
CERIAS Tech Report 2003-48
Derived access control specification for XML

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Derived Access Control Specification for XML

Siddhartha K. Goel Chris Clifton
Purdue University

Department of Computer Sciences
250 N University St

West Lafayette, IN 47907-2066

{skgoel, clifton}@cs.purdue.edu

Arnon Rosenthal
The MITRE Corporation, M/S K308

202 Burlington Rd
Bedford, MA 01730-1420

arnie@mitre.org

ABSTRACT
The growth in interchange of business and other sensi-
tive data has led to increasing interest in access control.
While broad-based access control may be adequate for
library-style document bases, new applications demand
different access rights on different documents, or dif-
ferent parts of a document. Methods have been devel-
oped that enforce fine-grained access control in XML,
but the administrative complexity of hard-coding rules
is still a challenge. We present an XQuery-based ap-
proach for deriving access control rules from schema-
level rules, document or database content, or rules on
other documents. This approach provides a novel capa-
bility to exploit non-structural information in broadly-
applicable rules, making it feasible to specify data- and
context-dependent rules for large document sets.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Admin-
istration — Security, integrity, and protection; H.2.3
[Database Management]: Languages—Query Lan-
guages; H.2.4 [Database Management]: Systems—
Textual databases

General Terms
Security

Keywords
Access Control, XML

1. INTRODUCTION
Access control for XML is receiving significant at-

tention as XML is gaining popularity for storing and
exchanging information. Our work extends ideas from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on XML Security, October 31, 2003, Fairfax VA, USA.
Copyright 2003 ACM 1-58113-777-X/03/0010 ...$5.00.

SQL security, and from researchers in XML security, to
produce a more general mechanism for specifying access
control for XML document bases.

XML-based approaches (a brief survey is given in Sec-
tion 2) give a choice: either define a policy for each doc-
ument, or (more feasibly) define policy in terms of the
schema. Our concern is that while rules on schemas let
administrators assign privileges on parts of documents,
they do not give the ability to specify context-sensitive
restrictions on specific documents or fragments. Hard-
coding rules for each document or sub-document is sup-
ported, but administratively intractable. We explore
how one can provide additional useful flexibility by al-
lowing more general expressions, based on XQuery, to
define the privileges granted. This allows schema level
definitions that give a user different privileges on differ-
ent documents, based on the content of documents and
privileges already defined. Another advantage of us-
ing XQuery is that many of the constructs proposed for
access control subsystems become unnecessary – they
overlap (and should be provided by) the query language.
We also explore the utility of making context informa-
tion and the access policy itself available as queryable
data (with restrictions, to avoid circularity). 1

To demonstrate how this approach eases the adminis-
tration of fine-grained access control rules, consider the
following scenario. A data repository has maintenance
records, technical manuals, parts orders, etc. for a fleet
of naval ships. The technical staff continuously adds in-
spection and repair records to this repository. This is
an invaluable knowledge store – shared information can
aid technicians in fixing problems, provide predictive
information on failures, and help improve maintenance
procedures. However, much of the information is sensi-
tive or classified. It is impractical to define a new policy
for each document – we need broad rules. But rules that
list particular nodes from a schema are not sufficiently
flexible – there are several other factors that must be
considered.

Suppose we want to say that technicians have read
and write privileges to maintenance records of a part
on their ship if they have the right to read the manual
for that part. Instead of coding rules for each main-
tenance record and each part, we enable a single rule

1Ideally, this facility would span both SQL and XML
data.

1

on the maintenance record schema that captures pre-
cisely this policy, deriving the privileges for individual
maintenance records based on a query determining if the
technician has read access to the corresponding manual
(and if the maintenance record applies to a part on that
ship.) Furthermore, we want the capability to sanitize
the result, e.g., (with the user’s knowledge) to return
only the parts of the document describing the variant
of the part in use on the ship – a subset of the entire
maintenance document. This can mean omitting nodes
or field values. This models the common practice in
the DOD of blacking out sections of documents, e.g.,
paragraphs.

The maintenance records are valuable to technicians
elsewhere who work on the same equipment, but in some
cases they may contain information that is too sensitive
to reveal. For example, knowledge that a ship’s anti-
missile defense is out of order should be known only to
a small circle. While an access control rule for normal
maintenance records can make them available to many
technicians, a rule for records showing equipment failure
must be more restrictive. The access control rule could
specify that on critical equipment, failure records are
accessible to outsiders only if there is a corresponding
record showing repair complete.

From SQL, one can borrow the idea of using an ar-
bitrary query to define a view, and granting some users
access to that view. Assuming the view can include the
variable $User, the view can include different tuples for
each user. However, this requires that applications be
written against the view, i.e., it is not transparent to
applications. Oracle thus provides policy functions that
modify an existing view at run time, allowing arbitrary
restriction predicates to be added to the Where clause.
The basic ideas - using a query to govern the access
rights - can be carried over into XML.

This paper describes how a generalized version of this
Oracle capability can be supported for access control on
XML, working within the framework of existing XML
tools. (One extension will be needed – access rules must
be made queryable, like ordinary data). Our contri-
bution enables such high-level specification of flexible
fine-grained access control. In the above scenario, even
“right to read a particular manual” can be specified in
terms of data content, for large sets of documents. A
likely policy would be that the manual must describe
equipment found on the ship, and the technician must
have passed a training course for the equipment – both
captured as a query on the data content.

Rules will have the power of XQuery to derive differ-
ent access rights for different documents. The deriva-
tions can reference many kinds of information:

• data values in the requested document,

• data values in other documents,

• environmental information available to XQuery (e.g.,
$User or $Time from an application server or op-
erating system),

• Other privileges possessed by this user, or by ar-
bitrary users.

