that allows secure

interoperation. The security policies of collaborating domains are expressed using role-based access control

(RBAC) model. The policy integration mechanism described in this paper is a two phase process as shown

in figure 1. In the first phase the role heterogeneity constraints among collaborating domains are resolved

and a global access control policy is generated from the given RBAC policies and administrator specified

constraints. The global policy generated in the first phase may be conflicting and may allow violation of

some of the security requirements. In the second phase, conflicts are resolved by relaxing some of the

access constraints. For conflict resolution, we propose an integer programming (IP) [Wol98] based

approach that maximizes inter-domain information and data exchange according to some specified

optimality criterion.

 The paper is organized as follows. In section 2, we describe related work. In section 3, we briefly

discuss RBAC model. Policy integration mechanism is presented in section 4. Section 5 concludes the

paper and provides future directions.

Multi-domain Policy
Generation

AC Policy
(Domain 1)

AC Policy
(Domain 2)

AC Policy
(Domain n) Administrator

specified
constraints

Conflict Resolution

 Figure 1. Policy integration framework

2 Related Work

 It has been proven that general security problem in a single domain is undecidable [Har76]. Gong

et. al [Gon96], further proved that general secure interoperation problem in a multi-domain environment is

also undecidable. However, a restricted version of secure interoperation problem is shown to be tractable.

In particular, secure interoperation has been investigated in the context of multi-level security (Bell

Lapadula) model and is proved to be decidable in polynomial time [Gon96, Bon96]. Multi-level security or

 4

Bell Lapadula [Bel73] model is more suitable for environments which have static constraints. For instance,

in multi-level security model, all accesses conform to the pre-specified security ordering. Security ordering

in this case is a static constraint, even though the security labels of entities may change with time, e.g.,

declassification of documents after a certain period of time. If a subject s with security level a is authorized

to access an object o with security level b, then s can access o at all times provided the security levels of s

and o never change. Dynamic constraints on the other hand, may not allow subject s to access o even

though their security labels remain unchanged. Separation-of-duty (SoD) and precedence constraints are

example of such dynamic constraints and are required in most commercial applications including e-

commerce, health-care systems, and workflow management systems [Ber99]. Such applications cannot be

modeled using traditional multi-level (LBAC) model because of the presence of dynamic constraints. Role

based access control (RBAC) that allows specification of a wide variety of constraints including SoD,

cardinality, and dependency, can be used to model these applications [Ber99]. Osborn in [Osb02] discusses

integration of RBAC policies in a multi-domain environment. Policy integration in [Osb02] is performed

based on user to role and role to permission assignments only. It does not take into account constraint

heterogeneity that may exist among inter-domain roles.

3 Role based Access Control

 Role based access control (RBAC) has been found to be a suitable model for the specification of

security requirements of commercial applications [Ber99]. Several beneficial features such as policy

neutrality, support for least privilege and separation of duty/privilege are associated with RBAC models

[Jos01a, San96]. Role hierarchies in RBAC also allow modeling of multi-level security policy (Bell

Lapadula [Bel73], Biba [Bib77]). Furthermore, RBAC constraints allow specification of user-specific

access control policies, as well as discreationary access control (DAC) and mandatory access control (MAC)

policies, thus, increasing the applicability of RBAC models [Osb00].

 The RBAC model as proposed by Sandhu et. al. in [San96], currently being used as the basis for

the NIST RBAC model, consists of the following four basic components: a set of users, a set of roles, a set

of permissions, and a set of sessions. A user is a human being or a process within a system. A role is a

collection of permissions associated with a certain job function within an organization. Permission defines

the access rights that can be exercised on a particular object in the system. A session relates a user to

possibly many roles. When a user logs in the system he establishes a session by activating a set of enabled

role that he is entitled to activate at that time. If the activation request is satisfied, the user issuing the

request obtains all the permissions associated with the role he has requested to activate. On roles, a

hierarchy is defined by ≥. If r i ≥ r j, and r i, r j ∈ roles then r i inherits the permissions of r j. In such a case, r i is

a senior role and r j a junior role.

 5

3.1 Graph-based specification model for RBAC

 We use graph based formalism similar to one described in [Koc02] to specify the RBAC policy of

a domain. In this graph based model, users, roles, and permissions are represented as nodes and the edges

of the graph describe the association between various nodes. In order to capture the RBAC semantics, the

nodes can not be connected in an arbitrary manner. The type graph shown in figure 2, defines all possible

edges that may exist between different nodes. An edge between user node u and role node r indicates that

role r is assigned to user u. Self edges on the role node r models the role hierarchy. An edge from a role r1

to a role r2 indicates that role r1 is senior to role r2 and can inherit all permissions associated with role r2.

