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Abstract. Watermarking is a frequently used tool for digital rights
management. An example of this is using watermarks to place owner-
ship information into an object. There are many instances where placing
multiple watermarks into the same object is desired. One mechanism
that has been proposed for doing this is segmenting the data into a grid
and placing watermarks into different regions of the grid. This is par-
ticularly suited for images and geographic information systems (GIS)
databases as they already consist of a fine granularity grid (of pixels,
geographic regions, etc.); a grid cell for watermarking is an aggregation
of the original fine granularity cells. An attacker may be interested in
only a subset of the watermarked data, and it is crucial that the wa-
termarks survive in the subset selected by the attacker. In the kind of
data mentioned above (images, GIS, etc.) such an attack typically con-
sists of cropping, e.g. selecting a geographic region between two latitudes
and longitudes (in the GIS case) or a rectangular region of pixels (in an
image). The contribution of this paper is a set of schemes and their anal-
ysis for multiple watermark placement that maximizes resilience to the
above mentioned cropping attack. This involves the definition of various
performance metrics and their use in evaluating and comparing various
placement schemes.

1 Introduction

Watermarking is a frequently used tool in digital rights management. For ex-
ample, watermarking can be used for copyright protection [14]; this is done by
placing an ownership watermark into the object. Another example is a digital
VCR, where watermarks are placed into the object to convey what commands
the user is allowed to perform on the object (read only, read and copy, etc.) [14].
Placing multiple watermarks into data has many applications; several examples
appear in [13]. One digital rights management application of multiple water-
marking is collaborative watermarking. In collaborative watermarking several
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organizations may have partial ownership of an object, and each organization
wants to place ownership watermarks into the object. A single organization may
choose to place multiple watermarks into the same object for various reasons.
For example, defense in depth can be achieved by using different watermarking
schemes that have different strengths and weaknesses.

Several techniques have been proposed for inserting multiple watermarks into
an object including rewatermarking, segmented watermarking, interleaved wa-
termarking, and composite watermarking [18]. Segmented watermarking divides
the object into regions and places each watermark into a set of these regions. A
scheme for determining regions is given in [4], but in this paper we assume the
regions are equal sized rectangles as in [18]. However, we assume that each of
these regions contains enough information to hide a single watermark. An attack
against the segmented watermarking scheme would be to take a rectangular sub-
set (a cropping) of the data to remove some of the watermarks. A watermark will
survive a cropping if that watermark is contained in a region which is fully en-
closed within the cropping. The purpose of the work in this paper is to maximize
the number of recoverable watermarks for random croppings. For simplicity, we
assume that all croppings are equally likely. The rest of this paper does not de-
pend on the exact nature of the object being watermarked (image, GIS, NASA
spatial data, etc.), as long as the object can be naturally partitioned into a grid,
and is useful if an adversary may find a rectangular subset of the grid of value
for stealing.

In the collaborative watermarking application mentioned above, the crop-
ping attack can be carried out by an outsider or by any of the watermarking
organizations. We introduce two performance metrics that are important to this
application: (i) Maximum Non-Complete Area(MNCA) and (ii) Minimum Non-
Full Area(MNFA). The MNCA is the maximum number of tiles that can be in
a cropping which does not contain all watermarks; the MNCA provides a bound
on the largest area that can be stolen such that one of the watermarks cannot be
recovered. Obviously, minimizing the MNCA is a goal for a placement scheme.
As a motivation for MNFA, observe that a cropping that is lacking a watermark
yet contains more than one copy of another watermark is “bad”. Ideally, no such
croppings would exist, but short of this it is desirable to maximize the area of
such croppings. The MNFA is the minimum number of tiles that can be in a
cropping that does not contain all watermarks, but contains at least one dupli-
cate watermark. The motivation for MNFA is that it is the minimum cropping
that will allow an attacker to get away with something (i.e. have less watermarks
than there are tiles); for any cropping with less tiles than the MNFA the num-
ber of watermarks will be the number of tiles, which is the best any placement
can do. A placement scheme should attempt to maximize the MNFA. If a single
organization uses multiple ownership watermarks then it is possible that only a
subset of the watermarks need to be recovered for proof of ownership. If only
t watermarks need to be recovered, the placement scheme should minimize the
maximum area that does not contain at least t watermarks.
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If we treat the watermarks as colors and the data as a grid, watermark place-
ment can be viewed as grid coloring; in this paper we use the term color when
discussing placement schemes and we use the terms tile and region interchange-
ably. This watermark placement problem is similar to a grid coloring problem
used for declustering data in a database among multiple disks to parallelize I/O
(see Section 2). For simplicity we restrict this work to data tiled along two dimen-
sions. Furthermore, we only consider croppings of the data on tile boundaries,
since every cropping contains a subcropping on tile boundaries. We define the
area of a cropping to be the number of complete tiles contained in the cropping.