Previous work mostly expressed these rules in terms of
schemas, or in limited query languages that did not pro-
vide sufficient flexibility for our examples.

In Section 3 we illustrate how we express derived ac-
cess control rules, describing a language that builds on
XQuery and a discussion how this enables our desired
level of policy specification. Section 4 illustrates how
privacy policies in a medical records database could be
enforced using rules specified in this language. We dis-
cuss how this could be implemented using an XQuery
parser and existing fine-grained access control methods
in Section 5.2. We describe a prototype we developed
in that shows we can capture this power entirely in
XQuery, along with some pre- and post-processing of the
XML, in Section 5. We also describe how this would be
handled in a real world implementation. We conclude
with a discussion of future work in Section 6.

2. DEFINITIONS AND RELATED WORK
We first introduce some important terms from access

control theory as used in this paper:

subject: An entity that may access objects (e.g., a user
or group).

object: A document or part(s) of the document(s) (XML
Fragment).

access-right: A particular type of operation that the
Subject may perform on the Object. I.e., view
tag set/read contents/delete contents/append to
existing contents/overwrite contents.

privilege: A triple allowing a subject to perform an
action on an object. This is the most basic kind
of rule.

Objects affected by a privilege are described by
an XPath expression that generates/returns the
elements in the appropriate fragment(s).

request: An attempt by a subject to perform an ac-
tion on a particular object that requires a partic-
ular access-right. I.e., If a corresponding privilege
exists, the action can occur.

From these we get the concept of an access control rule.

rule: A set of privileges (the trivial case), or a function
that produces a set of privileges on an object (de-
noted O). Its inputs may include a reference to O,
and to any other database and context informa-
tion that is available to XQuery requests.

A rule is ordinary or derived.

ordinary rule: A rule function that does not reference
other rules.

derived rule: A rule whose function does reference other
rules. The referencing must be noncircular, with
respect to other derivation rules. (It is always per-
missible to reference privileges that were explicitly
granted by administrators. More generally, if the

2

rule set is stratified,2 it can also reference privi-
leges generated by rules in lower strata.

rule evaluation: For any request, the rule evaluation
on that request is given by: For each object on
which access is requested, each rule is evaluated
(conceptually) at the time of the request (and more
precisely, within the environment of the request
transaction.) It returns privileges for the request’s
subject, indicating what should/should not be al-
lowed, by that rule.

access policy: A set of rules, intended to be applied
to requests. The semantics are to evaluate rules in
the policy, and see if they give privileges for every
access made by the user request. That is: If for
each access in the request, some rule evaluates to
OK, the request is approved.

There have been numerous approaches to defining and
enforcing access rights on XML documents. Initially, ac-
cess control for markup languages like HTML was speci-
fied by physically embedding security related tags in the
document. This approach does not identify or exploit
semi-structured semantics.

More recent work allows different access control for
different parts of documents, as well as flexibility for en-
forcing more complex policies. Kudo and Hada’s XACL
[11] is an access control policy specification language
oriented around <object, subject, action> triplets (priv-
ileges). Fine grained access decisions aren’t simply bi-
nary (allow or deny access). XACL allows more flex-
ible provisional authorization to a document based on
whether certain conditions are met; e.g., the subject al-
lows accesses to be logged, signs an agreement, etc.

Bertino et al. [2, 1] defined access rules at the schema
level that apply to all documents conforming to the
schema. They define read element/attribute, navigate
document, modify/delete contents of element/attribute
and add/modify/delete element/attribute. Their Author-
X system is a suite of tools focusing on access-control
enforcement and security administration for XML doc-
uments. Our work is on security policy specification:
high-level rules that generate the specific access privi-
leges that a system such as Author-X would enforce.

Damiani et al., also specify a language for encoding
access restrictions [4, 3, 5, 6]. Rules in the specification
language can be defined for DTDs/schemas (applicable
to all the documents that conform to the schema) or
individual XML documents. A rule essentially is the
five-tuple <subject, object, action, sign, prop>, allowing
both negative privileges (with conflict resolution) and
propagation to subtrees.

Gabillon and Bruno [8] add numeric priority to re-
solve conflicts when multiple rules apply to an object.
They implement access control by converting their “au-
thorization sheet” to an XSLT document that can then

2We assume that the rule set is partitioned, and blocks
of the partition (called strata) are partially ordered. Ba-
sic privileges that administrators define explicitly are in
the lowest stratum. By default, all other rules fall into
one stratum – but we hope to allow greater generality.

extract a view of the accessible part of the correspond-
ing XML document.

XACML (eXtensible Access Control Markup Language)
[12] is an OASIS specification that is gaining acceptance
for expressing access control policy for XML. XACML
is based on work including that of Kudo, Damiani, and
Bertino. It standardizes access request/response for-
mat, architecture of the policy enforcement framework,
etc., but it does not address deriving access control rules
from the existing policy base. These approaches used
the limited power query languages (XPath, XSL) then
available for prototyping. The query languages were
used only to specify which documents (or fragments) a
privilege applied to; custom constructs were developed
to specify conditions. Supporting the examples we have
given requires hard-coded customized rules for each doc-
ument (or fragment); rules at the DTD/schema level
give similar privileges for all conforming documents.
XQuery will allow much more flexibility in specifying
conditions. This enables reuse of the training, GUIs,
and implementation of the mainstream query languages;
the security system need not provide special constructs
for specifying portions of subtrees, nor predicates that
range outside a given subtree. We remain neutral in
the controversies about negative privileges and conflict
resolution. If desired, they can be provided as part of
policy semantics, included in the privileges derived from
our more powerful rules.

Several authors have examined issues relevant to im-
plementation.

Jagadish et al. [10] present a space efficient acces-
sibility map that identifies the XML data items a user
has access to by exploiting structural locality of accesses
in tree-structured data and a time efficient map lookup
algorithm. Their work is not on specification of access
rules but about deciding accessibility given a set of ac-
cess and conflict resolution rules.