Furthermore, there can be edges between role and permission nodes. A permission is a pair (access mode,

object), which describes what objects can be accessed and in which mode (read, write, execute etc).

ru p

role hierarchy

SoD

 Figure 2. Type graph for the RBAC model

 The graph model also supports specification of separation of duty (SoD) constraints among roles.

A role specific SoD constraint disallows assignment of conflicting roles to same user. In the graph model,

SoD constraint between two roles is represented by a double arrow between the corresponding roles. Figure

3 shows an instance of an RBAC policy specified in graph-based formalism. In this RBAC policy, roles r2

and r3 are conflicting roles and cannot be accessed by same user.

r1 u1p1

r3u4
p3r2 u3p2

 Figure 3. An RBAC policy instance

4 Multi-domain policy integration

 In the following, we first discuss the heterogeneity issues involved in multi-domain policy

integration and then present the proposed policy integration mechanism.

 6

4.1 Heterogeneity issues in policy integration

 Composition of a global policy that governs interoperation in a multi-domain system is a

challenging problem. One key aspect of this complex problem is heterogeneity. There are various types of

heterogeneity that need to be addressed as a part of policy integration procedure. The heterogeneity may

arise because of naming conflicts, role hierarchies or other constraints. Naming conflicts arises because of

the use of same names to represent different conceptual entities (homonym) or different names to represent

same conceptual entities (synonym). Accordingly, there may be naming conflicts among inter-domain roles

or objects. Naming conflicts can be resolved using schema integration techniques from the database area

[Gua02, Vet98]. These techniques require the use of a global lexicon to extract the conceptual meaning of

attributes from their names. Additionally, domain-based and value-set-based comparisons can be performed

for refinement [Li94]. Since a role is a collection of objects/permissions, resolving naming conflicts at the

role level is difficult. Therefore, naming conflicts should be resolved at the object/permission level. Once

the naming heterogeneity is resolved at the object/permission level, roles from different domains can be

compared and linked. Linking of roles allows inter-domain interoperation as explained in the next section.

 In addition to naming conflicts, heterogeneity among multiple domains may exist in role

hierarchies and in other dynamic constraints such as SoD and cardinality constraints. Hierarchical

heterogeneity among domains’ policies may arise because of two reasons: a) use of different role

hierarchies (inheritance I, activation A, inheritance-activation IA, hybrid [Jos02]) by different collaborating

domains; b) domains may use different hierarchical ordering to represent same permission authorization for

a given role. For simplicity in discussion, we use a monotype inheritance only hierarchy in this paper.

However, the latter hierarchical heterogeneity problem may still exist in monotype hierarchies as explained

in a later section.

 The objective of policy integration is to allow information and resource sharing without violating

the security and autonomy of individual domains or of the multi-domain system as a whole. Since domains’

RBAC policies define both permitted and restricted accesses, the security and autonomy requirements of

the individual domains can be extracted from their respective RBAC policies. Additional security

requirements of the multi-domain system can be defined by an administrator with global security

responsibility. The administrator in charge of global security policy may specify both permitted and

restricted inter-domain accesses. Note that the accesses specified by the administrator may conflict with the

domain policies and may violate the security or autonomy requirements of constituent domains as well as

of the merged organization. To resolve such conflicts, we propose an integer programming [Wol98] based

approach that determines an optimal set of permitted accesses which preserve the specified constraints.

This approach is discussed in section 4.3

 7

4.2 Inter-domain role comparison and linking

 In this section, we focus on the issue of comparing and linking inter-domain roles based on their

permission set and the security and autonomy requirements of collaborating domains. As stated in the

above section, inter-domain roles are compared based on their permission assignments over objects. This

permission set includes both directly assigned permissions as well as inherited permissions. We also

assume that objects in the RBAC model are organized into conceptual classes, e.g., account tables,

insurance claims, and audit report etc. Two cross domain objects belonging to same conceptual class are

considered to be semantically equivalent.

 Using the above assumption and the permission assignments of roles over the objects, two roles rA

and rB from two distinct domains A and B respectively, can have one of the following relationships:

1. Equivalent: rA is equivalent to rB (rA � rB), if the permission sets Pset(rA) and Pset(rB) of roles rA and rB

are equivalent. The permission set Pset(r) of a role r is the set of all permissions assigned directly or

indirectly to role r.

, : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r∀ = ∧ ∈ ⇔ ∈

2. Contain: rA contains rB (rA � rB) if the permission set Pset(rB) of role rB is included in the permission set

Pset(rA) of role rA. Formally:

(): (,) () (,) () () ()
j i i jB B A A A Bj i O a Pset r O a Pset r class O class O� �∀ ∃ ∈ � ∈ ∧ =

� �

3. Overlap: rA overlaps rB (rA O rB) if Pset(rA) and Pset(rB) have some common permissions. Formally:

, : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r∃ = ∧ ∈ ∧ ∈

4. Not related: rA is not related to rB (rA ≠ rB) roles rA and rB do not share any common permissions.

Formally:

, : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r¬∃ = ∧ ∈ ∧ ∈

 Figure 4 presents an algorithm, called role-integrate, that integrates inter-domain roles based on

their permission assignment. role-integrate is a recursive algorithm that uses bottom-up strategy to

establish role equivalence. The algorithm basically checks all inter-domain roles for one of the above four

relations. If the roles do not share any permission, then it returns without doing anything. If the inter-

domain roles say, r1 and r2, are equivalent then they are linked together. Linking two inter-domain roles r1

and r2 implies that a user say ui, authorized for role r1 can also access role r2. Similarly, a user uj authorized

for role r2 can access role r1. An inter-domain link in the graph model is represented by a dashed double-

headed arrow between two roles. A link between two inter-domain roles is established only if they are

equivalent in their permission assignment (both direct and indirect) and linking them does not violate any

RBAC consistency properties [Gav98]. For instance in figure 6, roles r4j and r9 are equivalent in terms of

the permission assignment and also their junior roles are equivalent. Despite this permission and

hierarchical equivalence, roles r4j and r9 cannot be linked because it will make role r4j conflict with r3j and

 8

r5j. Since all of these roles (r4j, r3j, and r5j) belong to the same role hierarchy, they cannot have a separation

of duty constraint with each other [Gav98]. The linked roles may still possess constraint heterogeneity and

are not equivalent in that respect. For instance the two cross-domain roles, r1 and r2, may be equivalent in

their permission assignment, however they may have different cardinality constraints. One possible solution

to this problem is to take most restrictive constraints from the two roles and add them to both roles. For

instance, if r1 has a cardinality constraint of one and r2 has a cardinality constraint of three, then the most

restrictive cardinality constraint is one and should be added to both r1 and r2. However, in some cases

adding the most restrictive constraint may result in violation of autonomy with respect to the individual

domain. Nevertheless, the security condition is always preserved. On the other hand, if linked roles retain

their original constraints then autonomy is preserved but security violation may occur. So, there is a trade-

off between security and autonomy requirement.

 The two roles r1 and r2 may also have a subset-superset or overlapping relationship. If r1, contains

r2, then a junior role r1j is created by calling split function. In the split function, all the permissions and

junior roles common to both r1 and r2 are removed from r1 and are assigned to r1j. After permission

reassignment r1j and r2 are linked together provided linking them does not violate RBAC consistency

semantics. If r1 and r2 overlap but none of the roles contain each other, then two new roles r1j and r2j are

created and made junior to r1 and r2 respectively. Permissions and junior roles common to both r1 and r2 are

removed from the senior roles r1 and r2 and assigned to the roles r1j and r2j. After this permission and role

assignments, r1j and r2j are linked if possible.

 Figure 5 shows the graphical representation of RBAC policies of domain A and domain B. The

double headed arrow in figure 5(b) between roles r9 and r10 depicts that r9 and r10 are conflicting roles and

cannot be assigned to same user. Figure 6 shows the integrated RBAC policy that allows interoperation

between domains A and B. Note that in the integrated policy the user to role assignments do not change

from the original domain policies. Moreover, the security and autonomy requirement of domains A and B

are not violated. As a result of this integration, constraints are also added between cross-domain roles. For

instance, SoD constraints between r3j and r9, and r5j and r9 are added. These inter-domain SoD constraints

are shown as solid double-headed arrow between the corresponding roles.

Complexity of role-integrate

 The algorithm role-integrate runs in polynomial time and has a complexity of O(|P|2). This is

evident from the following lemma and theorem.

Lemma 1: If role graphs representing domains’ RBAC policies are acyclic then the algorithm role-

integrate terminates.

 Proof: Given two acyclic role graphs to be integrated, suppose that the algorithm does not terminate, i.e.,

role-integrate is called recursively for an infinite number of times. This implies that there is a cycle in one

or both of role graphs. Creation of new roles does not create any cycle as a newly created role is never

 9

made a parent of an existing role. Therefore, the cycle must be present in the input role graph(s) which is a

contradiction of our initial assumption. Hence the algorithm role-integrate terminates.

Theorem 1: The worst case complexity of role-integrate is O(|P|2), where |P| is the cardinality of the

permission set.

Proof: According to the above lemma, the recursive algorithm role-integrate terminates. Therefore, we can

build a recursive tree with each node corresponding to two roles to be compared. The predicate not-

compared-previously in lines 4 and 7 ensures that inter-domain roles are compared only once. If |R1| and

|R2| denotes the total number of roles in their respective domains, then the total number of role

comparisons made by role- integrate while merging the two domains are |R1|x|R2|. Note that |R1| and |R2|

also include newly created roles. However, no more that |P| number of roles can be created. Therefore, the

complexity of role-integrate is O(|P|2).