The results of our work include a formal definition of this problem and a
formal definition of the above mentioned comparison heuristics (MNCA and
MNFA). A scheme is given that colors any grid with M colors so that the MNCA
is O(M), and a scheme is given where the MNFA is Ω(M). Also in the case
where only half of the watermarks need to be recovered, we provide a scheme
that colors any grid with M colors in such a way that any area containing M
tiles contains half of the watermarks when M is a power of 2. Furthermore, a set
of experiments were performed to evaluate the performance of several schemes
using these two comparison metrics.

The layout of the rest of this paper is as follows. In Section 2, we discuss the
distributed database retrieval problem, which is similar to this watermarking
placement problem, but has some key differences. In Section 3, we present a for-
mal definition of this problem along with several results about MNCA, MNFA,
and other constraints. In Section 4, we briefly discuss the results of our experi-
mental analysis, and we summarize our contributions in Section 5. Due to space
limitations, we often give a proof sketch of a claim; the details of these proofs
will be given in the full paper.

2 Related Work

A problem that is similar to the watermark placement problem outlined in the
previous section is the distributed database declustering problem. Given an n
dimensional database divide each dimension uniformly to get tiles. By placing
the tiles on different disks the retrieval of records during query processing can
be parallelized, which reduces the I/O time to the time that it takes to retrieve
the maximum number of tiles stored on the same disk. The problem of placing
the records so that the response times for range queries is minimized has been
well studied.

Given k disks and m tiles in a range query, an optimal tile placement would
require an I/O time of �m

k �. It was shown in [1] that this bound is unachievable for
all range queries in a grid except in a few limited circumstances. Since there are
many cases where no scheme can achieve this optimal bound, several schemes
have been developed to achieve performance that is close to optimal. These
schemes include Disk Modulo DM [6], CMD [12], Fieldwise eXclusive or [11],
and the HCAM approach [7]. These are just a subset of the techniques that have
been proposed for declustering.



234 K. Frikken and M. Atallah

Suppose we are given k colors. The DM approach [6] assigns tile (x, y) to
(x + y) mod k. The FX approach [11] assigns tile (x, y) to (x ⊕ y) mod k. Cyclic
allocation schemes [15] choose a skip value s such that gcd(k, s) = 1 and assigns
tile (x, y) to (x + sy) mod k. The choice of the skip value is what defines the
scheme. In RPHM (Relatively Prime Half Modulo), the shift value is defined to
be the number nearest to M

2 that is relatively prime to M . The EXH (Exhaustive)
scheme takes all values of s where gcd(s, M) = 1 and finds the one that optimizes
a certain criterion. Another class of schemes are the permutation schemes [3],
in these schemes a permutation φ of the numbers in {0, ..., k − 1} is chosen and
then tile (x, y) is assigned color (x−φ−1((y) mod k)). Examples of permutation
schemes are DM, the cyclic schemes, and GRS. In the GRS scheme [3] the
permutation is computed as follows:

1. ∀i ∈ {0, ..., k − 1} compute the fractional part of 2i
1+

√
5
, and call it ki.

2. Sort the values ki and use this to define the permutation.

In [2], a coloring scheme was presented that was later found in [16] to be equiva-
lent to (x⊕yR) mod k, where yR is the (�log k�)-bit reversal of y; in this paper we
will call this scheme RFX (Reverse Fieldwise eXclusive-or). Recently, two new
directions have been explored: i) the relation between this area and discrepancy
theory [5,16], and ii) the use of redundancy [8,17,19], i.e. placing each record on
multiple disks.

The database declustering problem appears similar to that of the water-
marking representation problem defined in the previous section, but there are
key differences:

1. In the database declustering problem the multiplicity of a color is of central
importance, whereas in the watermarking placement problem multiplicity of
a color in a cropping is irrelevant (as long as it is nonzero).