Vimercati’s authorization models for time-varying XML
documents[7] show how one can precompute some of
the privileges, as database contents change. In our ap-
proach, privileges are derived data, to be kept consistent
with its sources. By this perspective, one should use a
general purpose maintenance system, rather than one
created just for access rules.

We concentrate on the specification of access control
rather than how to enforce it.

3. DETAILS OF OUR METHOD
Semantically, a rule allows access to a fragment, de-

termined by evaluating the function when the request
is submitted. The policy takes the union of all these
fragment privileges, and allows the request if this union
suffices. The power we add comes from the ability to
derive privileges from information beyond what XPath
could use.

Our approach involves three parts:

1. Using XQueries to return a set of privileges

2. Providing a predicate access(subject, object) that
returns the subject’s access-rights on the object.

3

Schema A
Schema B

Parts of docs in A that can be READ by X

Parts of docs in B that can be READ by X

Parts of docs in A that can now be READ by X

THEREFORE the parts of docs in B that can
now be READ by X.

Figure 1: Documents with transitive access con-
trol relationship

3. Providing a functionality to recursively derive ac-
cess based on other derivable privileges.

We start with the an XACL privilege triple:<Object,
Subject, Access-right> [11]. The specification of Object
is an XPath – a document or document fragment – as
defined above. Subject is simply an identifier. Access-
right is one of view tag set, delete, read, append, or
overwrite. We assume a mechanism exists to match re-
quests against privileges, e.g., one of the systems de-
scribed in the preceding section. (It is possible to in-
corporate additional features beyond those supported
by XACL into privileges, such as negative permissions,
but this would unnecessarily complicate the discussion.)
In practice the access control rules could be embedded
in an XML document (making the object specification
implicit), however for clarity we treat them as an exter-
nal “privilege set”.

The basic information used in a rule is:

1. A query defining the set of objects to which the
Rule applies, the same as a basic privilege;

2. A set of objects from which the access is derived,
identified by a function whose inputs may (as listed
in Section 2) include the object to which access is
being requested and other information available to
the query.

3. A function returning an access right; its potential
inputs are the same as in the previous item.

In the case of a derived (as opposed to ordinary)
rule, the function may also be based on the access
that the user has to the objects in (2).

Note that a user need not be granted the same rights
on all objects specified in (1). The objects in (2) may
change depending on the contents of the requested ob-
ject. The function in (3) will thus operate on different
data (from both (1) and (2)), giving access customized
to the particular user and request.

Consider Figure 1. The documents conforming to
schema B derive access control from the policy base on

schema A. Note only one rule is required for schema B
to derive access from documents conforming to schema
A, even though user X obtains different rights on each
document in schema B. Each document conforming to
schema B derives a different access control policy based
on its own content and structure and the access control
of the corresponding document(s) conforming to schema
A. To achieve the same effect from previous work one
needs to define access controls separately for each doc-
ument (administratively intractable), since a definition
on the schema would provide the same rights on all doc-
uments or document parts conforming to the schema.

Changes in the data, or in such environmental infor-
mation as the system time, may change the privileges
that can be derived from a rule. The access granted by
the rule is dynamic, even if the rule (and entire policy)
is statically defined. This leads to some interesting im-
plementation considerations, discussed in Section 5.2.

First we describe the language for defining a rule. Al-
though we speak of a rule-specification language, pol-
icy specification rules can actually be specified entirely
in terms of XQuery and XML. This enables privileges
to be generated by XQuery, with some pre- and post-
processing. We discuss this further in Section 5. How-
ever, we first present the rule-specification language as
a modification of XQuery; we feel this gives a clearer
view of the concepts and the power of the method.

An example rule-specification is:

let $hospital =
document(”http://www.example.com/hospital.xml”)

let $office =
document(”http://www.example.com/office.xml”)

for $a in $hospital/PatientRecords/Patient/Medical return
for $b in $office/Staff/Employee return

for $c in $office/Staff/Employee
where $b/@Name = $a/Doctor and

$c/@Name = $b//AccountableTo
return <$c/@Name, $a,

access($b/@Name, $a)>

This captures the policy: A supervisor should have
the access permissions to the records of patients of doc-
tors they supervise that the supervised doctor does. This
example will be worked out in more detail in Section 4,
but for now we use this to point out the basic struc-
ture of a rule. The first part identifies the relevant
documents – in this example the first line identifies the
document on which privileges will be given, and the sec-
ond a document containing information used in deriving
the privileges. The next part binds variables to specific
document fragments. The third line iterates over all pa-
tient medical records. The fourth and fifth iterate over
all hospital employees. The sixth line binds $b to the
patient’s doctor, and $c to the doctor’s supervisor. Fi-
nally, the last line generates a privilege giving $c the
same access on the record $a as that enjoyed by the
patient’s doctor $b.

The key difference is that instead of returning a doc-
ument or document fragment, the query returns a set of
privilege triples. While we have not shown the syntactic

4

details, in Section 5 we describe how to represent these
triples in an XML document. A special predicate is
also used: access(Subject, Object). This returns the
maximum access-right that Subject has for Object. In-
tersection, union, addition, exception operations, value
based comparisons, and other XQuery operations can be
performed on access-rights, allowing rights to be based
on complex functions of other rights, as well as data.

We assume support for enforcing access control from
the work above, i.e., given a set of privileges specify-
ing access control, implementations by the groups above
will enforce access control in the corresponding XML.
(We expand on this in Section 5.2.) We concentrate on
providing the administrative ability to program these
rules once, instead of specifying them for each docu-
ment conforming to schema B (Figure 1) as they are
added to the repository.