4.3 Administrator specified constraints

 The role integration algorithm described above takes two RBAC policies as input and creates an

integrated policy which allows inter-domain role accesses and is homogeneous in terms of role hierarchies

and permission assignment. The administrator who is in charge of the global security policy can define

additional security constraints and specify both permitted and restricted inter-domain role accesses. These

additional constraints may conflict with the access control policies of individual domains. For instance, in

figure 6 making role r2 senior to the role r7j (shown as dashed arrow from r2 to r7j in figure 7) will violate

the role specific SoD constraints between roles r9 and r10 and also between r9 and r10j. Making r2 senior to

r7j will enable user u1 to access role r9 through the role r7j. Also the presence of link between role r3j and r10

allows user u1 to access role r10. This is a violation of SoD constraint defined between roles r9 and r10 in the

original domain policy.

 The solution to this problem is to remove either the unidirectional link (r2 – r7j) or links (r3j – r10)

and (r5j – r10j). This raises an important question: which accesses from the set of conflicting accesses should

be removed such that the autonomy and security requirements of constituent domains are not violated?

Although, removing link(s) resolves conflicts in the given policy, it also changes the set of allowable

accesses. We can formulate the problem of conflict resolution in a given multi-domain RBAC policy as an

optimization problem with the objective of maximizing permitted accesses according to some pre-specified

optimality criterion. Various optimality measures such as maximizing direct or indirect accesses or

minimizing the set of relaxed constraints can be used.

 In the following, we describe an integer programming based approach that determines an optimal

set of allowable accesses which do not violate the specified constraints. The formulation is generic in a

sense that it can work for any of the above mentioned optimality criteria. Changing the optimality measure

in our formulation only requires changing the weights of the objective function.

 10

Figure 4. role-integrate: an algorithm for integrating inter-domain roles

Role-integrate(r1, r2)
1. if Pset(r1) ∩ Pset(r2) = φ
2. return
3. for each rc ∈ children(r1)
4. do if ((Pset(rc) ∩ Pset(r2) ≠ φ) and not-compared-previously(rc,r2))
5. then Role-integrate(rc,r2)
6. for each rc ∈ children(r2)
7. do if ((Pset(r1) ∩ Pset(rc) ≠ φ) and not-compared-previously(r1,rc))
8. then Role-integrate(r1,rc)
9. � return without doing anything if r1 and r2 are already linked
10. if already_linked(r1,r2)
11. then return
12. �ri is contained in rj if for each p assigned to ri, pis also assigned to rj, and if ri has a junior role rk

then there exist a path from rj to role rk.
13. if contained(r2, r1) and contained(r1, r2)
14. then if linking r1 and r2 do not violate RBAC consistency properties
15. then link(r1, r2)
16. return
17. else if contained(r2, r1)
18. then r1j=split(r1, common_permissions(r1,r2), common_juniors(r1,r2))
19. if linking r1j and r2 do not violate RBAC consistency properties
20. then link(r1j, r2)
21. return
22. else if contained(r1, r2)
23. then r2j=split(r2, common_permissions(r1,r2), common_juniors(r1,r2))
24. if linking r1 and r2j do not violate RBAC consistency properties
25. then link(r2j,r1)
26. return
27. � r1 and r2 overlap if they have at least one common directly assigned permission or at least one

common junior
28. else if overlap(r1,r2)
29. then r1j=split(r1, common_permissions(r1,r2), common_juniors(r1,r2))
30. r2j=split(r2, common_permissions(r1,r2), common_juniors(r1,r2))
31. if linking r1j and r2j do not violate RBAC consistency properties
32. then link(r1j, r2j)
33. return
34. return

split(r, com_perm, com_juniors)
1. rj ← createrole()
2. insert(r->childrenlist,rj)
3. for each p ∈ com_perm
4. do remove(r->plist, p)
5. insert(rj->plist,p)
6. for each rc ∈ com_juniors
7. do remove(r->childrenlist, rc)
8. insert(rj->childrenlist, r)
9. return rj

 11

r1u1 p7

r2u2 p6

r3u3

p5

r4 u4

p4

r5u5

p3

p2

r6u6 p1

r8u8

p7

p8

r7 u7

p9

p6

r10u10

p2

p5

r9 u9p4

r11u11 p1

Domain A Domain B

(a) (b)

 Figure 5. RBAC Policies of Domains A and B

r1u1

r1j p7 r2

u2

r3 r4 r2ju3 u4 p6

r3j r5 r4jp5 u5
p3 p4

r5jp2

r6u6 p1 r11u11 p1

r7 u7
p9 r8u8 p8

r7j

p6

r8j p7

r9 u9
p4 r10u10 p5

r10j p2

Domain BDomain A

Figure 6. An integrated RBAC policy after applying procedure role-integrate

 12

4.4 IP formulation of a multi-domain RBAC policy

 In the following, we describe a procedure for formulating multi-domain policy integration

problem into an integer program (IP) [Wol98]. In the IP formulation of RBAC policy, all the constraints

such as hierarchical, SoD, permitted and restricted access constraints are defined using linear equations.