2. Given a coloring for k colors it is possible to construct a coloring for k − 1
colors that will have the same MNCA by ignoring the kth color. In the
database problem you cannot ignore a color since that tile may need to be
retrieved.

3. Given a coloring for k colors it is possible to construct a coloring for k + 1
colors that will have the same MNFA by ignoring the (k + 1)st color. In the
database problem this is like not using certain disks, which may improve the
additive error from an optimal solution, but will not improve overall query
performance (there may be a few cases where it does, but these are very
limited).

3 Theoretical Results

3.1 Definitions and Basic Properties

Given M watermarks labeled {0, ..., M −1} to place into a two dimensional data,
which is tiled into a grid with dimension sizes d1 ∈ ℵ and d2 ∈ ℵ, a coloring
maps a grid location to a watermark and is defined by a function C : ℵ × ℵ →
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{0, ..., M − 1}. A coloring C is said to be periodic with period p if and only if
C(x, y) = C(x + p, y) and C(x, y) = C(x, y + p) for all grid locations (x, y).
Furthermore, if each watermark is represented every p tiles (in both dimensions)
then the coloring is completely periodic. More formally, a coloring C is completely
periodic with period p if and only if it is periodic with period p and ∀w ∈
{0, 1, 2, ..., M−2, M−1}, ∀(x, y) ∈ ℵ×ℵ, ∃sx, sy such that 0 ≤ sx < p, 0 ≤ sy < p
where C(x + sx, y) = w and C(x, y + sy) = w.

A coloring works for a specific number of watermarks, but a family of col-
orings can be grouped together to create a coloring scheme. A coloring scheme
{CM}∞

M=1 is a set of colorings indexed by M , where CM is a coloring for M
watermarks. A coloring scheme {CM}∞

M=1 is completely periodic with period
{pM}∞

M=1 if and only if the coloring CM is completely periodic with period pM

for all M ≥ 1. It is worth noting that the complete period of many coloring
schemes is the number of colors itself; these schemes include: DM, the Cyclic
schemes, and GRS; this is also true for the FX and RFX schemes when the
number of colors is a power of two.

In what follows, whenever we say “rectangular subsection” of a grid, we
implicitly include wraparound, e.g. in a 3 × 5 grid, the region [2, 0] × [1, 3] is
considered to be rectangular (the reason for allowing wraparound will become
apparent after reading Lemma 3–1). Given a coloring C and a rectangular sub-
section R, define a function W that computes the set of watermarks present in
R, note that W (R, C) = {C(i, j),∀(i, j) ∈ R}.

A watermarking entity will have certain desired constraints for a watermark
placement scheme. Given an area threshold a and a watermark threshold b
then a possible constraint on a scheme is that any cropping containing a or
more tiles contains at least b distinct watermarks. More formally, given an area
threshold a and a watermark threshold b a constraint (a, b) is satisfied for a
grid G and coloring C if and only if for any rectangular subsection R in G, if
(|R| ≥ a) → (|W (R, C)| ≥ b). A constraint (a, b) is said to be universally sat-
isfiable if there is a coloring C such that for any grid G, C satisfies (a, b) for
G. We consider only constraints (a, b) with a ≥ b and b ≤ M , since it is trivial
to prove that other constraints are unsatisfiable. Define a satisfiability function
S(C, M, (d1, d2), (a, b)) that is true if and only if C satisfies the constraint (a, b)
in a d1 × d2 grid. Define a universally satisfiable function US(C, M, (a, b)) which
is true if and only if the C universally satisfies constraint (a, b).

Lemma 3–1.: Given M watermarks, a coloring C that has complete period
p, and a reasonable constraint (a,b) such that S(C, M, (p, p), (a, b)) is true, then
US(C, M, (a, b)) is also true.

Proof: Suppose we are given an arbitrary grid and a rectangular subsection
of that grid, call it R, of size s1 × s2, where s1s2 ≥ a. We must show that
|W (R, C)| ≥ b. If s1 or s2 is greater than or equal to p then it is trivial since C
has complete period p and thus contains all M watermarks. Assume s1 < p and
s2 < p, thus R fits in a p × p grid. Now R is a wraparound cropping in some
p × p grid, and since S(CM , M, (p, p), (a, b)) this area contains b watermarks.
Therefore, the constraint is satisfied. �
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A consequence of this lemma is that for the colorings defined for the database
declustering problem, we need only to look at grids the size of the complete
period for that coloring to determine if constraints are universally satisfiable.
The following lemma shows how constraints that are universally satisfiable imply
weaker constraints that are universally satisfiable.