4. FULL EXAMPLE
We now give a detailed example based on a medical

record scenario. All examples use two XML documents:
office.xml (Figure 2) storing data about hospital staff,
and hospital.xml (Figure 3) storing patient records for
the hospital.

We first demonstrate how the previously described
rule – supervisor has any access to a supervisee’s pa-
tients records a supervisee does – works:

let $hospital =
document(”http://www.example.com/hospital.xml”)

let $office =
document(”http://www.example.com/office.xml”)

for $a in $hospital/PatientRecords/Patient/Medical return
for $b in $office/Staff/Employee return

for $c in $office/Staff/Employee
where $b/@Name = $a/Doctor and

$c/@Name = $b//AccountableTo
return <$c/@Name, $a,

access($b/@Name, $a)>

The tuple <subject, object, access-right> is a priv-
ilege that implies that the subject specified has privi-
leges equivalent to access-right to access the object in
the rule. The referenced previous work essentially ex-
presses access control for XML as more complex versions
of the above privilege tuple. Here, access() is a func-
tion that looks up the policy base of <subject, object,
access-right> tuples for (subject, object) and returns the
corresponding access-right for the subject and object.

Thus if the policy base has the rules:

<Brian, hospital.xml/PatientRecords/Patient[@Name=Aaron]/
Medical, OVERWRITE >

<David, hospital.xml/PatientRecords/Patient[@Name=Christy]/
Medical, OVERWRITE >

<Fred, hospital.xml/PatientRecords/Patient[@Name=Emily]/
Medical, OVERWRITE >

<Greg, hospital.xml/PatientRecords/Patient/Medical, READ >

the following additional privileges are derived:

<David, hospital.xml/PatientRecords/Patient[@Name=Aaron]/

Medical, OVERWRITE>

<David, hospital.xml/PatientRecords/Patient[@Name=Emily]/
Medical, OVERWRITE>

We now give some other examples to show the power
and flexibility of the approach.

The following gives any subject READ access to a pa-
tient’s medical prescription if he/she can at least READ
the diagnosis of the patient.

let $hospital =
document(”http://www.example.com/hospital.xml”)

let $office =
document(”http://www.example.com/office.xml”)

for $u in distinct($hospital//patient/@Name,
$office//Employee/@Name) return

for $med in $hospital//patient/Medical
where access($u, $med/Diagnosis) >= READ

return <$u, $med/Prescription, READ>

Other XQuery features (e.g., wildcards) can be used
to generalize such rules, e.g., using a wildcard for “Diag-
nosis” in the above would give access if any part of the
medical record can be read – arbitrarily general rules
are possible, limited only by the power of the query lan-
guage.

The following example demonstrates how it is pos-
sible to use a complex XQuery to derive rights from
multiple documents. The policy being implemented is
that if a subject can read the contents of any patient’s
record, then the subject has access to all the hospital’s
Employee records (perhaps a result of a very strong pa-
tient’s rights law.)

let $hospital =
document(”http://www.example.com/hospital.xml”)

let $office =
document(”http://www.example.com/office.xml”)

for$u in distinct($hospital//patient/@Name,
$office//Employee/@Name) return

if (not (empty (
for $p in $hospital/PatientRecords/Patient/Medical

return
if (access ($u, $p) > VIEW TAG SET)

then <$u, $p, access ($u, $p)>
else ()

))) then
for $d in $office/Staff/Employee return

recursiveSpec($u, $d, READ)
else ()

The function recursiveSpec takes care of the fact that
a privilege could be defined only for the node in consid-
eration and not for the sub-tree below it. This would
remove the requirement for looking up all the privi-
leges that otherwise propagate negative or positive ac-
cess to a node and resolving conflicts among them. If the
above XQuery simply provided access to the node of-
fice.xml/Staff/Employee, then the function recursiveSpec
would recursively carry similar permissions to selected
nodes of its sub-tree:

5

<Staff>

<Employee Name=”Brian”>

<Personal> <SSN> 666-66-6666 </SSN> </Personal>
<StaffInfo>

<Position> Doctor </Position>

<AccountableTo> David </AccountableTo>

</StaffInfo>

</Employee>
<Employee Name=”David”>

<Personal> <SSN> 555-55-5555 </SSN> </Personal>
<StaffInfo>

<Position> Doctor </Position>

<AccountableTo />

</StaffInfo>

</Employee>
<Employee Name=”Fred”>

<Personal> <SSN> 777-77-7777 </SSN> </Personal>
<StaffInfo>

<Position> Doctor </Position>

<AccountableTo> David </AccountableTo>

</StaffInfo>

</Employee>
<Employee Name=”Greg”>

<Personal> <SSN> 888-88-8888 </SSN> </Personal>
<StaffInfo>

<Position> Nurse </Position>

<AccountableTo>

<Doctor>David</Doctor> <Doctor>Brian</Doctor> <Doctor>Fred</Doctor>
</AccountableTo>

</StaffInfo>

</Employee>
</Staff>

Figure 2: www.example.com/office.xml

define function recursiveSpec (text $u, element $x,
right $y) returns privilege{

for $a in $x/@* return
if name($a) = ”Name”

then <$u, $a, $y>
else ();

for $e in $x/* return
if name($e) = ”Position” or

name($e) = ”AccountableTo”
then <$u, $e, $y>
else ();

for $e in $x/* return recursiveSpec ($u, $e, $y)
}

This particular example could also have been writ-
ten more simply using the some quantifier of XQuery.
The complex version above is given to show some of
the possibilities of the language. Combined with an
appropriate enforcement mechanism for sanitizing doc-
uments, this shows how XQuery can be used to provide
a general mechanism for specifying rules governing the
sanitization.