The variables used in these equations convey both user and role information. For instance, the variables are

of the form
jiru , where the first subscript i identifies the user and the second subscript r j specifies the role.

The variable
jiru is a binary variable, i.e., it can take a value of ‘0’ or ‘1’ . If the variable 1

jiru = then user

ui is authorized for role r j, otherwise ui is not authorized for r j. If user ui and role r j are from different

domains and 0
jiru = then there should not be any path from the user node ui to the role node r j. Note that

the given RBAC policy may be inconsistent and there may exist a path between user ui from one domain

and role r j from another domain, and in the solution to the IP problem 0
jiru = . This inconsistency is

resolved by dropping an inter-domain arc that lies in the path between the user node ui and role node r j.

 To reduce the number of constraint equations, only one user assigned to the senior most role of

each role hierarchy is considered. Note that there can be multiple role hierarchies in a single domain. In

such a case, all the users assigned to the senior most roles of their corresponding hierarchies are considered.

For instance, in figure 7, domain B has two role hierarchies with senior most roles r7 and r8. In the integer

programming formulation shown in figure 8, both u7 and u8 are considered and all the users that are

assigned the junior roles are omitted. In case some user, say ui, is assigned the senior most roles of two or

more role hierarchies, a new role is created and is made senior to all the senior most roles of such

hierarchies. User ui is then assigned the newly created senior role.

4.4.1 Constraint transformation rules
We use the following transformation rules to generate IP equations for an RBAC policy.

Intra-domain constraints

1. In the graph model, a user to role assignment is specified by an arc from user node to role node. In

algebraic form this can be written as the following equation:

 1
jiru = , where user ui is assigned role r j.

2. In the graph model, if some user ui is not authorized to access a role r j then there does not exist a path

from the user node ui to the role node r j. Note that path in this case includes both intra-domain and

inter-domain links/arcs. This restricted access can be specified in equation form by setting
jiru to 0.

3. If a role rk has multiple parents, say r1, r2,…, rn, and a user ui is authorized for one or more of the

parent roles of rk, then ui is also authorized for role rk. This can be stated in the following equation

form:

 13

 1,

0

0, for 1

j k

j k

n

ir ir
j j k

ir ir

u u

u u j n

= ≠

− ≥

− ≤ ≤ ≤

�

If the role rk has only one parent, say r j, then the above equations can be reduced into the following

equation:

 0
j kir iru u− =

4. In the graph-based model, SoD constraint between two conflicting roles r j and rk is represented by a

double-headed arrow between roles r j and rk. In the IP formulation, this SoD constraint can be written

as:

 1, for each user authorized for or
j kir ir i j ku u u r r+ =

Inter-domain constraints

5. Consider a cross domain arc from role r j to role rk with r j and rk belonging to different domains.

Suppose a user ui is authorized for role r j and both user ui and role r j belong to the same domain. In this

case, user ui may also access the cross-domain role r j. This can be captured by the following set of

equations:

1

0
j k

j k

ir ir

ir ir

u u

u u

− ≤

− ≥

 The inequality relation in the above equation leaves room for relaxing a cross-domain access

constraint in case it conflicts with other constraints.

6. Consider two users ui and uj who are authorized for some role rk. Let there be a cross-domain link from

role rk to role r l. Suppose user ui and role rk belong to the same domain. If both ui and uj belong to the

same domain and ui is authorized for the cross-domain role r l then uj is also authorized for the role r l.

However if ui and uj belong to different domains, then uj may not be able to access role r l, because the

cross-domain arc allowing uj to access rk may be dropped from the solution of IP problem. Formally:

() ()
if domain() domain() domain() domain() and then

 0

k k

k l k l

i j j k jr ir

ir ir jr jr

u u r r u u

u u u u

= = ≠ =

− − − =

() ()
() ()

if domain() domain() domain() domain() and then

 2

 0

k k

k l k l

k l k l

i j k j jr ir

ir ir jr jr

ir ir jr jr

u r r u u u

u u u u

u u u u

= ≠ = ≤
− − − ≤
− − − ≥

 14

7. Inter-domain SoD constraint may exist between two cross-domain roles or between two role belonging

to same domain but can be accessed by cross-domain users. In IP formulation, the cross-domain SoD

constraint between two roles r j and rk is defined by the following constraint equation:

i1, for all users such that can access either or
j kir ir i i ku u u u r r+ ≤

4.5 Optimality Criteria

 Once the RBAC constraints are transformed into linear equations by using the above

transformation rules, the multi-domain RBAC policy can be formulated as the following integer

programming problem.

maximize

subject to

 , 0 or 1
j j

T

ir ir

c u

Au b

u u u

≤
∀ ∈ =

Where, c is the cost vector and A is the constraint matrix. The cost vector c defines the optimality criteria.