5. PROTOTYPE AND EXPERIMENTA-
TION

As mentioned above, we can describe rule derivation
entirely in XQuery. We now discuss a prototype that
generates all privileges that can be derived from a set of
derived privileges, a document base, and a prespecified
set of privileges. The prototype works by pre- and post-
processing the XML documents and rules (see Figure 4).
The XQuery modifications suggested before are simpli-
fied until all the power can be subsumed without chang-
ing XQuery. Privileges are encoded as XML format.
(Privileges in XML format can easily be post processed
to the format acceptable by access control enforcement
systems similar to Author-X.) The privilege set becomes
an XML document making it accessible to the XQuery.
Thus rules that invoke access(subject, object) are al-
tered to include the access-control privileges as an XML
document and a subquery that looks up the appropri-
ate access right, specifying the Subject and Object in
XPath. With renaming to give the proper lexical order-
ing, 1 VIEW TAG SET, 2 READ, ... 5 OVERWRITE,
access-rights can be operated on using XQuery string
operations.

The prototype also does post-processing of the priv-
ileges document returned by XQuery to handle issues

6

<PatientRecords>
<Patient Name=”Aaron”>

<Personal>
<SSN> 999-99-9999 </SSN>

<DoB> <Month>January</Month><Date>01</Date><Year>1991</Year> </DoB>

</Personal>
<Medical>

<Doctor> Brian </Doctor>
<Diagnosis> Cancer </Diagnosis>
<Prescription> Chemo medicine </Prescription>

<Bill> 500.00 </Bill>
</Medical>

</Patient>
<Patient Name=”Christy”>

<Personal>
<SSN> 444-44-4444 </SSN>

<DoB> <Month>February</Month> <Date>02</Date> <Year>1972</Year> </DoB>

</Personal>
<Medical>

<Doctor> David </Doctor>
<Diagnosis> Diabetes </Diagnosis>
<Prescription> Insulin </Prescription>

<Bill> 100.00 </Bill>
</Medical>

</Patient>
<Patient Name=”Emily”>

<Personal>
<SSN> 222-22-2222 </SSN>

<DoB> <Month>March</Month> <Date>03</Date> <Year>1983</Year> </DoB>

</Personal>
<Medical>

<Doctor> Fred </Doctor>
<Diagnosis> SARS </Diagnosis>
<Prescription> Unknown </Prescription>

<Bill> 1000.00 </Bill>
</Medical>

</Patient>
</PatientRecords>

Figure 3: www.example.com/hospital.xml

7

Pre-Processing:

Introduce ID
attribute for

each element,
in XML

documents
in repository

XQuery
Processing:

Modify XQuery
to return XML,

replace access()
by XPath lookup
in static-rule doc

Post-Processing:

On static-rules:
Replace XPath
In Object by ID.
Lookup access-

control base
for access() in

RightExpr,
replace by

access-right.

XML Repository (XML documents + Static Rules in XML)

Fetch Docs Update Docs
Fetch Docs
and Rules

Update
Rules

Figure 4: Prototype implementation the
pre/postprocessing of rules

introduced by derived rules. Checking ‘equality’ or ‘be-
longs to’ for XPaths, to see if an access condition and
privilege match, is non-trivial. For example,
//Patient[@Name=“Aaron”]/Medical and
//Patient//Medical[Doctor = “Brian”] both point to
Aaron’s Medical records. We dealt with this in our pro-
totype by adding a unique numeric identifier attribute
to each element during pre-processing. Post-processing
replaces the XPath for the Object in each Privilege
with the unique id(s) of the element(s) the XPath ref-
erences. This simplifies lookup in an XQuery because a
simple string match on the subject, string match on the
document name, and integer match on the id is enough
to accurately determine the corresponding access-right.
(The systems in Section 2 also face this issue; a real
system would incorporate their solutions.)

Post-processing is also needed to resolve occurrences
of access(subject, object) in the returned Privilege.
This is handled with a scan of the privilege document
(including privileges derived from processing rules).

We started with open source implementation for XQuery
(GNU’s Qexo) in Java. For efficient post-processing
lookup of access-rights we used the HashMap data-structure
(of the java.util package). To parse the XML documents
JDom (the org.jdom package) was used.

5.1 Experimentation
Experiments were conducted to evaluate the seman-

tic correctness of our approach and to test the time
and space complexity of the query- and post-processing
rule generation as an upper bound on possible imple-
mentation methods. For experimenting, a database of
two XML files following the schema of Section 4 was
generated. hospital.xml contains patient records for 50
patients. office.xml contains the employee records for
16 doctors and 4 nurses. Each nurse is accountable
to 4 doctors; no two are assigned to the same doctor.
Each patient is assigned a doctor. Seven rule specifi-
cations were executed on the database. They granted
patient’s and employee’s access to their own and each
others records. The full rule specifications are listed in
the appendix.

Rule 1 gives the doctor assigned to each patient READ
access to the patient’s record, in particular the Per-

sonal/DoB, and OVERWRITE access to the patient’s
Medical record. It generates 150 rules (3 rules/patient)
in 2 seconds. Rule 2 gives nurses the same access to
a patient’s medical records as the doctors they are ac-
countable to have. It also takes little time, and returns
50 rules (1 rule/patient since only the Medical record is
in consideration).

Rule 3 gives the same access-rights cascading down
the subtrees of the Medical and DoB elements in the
patient’s records to the nurses and doctors. It is a re-
cursive function, producing 6000 rules (50 patients, 16
doctors + 4 nurses, 6 elements: Month, Date, Year un-
der DoB and Doctor, Diagnosis, Bill under Medical), and
takes 6 seconds. Post-processing reduces this to 450 (50
patients, 6 elements to the serving doctor and 3 elements
- only the Medical record - to the concerned nurse).