The main purpose of formulating the multi-domain RBAC policy into an IP problem is to find a feasible

solution (a set of permitted user to role accesses that do not violate the given security and autonomy

requirements of individual domains) that maximizes the objective function according to given optimality

criterion. One of the optimality criteria might be to maximize the number of cross domain role accesses. In

this case the objective function is the sum of all variables defining inter-domain user to role accesses.

Example 1 given below uses this optimality criterion.

 Maximizing cinter-domain accesses may lead to relaxation or dropping of some of the

administrator specified constraints which may not be desirable in certain situations. When administrative

constraints are to be preserved, the element of cost vector corresponding to the administrator specified

constraint is assigned a higher value. Example 2 given below addresses this issue.

 The following examples use the multi-domain RBAC policy shown in figure 7. In this policy role

r2 is made senior to role r7j by the administrator. This constraint is represented as a dashed arrow from role

r2 to r7j in figure 7. Moreover, there are inter-domain links between roles r1j and r8j, r3j and r10, r5j and r10j,

and r6 and r11. This is an inconsistent policy because user u1 is allowed to access roles r9, r10 and r10j, which

is a violation of SoD constraint defined between roles r9 and r10 and r9 and r10j. The constraint equations for

this multi-domain RBAC policy are shown in figure 8.

 15

r1u1

r1j p7 r2

r3 r4 r2jp6

r3j r5 r4jp5 p3 p4

r5jp2

r6 p1 r11 p1

r7 u7
p9 r8u8 p8

r7j

p6

r8j p7

r9
p4 r10 p5

r10j p2

Domain BDomain A

 Figure 7. An insecure multi-domain RBAC Policy

Example 1

In this example, we will use the maximization of inter-domain user to role accesses as an optimality

criterion and resolve the inconsistency present in the multi-domain RBAC policy shown in figure 7. The

following objective function can be used for this optimality measure:

7 9 11 8 10 10 1 3 5 61 1 1 1 1 1 8 8 8 8maximize
j j j j j jr r r r r r r r r ru u u u u u u u u u+ + + + + + + + +

 A feasible solution that maximizes the above objective function has the following values for the

given inter-domain variables:

7 9 11 8 10 10 1 3 5 61 1 1 1 1 1 8 8 8 8 0, 0, 1
j j j j j jr r r r r r r r r ru u u u u u u u u u= = = = = = = = = =

 Since,
7 91 1 0 and 0

jr ru u= = , therefore the administrator specified inter-domain arc from role r2

to role r7j should be removed. The resulting RBAC policy is similar to the integrated policy shown in figure

6.

 16

Figure 8. Constraint equations for the multi-domain RBAC policy shown in figure 7.

Example 2

 Suppose the optimality criterion is to maximize the inter-domain accesses specified by the

administrator. In this case the objective function can be written as:

7 9 11 8 10 10 11 1 3 5 61 1 1 1 1 1 1 8 8 8 8maximize () ()
j j j j j jA r r r l r r r r r r r rc u u u c u u u u u u u u+ + + + + + + + + +

where,
8

3A lc c> .

 A feasible solution that maximizes the above objective function has the following values for the

inter-domain variables:

7 9 11 8 10 10 1 3 5 61 1 1 1 1 1 8 8 8 8 1, 1, 1, 0, 0, 0, 1, 1, 1, 1
j j j j j jr r r r r r r r r ru u u u u u u u u u= = = = = = = = = =