Rule 4 gives every doctor’s supervisor READ access
to the Name, READ access to the Medical/Diagnosis
and OVERWRITE access to the Medical/Bill for each
patient that the doctor serves. It takes time compara-
ble to Rule 1 and produces 141 rules (50 patients; each
doctor reports to a supervisor except one, who serves 3
patients).

Rule 5 gives each patient READ access to the doc-
tor(s) and nurse(s) StaffInfo who have OVERWRITE
access to that patient’s medical records. This query
looks up the access-control policy and hence demon-
strates transitivity different from Rule 2 and Rule 3
where the lookup is performed during post-processing.
This produces 100 rules (1 doctor and 1 nurse have
OVERWRITE access to each patient’s Medical records)
and takes 120 seconds. It takes time to lookup the
access-policy base (650 rules from Rule 1 + Rule 2 +
Rule 3) for each patient-employee combination to see if
the employee has access to the patient’s Medical records.

Rule 6 gives each doctor/nurse OVERWRITE access
to their own Personal records, APPEND access to their
own StaffInfo and READ access to all the other doc-
tors/nurses StaffInfo records unless the former doctor
is the latter doctor’s/nurse’s supervisor in which case
he/she gets OVERWRITE access to the doctor’s/nurse’s
StaffInfo. This generates 420 rules (20 rules: each doc-
tor’s/nurse’s OVERWRITE access to their ownPersonal
records; plus each doctor/nurse gets 20 access rules:
APPEND access to their own StaffInfo and 19 OVER-
WRITE/READ access rules to the other doctors/nurses
StaffInfo records depending on whether they are super-
visor to the doctor/nurse) and takes the same order of
time as Rule 1. Rule 7 gives each patient READ ac-
cess to his/her own Medical record unless the patient
has AIDS or cancer and is under 18 years of age. This
generates 49 rules since one patient doesn’t satisfy the
criteria and takes 1 second to execute. A detailed dis-
cussion of the XQueries and the resulting privileges can
be found in [9].

Table 5.1 summarizes the time to generate all privi-
leges, and the number of privileges that can be derived,
for the sample rules. With the exception of Rule 5, all
were reasonably fast. Rule 5 required multiple passes
over the privilege base; the large number of privileges
viewed increased the time required for rule generation.

8

Table 1: Time taken and privileges derived from sample rules
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7

of patients/ employees/
privileges accessed

1000 1000 12000 1000 325000 400 50

time in seconds 2 2 6 2 120 2 1
of privileges generated 150 50 450 141 100 420 49

Author-X (Static-Rule Set)
(Access Control Enforcement Mechanism)

Rule Processor (XQuery Set)

XML Data Repository

1. Request

8. Return
Filtered
XML doc

2. Execute relevant
XQueries for Doc

4.Access(Sub,Obj)

5.Return access-right lookup

6.Return
Static-
Rule Set

7. Fetch requested
Document to filter

3. Fetch docs to
be XQueried

Figure 5: Possible architecture for a real imple-
mentation

The space required is dependent on the number of
privileges produced. Given M document fragments over
which fine grained access control is desired and N users
there would be at most N ∗M privileges. In the example
given, the number of privileges generated is small and
reflects the selective nature of the policies. Rules of this
order can be enforced by a system that applies access
control to filter XML document fragments. If the XML
repository updates frequently, then instead of executing
the queries to generate the privileges set, it would be
more efficient to ask the question whether the queries
together allow access to the requested document frag-
ment(s), i.e. will some combination of variable bindings
produce the privilege(s) to give the subject the desired
access-right on the requested document.

5.2 Issues in a Real-World Implementation
Figure 5 shows a potential architecture for a real world

implementation. A rule derivation engine would be built
either on top of XQuery as in our prototype, or as a sys-
tem capable of processing the rule language. This rule
deriver would produce the needed rules, and use a sys-
tem such as Author-X [1] for enforcement.

The techniques for evaluating policies against a doc-
ument base fall along a spectrum, between no precom-
putation and complete precomputation. We discuss the
ends of the spectrum; an optimal solution would com-
bine both. One approach is to derive privileges for a
schema when the data server receives a request for a
document conforming to the schema. This returns a set
of privileges; existing mechanisms then decide if access
to the document is allowed. Only rules pertaining to
the documents being requested need be evaluated. It
is important that the rules are evaluated in the order
of their dependency. A directed acyclic graph structure
can capture the dependencies of the rules. Alternatively,

a theorem-proving approach could be used to attempt
to derive privileges that would allow access to the re-
quested document fragment(s), i.e., will some combi-
nation of variable bindings produce the privilege(s) to
give the subject the desired access-right on the requested
document? This is similar to the unification procedure
in Prolog like languages.

The other approach is to cache, or even precompute,
the privileges (as in the prototype). While more effi-
cient on document access, it introduces additional com-
plexity because changes to the data may invalidate old
privileges or generate new ones. This is essentially the
same problem as materialized derived data maintenance
in an XML database, similar solutions will apply.

The rule processor would use an existing mechanism
to enforce access control policy on the document base,
e.g., Author-X [2]. The rule processor would interface
with this mechanism to implement access(subject, ob-
ject), a lookup in the access control policy base. The
privileges returned by the rule processor would be fed
into the mechanism to generate the policy base.

5.2.1 Security Issues in Applying Policies
We now discuss a few other challenges – the user in-

terface and ensuring that the security system does not
itself create security threats.

A privilege grant should not tacitly give the user all
privileges the security system needs to evaluate relevant
security policies. Yet in our system, a user’s request
needs not just the apparent resources, but also the re-
sources that the security system uses to make a decision
– and may reveal information (e.g., the existence of a
Repair record).3 Administrators cannot be expected to
check all relevant policies and analyze covert channels.
We therefore suggest that the security tools attempt to
infer the predicate “all users who might satisfy the pol-
icy have the right to execute the security queries”. If
this cannot be proved, the tool should show the admin-
istrator a form that can grant the needed privileges (also
allowing the choice of no more privileges). Candidates
to be presented include:

• Have the security system execute using the priv-
ileges of the calling user. This may cause denials
in cases where access might otherwise be justified.

• Give just the right to have the security system exe-
cute its policy. Administrators will have difficulty
judging the power of this covert channel, but the
vulnerability is bounded by the next item below.

3Solutions referenced in Section 2 could not reference
other resources, so the difficulty did not arise.

9

• Give user the right to see the result of predicates
the security system evaluates (e.g., value > thresh-
old), but not the underlying data referenced by
those predicates; and

• Give all potential users the right to read all data
the security system needs to read. This might be
a handy reminder about privileges the users are
likely to need for their other work.

Another interesting implementation option is to have
policies that produce not a Boolean value, but a modi-
fied query with portions omitted.

5.2.2 User Interface
We would not expect a security administrator to di-

rectly generate rules in the language we have given.
A template/forms/wizard-like abstraction to generate
the underlying XQuery code is needed. The underly-
ing similarity of the language to XQuery should enable
easy adaptation of XQuery user interfaces to security
administration, particularly in combination with inter-
faces used to specify the underlying rules. Facilities that
help in creating new queries by modifying previous ones
would seem particularly valuable.

6. CONCLUSION
We have presented a method to enable specifying fine-

grained access control in XML based on the relationship
of a document to other documents. While no more pow-
erful than existing access control methods, it provides
significant administrative advantages. Access control on
rapidly changing parts of a database can be specified in
terms of access on static portions of the database, and
content relationships between documents can be used
to specify policy at the schema level that generates fine-
grained enforcement mechanisms.

In summary, the approach is to:

• Use a powerful, standard query language (XQuery)
to define not only the documents and document
fragments to which a policy applies, but also to
express the policy itself. This enables referencing
outside the current document.

• Make the contents of the privilege repository ac-
cessible for queries, so one can derive new priv-
ileges from old. One may then wish to restrict
what a user can see – a natural candidate is to let
the user see only their own privileges.

More work is needed to demonstrate that this method
could be a realistic component of an XML Database.
Key open research issues (discussed previously) are

• User interface, and

• Efficient implementation.

Another issue is analysis of access control rules, e.g.,
what is the effect of a change to a rule. We believe this
approach to specifying access control provides signifi-
cant opportunities for mapping policy into mechanism,
enabling a higher level of security and privacy for infor-
mation stored in XML databases.

Acknowledgments
We would like to thank Elisa Bertino for her suggestions
that have helped aim the work at making fine-grained
access control easier to administer.

7. REFERENCES
[1] E. Bertino, M. Braun, S. Castano, E. Ferrari, and

M. Mesiti. AuthorX: A java-based system for
XML data protection. In Proceedings of the 14th
Annual IFIP WG 11.3 Working Conference on
Database Security, Aug. 2000.

[2] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Specifying and enforcing access control policies for
XML document sources. World Wide Web
Journal, 3(3), 2000.

[3] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Design and Implementation of
an Access Control Processor for XML Documents.
Computer Networks, 33(1-6):59–75, 2000.

[4] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Securing XML documents. In
Proceedings of the International Conference on
Extending Database Technology (EDBT), Mar.
27-31 2000.

[5] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Controlling access to XML
documents. IEEE Internet Computing, 5(6):18–28,
Nov. 2001.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. A fine-grained access control
system for XML documents. ACM Transactions
on Information and System Security (TISSEC),
5(2):169–202, May 2002.

[7] S. D. C. di Vimercati. An authorization model for
temporal XML documents. In Proceedings of the
2002 ACM Symposium on Applied Computing
(SAC), pages 1088–1093, Mar. 2002.

[8] A. Gabillon and E. Bruno. Regulating access to
XML documents. In Proceedings of the 15th
Annual IFIP WG 11.3 Working Conference on
Database Security, July 15-18 2001.

[9] S. K. Goel. Transitive access control specification
for XML. Master’s thesis, Purdue University,
West Lafayette, IN, Aug. 2003.
http://www.cs.purdue.edu/˜skgoel/paper.pdf.

[10] H. Jagadish, L. V. Lakshmanan, D. Srivastava,
and T. Yu. Compressed accessibility map:
Efficient access control for XML. In Proceedings of
the International Conference on Very Large
Databases (VLDB), Sept. 2002.

[11] M. Kudo and S. Hada. XML document security
based on provisional authorization. In 7th ACM
Conference on Computer and Communication
Security (CCS), Nov. 2000.

[12] eXtensible Access Control Markup Language
(XACML) version 1.0, Feb. 18 2003.
http://www.oasis-
open.org/committees/xacml/repository/oasis-
xacml-1.0.pdf.

10

APPENDIX

A. RULE 1
Give the doctor assigned to each patient READ access to the patient’s record, in particular the Personal/DoB,

and OVERWRITE access to the patient’s Medical record.