1

1 2 2 2 2 4 4 6

1 1 1 3 3 5 5 6

2 4 4 5

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

D o m ai n A
H i er ar ch i cal C o n st r ai n ts

1
0 , 0 , 0 , 0
0 , 0 , 0 , 0
0 , 0 ,

j j j j

j j j j j j

r

r r r r r r r r

r r r r r r r r

r r r r

u
u u u u u u u u
u u u u u u u u
u u u u u

=
− = − = − = − =
− = − = − = − =
− = − =

5 5

2 3 3 5 3 3

7 8

7 7 7 9 9 1 0 1 1

8 8 8 1 0

1

1 1 1 1 1 1

7 8

7 7 7 7 7 7 7

8 8 8 8

0
0 , 0 , 0

D o m ai n B
H i er ar ch i cal C o n st r ai n ts

1, 1
0 , 0 , 0
0 , 0

j

j

j j j

j j

r r

r r r r r r

r r

r r r r r r r

r r r r

u
u u u u u u

u u
u u u u u u u
u u u u

− =
− = − = − =

= =
− = − = + − =
− = − =

1 0 1 0 9 1 0 1 1

8 8 1 0 1 0

7 7 9

9 1 0 9 1 0 9 1 0 9 1 0

1 8

8 8 8 8 8

7 7 7 7

8 8 8

7 7 7 7 8 8 8 8

1 1

, 0 , 0
0

0
S O D

1, 1, 1, 1
I n ter -d o m ai n C o n st r ai n ts
l i n k s

1,

j j

j j

j

j j

r r r r r

r r r r

r r r

r r r r j r r r r j

r r

u u u u u
u u u u
u u u

u u u u u u u u

u u

− = + − =
= = = =
= = =

+ = + = + = + =

− ≤
1 8 8 1 0 1 0 1 0

1 0 9 1 1

3 1 0 3 1 0 5 1 0

5 1 0 6 1 1 6 1 1

1 0 3

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1

 0 , 0 0 ,
0

1, 0 , 1,
0 , 1, 0 ,

(

j j j j

j

j j j j

j j

j

r r r r r r

r r r

r r r r r r

r r r r r r

r r

u u u u u u
u u u
u u u u u u
u u u u u u
u u

− ≥ − = − =
+ − =

− ≤ − ≥ − ≤
− ≥ − ≤ − ≥
−

1 0 3 1 0 5 1 0 5

1 1 6 1 1 6 1 1 6 1 1 6

8 1 8 1 1 3 3 5

5 6

8 8 1 1 1 8

1 1 8 8 1 1 7 7

8 8 8 8 8 8 8 8

8 8

) () 0 , () () 0 ,
() () 0 , () () 0

1, 0 , 0 , 0 ,
0

j j j j j

j j j j j j j j

j

r r r r r r

r r r r r r r r

r r r r r r r r

r r

u u u u u u
u u u u u u u u

u u u u u u u u
u u

− − ≤ − − − ≤
− − − ≤ − − − ≤
− ≤ − ≥ − = − =
− =

1 0 3 1 0 3 1 0 5

1 0 5 1 1 6 1 1 6

3 1 0 3 1 0 5 1 0 5 1 0

6 1 1

8 8 8 8 8 8

8 8 8 8 8 8

8 8 1 1 8 8 1 1

8 8

, 1 , 0 , 1 ,
0 , 1 , 0

() () 0 , () () 0 ,
()

j j j j

j j

j j j j j j

r r r r r r

r r r r r r

r r r r r r r r

r r

u u u u u u
u u u u u u
u u u u u u u u
u u

− ≤ − ≥ − ≤
− ≥ − ≤ − ≥
− − − ≤ − − − ≤

− −
6 1 1

8 7 1 2 2 3 4 5 4

1 1 2 2 3 3 4 4 5 5

3 9 5 9 9 1 0 9

1 1

1 1 8 8 8 8 8 8 8

7 7 7 7 7 7 7 7 7 7

1 1 1 1 1 1 1

() 0
0 , 0 ,

0
I n ter -d o m ai n S O D

1, 1, 1,

j j

j j j j

j j

r r

r r r r r r r r r

r r j r r r r r r r r

r r r r r r r

u u
u u u u u u u u u
u u u u u u u u u u

u u u u u u u u

− ≤
= = = = = = = = =
= = = = = = = = = =

+ ≤ + ≤ + ≤ +
1 0

3 9 5 9

1

8 8 8 8

1
1, 1

j

j j

r

r r r ru u u u
≤

+ ≤ + ≤

 17

 Since user u1 cannot access role r8j, r10, and r10j, therefore the following inter-domain arcs from r1j

to r8j, r3j to r10, and r5j to r10j can be dropped. The corresponding multi-domain policy is shown in figure 9.

Note that the link arrows (r8j- r1j), (r10- r3j), and (r10j- r5j) are unidirectional.

r1u1

r1j p7 r2

r3 r4 r2jp6

r3j r5 r4jp5 p3 p4

r5jp2

r6 p1 r11 p1

r7 u7
p9 r8u8 p8

r7j

p6

r8j p7

r9
p4 r10 p5

r10j p2

Domain BDomain A

Figure 9. An optimal RBAC policy that retains administrator specified role access constraints.

5 Conclusion and future work

 In this paper, we discuss the issue of secure interoperation in a multi-domain environment. In

particular, we present a policy integration mechanism for integrating RBAC policies of multiple domains.

We consider RBAC model because of its inherent richness in expressing a wide variety of constraints that

exist in most commercial systems. The proposed policy integration mechanism described in this paper,

consists of two phases. In the first phase, a global security policy is generated from the security policies of

individual domains. However, this policy may consist of a set of conflicting constraints that make it

inconsistent. These conflicts are resolved by relaxing some of the inter-domain access constraints. However,

it is ensured that relaxation of any inter-domain constraint does not cause any violation of the security and

autonomy requirements of the constituent domains. For resolving conflicts in a multi-domain policy, we

propose an integer programming-based approach that determines an optimal set of allowable accesses.

Although in the examples only two domains are considered for policy integration, the mechanism described

in this paper is generic enough and can work for any number of domains provided the domains’ security

policies are expressed in RBAC framework. For a multi-domain environment consisting of more than two

domains, a pair wise approach can be used to generate the global security policy. For instance, one pair-

 18

wise merging strategy is to first integrate the security policies of any two domains and then integrate the

resulting policy with the third domain’s policy. This process continues until all policies are integrated.

 In this paper, we considered monotype inheritance hierarchy only. However, RBAC model

supports multiple types of hierarchies. As a future work, we are planning to extend the current policy

integration mechanism in order to incorporate various types of hierarchies. Moreover, we would also like

to investigate the problem of secure interoperation in presence of temporal constraints.

6 References

[Ber99] E. Bertino, E. Ferrari, and V. Atluri, “The Specification and Enforcement of Authorization

Constraints in Workflow Management Systems,” ACM Transactions on Information and System
Security, 2(1):65-104, 1999.

[Bel73] D. Bell and L. Lapadula, “Secure Computer Systems: Mathematical Foundations,” Technical
Report MTR-2547, Vol. 1, MITRE Corporation, March 1973.

[Bib77] K. Biba, “ Integrity Considerations for Secure Computer Systems,” Technical Report MTR-3153,
Vol. 1, MITRE Corporation, April 1977.

[Bon96] P.A. Bonatti, M. L. Sapino, V.S. Subrahmanian, “Merging Heterogeneous Security Orderings,”
ESORICS 1996, pp. 183-197

[Fer01] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R. Chandramouli, “The NIST Model for Role-
Based Access Control: Towards a Unified Standard,” ACM Transactions on Information and
System Security, Vol. 4, Issue 3, August 2001, pp. 224-274.

[Gav98] S. I. Gavrila , J. F. Barkley, “Formal Specification for Role Based Access Control User/role and
Role/role Relationship Management,” Proceedings of the third ACM workshop on Role-based
access control, Fairfax, Virginia, United States, pp. 81-90, October 1998.

[Gon96] L. Gong and X. Qian, “Computational Issues in Secure Interoperation” , IEEE Transaction on
Software and Engineering, Vol. 22, No. 1, January 1996.

[Gua02] G. Yan, W. K. Ng, E. Lim, “Product Schema Integration for Electronic Commerce - A
Synonym Comparison Approach,” IEEE TKDE Vol. 14, No. 3 pp. 583-598, June 2002.

[Har76] M. Harrisson, W. Ruzzo, and J. Ullman, “Protection in Operating Systems,” Communications of
the ACM, Vol. 19, No. 2, August 1976, pp. 461-471.

[Hos91] H. Hosmer, “Metapolicies I,” ACM SIGSAC Review, 1992, pp. 18-43.

[Jos01a] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, “Security Models for Web-based
Applications,” Communications of the ACM, Vol. 44, No. 2, Feb. 2001, pages 38-72.

[Jos01b] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford, “Digital Government Security
Infrastructure Design Challenges” , IEEE Computer, Vol. 34, No. 2, February 2001, pages 66-72.

[Jos02] J. B. D. Joshi, E. Bertino, A. Ghafoor, “Temporal Hierarchies and Inheritance Semantics for
GTRBAC,” Seventh ACM Symposium on Access Control Models and Technologies, pp. 74-83,
June 2002.

[Koc02] M. Koch, L.V. Mancini and F. P. Presicce, “A Graph-Based Formalism for RBAC,” ACM
Transactions on Information and System Security, Vol. 5, No. 3, pp. 332-365, August 2002.

[Li94] W. S. Li and C. Clifton, “Semantic Integration in Heterogeneous Databases Using Neural
Networks,” VLDB 1994.

[Osb00] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies,” ACM Transactions on Information and
System Security, Vol. 3, No. 2, February 2000, pp. 85-106.

 19

[Osb02] S. L. Osborn, “ Integrating Role Graphs: A Tool for Security Integration,” Data and Knowledge
Engineering, Vol. 43 No. 3, pp. 317-333, 2002.

 [Pow00] R. Power, “"Tangled Web": Tales of Digital Crime from the Shadows of Cyberspace,”
Que/Macmillan Publishing, Aug. 31, 2000.

[San96] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role Based Access Control Models” ,
IEEE Computer Vol. 29, No 2, February 1996

[Vet98] V. Vet and N. Mars “Bottom-Up Construction of Ontologies,” IEEE TKDE, Vol. 10, No. 4, pp.
 513-526, August 1998.

[Wol98] L. A. Wolsey, Integer Programming, John Wiley, New York, 1998.