<access-rights>
let $office := document (”office.xml”)
let $hospital := document (”hospital.xml”)
for $doc1 in $hospital//Patient return

for $doc2 in $office//Employee
where $doc2//Position = ”Doctor” and $doc1//Doctor = $doc2/@Name return

<Rules>
<Rule>

<Subject>{$doc2/@Name}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]</Path>

</Object>
<Right>READ</Right>

</Rule>
<Rule>

<Subject>{$doc2/@Name}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]//DoB</Path>

</Object>
<Right>READ</Right>

</Rule>
<Rule>

<Subject>{$doc2/@Name}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]/Medical</Path>

</Object>
<Right>OVERWRITE</Right>

</Rule>
</Rules>
</access-rights>

B. RULE 2
Give nurses the same access to a patient’s medical records as the doctors they are accountable to have.

<access-rights>
let $office := document (”office.xml”)
let $hospital := document (”hospital.xml”)
for $doc1 in $hospital//Patient return

for $doc2 in $office//Employee
where $doc2//Position=”Nurse” and $doc1//Doctor = $doc2//Doctor return

<Rule>
<Subject>{$doc2/@Name}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]/Medical</Path>

</Object>
<Right>access

<Subject>{$doc1//Doctor/text()}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]/Medical</Path>

</Object>

11

</Right>
</Rule>
</access-rights>

C. RULE 3
Give the same access-rights cascading down the subtrees of the Medical and DoB elements in the patient’s records

to the nurses and doctors.

define function recursiveSpec($f, $o, $x, $u) {
for $e in $x/* return
<Rules>

<Rule>
<Subject> {$u}</Subject>
<Object>

<File>{$f}</File>
<Id>{$e/@NewID}</Id>

</Object>
<Right>access

<Subject>{$u}</Subject>
<Object>

<File>{$f}</File>
<Id> {$o/@NewID}</Id>

</Object>
</Right>

</Rule>
{ for $e in $x/* return

recursiveSpec($f, $o, $e, $u) }
</Rules>

}
<access-rights>
{
for $u in document(”office.xml”)//Employee return

for $hospital in document(”hospital.xml”)//Patient//Medical return
recursiveSpec(”hospital.xml”, $hospital, $hospital, $u/@Name),

for $u in document(”office.xml”)//Employee return
for $hospital in document(”hospital.xml”)//Patient//DoB return

recursiveSpec(”hospital.xml”, $hospital, $hospital, $u/@Name)
}
</access-rights>

D. RULE 4
Give every doctor’s supervisor READ access to the Name, READ access to the Medical/Diagnosis and OVERWRITE

access to the Medical/Bill for each patient that the doctor serves.

<access-rights>
let $office := document (”office.xml”)
let $hospital := document (”hospital.xml”)
for $doc1 in $hospital//Patient return

for $doc2 in $office//Employee
where $doc2//Position = ”Doctor” and $doc1//Doctor = $doc2/@Name return

<Rules>
<Rule>

<Subject>{$doc2//AccountableTo/text()}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]</Path>

</Object>

12

<Right>READ</Right>
</Rule>
<Rule>

<Subject>{$doc2//AccountableTo/text()}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]/Medical/Diagnosis</Path>

</Object>
<Right>READ</Right>

</Rule>
<Rule>

<Subject>{$doc2//AccountableTo/text()}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{ $doc1/@Name }]/Medical/Bill</Path>

</Object>
<Right>OVERWRITE</Right>

</Rule>
</Rules>
</access-rights>

E. RULE 5
Give each patient READ access to the doctor(s) and nurse(s) StaffInfo who have OVERWRITE access to that

patient’s medical records.

<access-rights>
let $office := document (”office.xml”)
let $hospital := document (”hospital.xml”)
let $accesspolicy := document (”ruleBase1-2-3.xml”)
for $a in $hospital//Patient return

for $b in $office//Employee
where $accesspolicy//Rule[Subject = $b/@Name
and Object/Id = $a//Medical/@NewID
and Object/File = ”hospital.xml”]/Right = ”OVERWRITE” return

<Rule>
<Subject>{$a/@Name}</Subject>
<Object>

<File>office.xml</File>
<Path>//Employee[{$b/@Name}]//StaffInfo</Path>

</Object>
<Right> READ </Right>

</Rule>
</access-rights>

F. RULE 6
Give each doctor/nurse OVERWRITE access to their own Personal records, APPEND access to their own StaffInfo

and READ access to all the other doctors/nurses StaffInfo records unless the former doctor is the latter doctor’s/nurse’s
supervisor in which case he/she gets OVERWRITE access to the doctor’s/nurse’s StaffInfo.

<access-rights>
let $office := document (”office.xml”)
for $b in $office//Employee return

for $c in $office//Employee return
if($b/@Name = $c/@Name) then (

<Rules>
<Rule>

<Subject>{$c/@Name}</Subject>
<Object>

<File>office.xml</File>

13

<Path>//Employee[{ $b/@Name }]/Personal</Path>

</Object>
<Right>OVERWRITE</Right>

</Rule>
<Rule>

<Subject>{$c/@Name}</Subject>
<Object>

<File>office.xml</File>
<Path>//Employee[{ $b/@Name }]/StaffInfo</Path>

</Object>
<Right>APPEND</Right>

</Rule>
</Rules>

)
else (

if(($b//Position = ”Doctor” and $c/@Name = $b//AccountableTo)
or ($b//Position = ”Nurse” and $c/@Name = $b//AccountableTo/Doctor)) then (

<Rule>
<Subject>{$c/@Name}</Subject>
<Object>

<File>office.xml</File>
<Path>//Employee[{ $b/@Name }]/StaffInfo</Path>

</Object>
<Right>OVERWRITE</Right>

</Rule>
)
else (

<Rule>
<Subject>{$c/@Name}</Subject>
<Object>

<File>office.xml</File>
<Path>//Employee[{ $b/@Name }]/StaffInfo</Path>

</Object>
<Right>READ</Right>

</Rule>
)

)
</access-rights>

G. RULE 7
Give each patient READ access to his/her own Medical record unless the patient has AIDS or cancer and is under

18 years of age.

<access-rights>
let $hospital := document(”hospital.xml”)
for $p in $hospital//Patient

where (1985 > $p//Year) or
not($p//Diagnosis = ”AIDS” or $p//Diagnosis = ”Cancer”) return

<Rule>
<Subject>{$p/@Name}</Subject>
<Object>

<File>hospital.xml</File>
<Path>//Patient[{$p/@Name}]/Medical</Path>

</Object>
<Right>READ</Right>

</Rule>
</access-rights>

14