Lemma 3–2.: If US(C, M, (a, b)), then: i) US(C, M + 1, (a, b)), ii)
US(C, M, (a + 1, b)), and iii) US(C, M, (a, b − 1))

Proof: The first part states that if a constraint can be universally satisfied
for M watermarks, then it is universally satisfiable for M +1 watermarks. This is
obvious since the (M + 1)st watermark can be ignored, and the same constraint
will still be satisfiable. Since any cropping containing a + 1 tiles must contain a
tiles, and likewise any cropping containing b watermarks must contain at least
b − 1 watermarks, the second and third parts are trivially true. �

3.2 Maximum Non-complete Area

Suppose an organization watermarks some data with the tiling method outlined
previously; it would be desirable for this organization to know the largest rectan-
gular subsection that does not contain its watermark as a measure of resilience
to cropping of the placement scheme. There is such a subsection for every wa-
termark; define the maximum area of all of these subsections as the Maximum
Non-Complete Area(MNCA). Formally, the MNCA of a coloring C for M colors
is the value k such that ¬US(C, M, (k, M)) and US(C, M, (k+1, M)). Obviously,
it is desirable to minimize the MNCA for a set of watermarks; note that a strictly
optimal declustering would have a MNCA of (M − 1).

Theorem 3–3. The best achievable MNCA for any coloring of M water-
marks, labeled {0, · · · , M − 1} is M − 1 (i.e. optimal) if and only if M = 1, 2, 3,
or 5.

Proof Sketch: For M=1, 2, or 3 the DM coloring scheme has optimal
MNCA. For M = 5 the RPHM coloring has optimal MNCA. To show that
the other cases cannot be done optimally, there are two cases to consider, M is
even and M is odd.
Case 1: Suppose M = 2k for some k (and ≥ 4), con-
struct a 4 × M grid (4 columns and M rows). BWOC,
suppose that this can be colored optimally. The first col-
umn must contain all M colors, WLOG color them in
sequential order top down as (0, · · · , 2k − 1). Consider
2 × k sections (which must contain all M colors) that
have tiles in the first and second columns of the grid.

0 2 0 2
1 3 1 3
2 0 2 0
3 1 3 1

Diagram 1

From these it can be determined that the second column must be colored in the
order (k, · · · , 2k − 1, 0, · · · , k − 1). By similar reasoning, the third column must
be (0, · · · , 2k−1) and the fourth column must be (k, · · · , 2k−1, 0, · · · , k−1); the
above construction is shown in Diagram 1 for a 4 × 4 grid colored with M = 4
colors. But this implies that a 4×�M

4 � cropping only contains 2�M
4 � < M colors

and thus contradicts our assumption that the grid can be colored optimally.
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Case 2: We omit this case of M = 2k+1 for some k, but it will be contained
in the full version of the paper. However, the proof is similar to Case 1, but it is
slightly more complicated. �

The previous theorem states that we cannot obtain optimal MNCA for most
values of M . In this section we establish an upper bound on the best achievable
MNCA of O(M) for M colors. This is done by proving that the MNCA for GRS
is O(M) if M is a Fibonacci number, and this is generalized to any number of
colors using a smoothing process that is defined after the next theorem.

Theorem 3–4. If a coloring C for M colors has a MNCA of r, then given
k ≤ M colors it is possible to construct a coloring C ′ for k colors that has a
MNCA no larger than r.

Proof: Suppose coloring C has a MNCA of r for M colors, which implies that
US(C, M, (r+1, M)). Define a coloring C ′, where C ′(x, y) = (C(x, y) mod k). We
must show US(C ′, k, (r + 1, k)). Suppose we are given a rectangular subsection
R with area at least r + 1, and an arbitrary watermark w ∈ {0, 1, 2, ..., k − 1}.
There must be a tile (x, y) in R, with C(x, y) = w (since US(C, M, (r + 1, M))
and k ≤ M), which implies C ′(x, y) = w and thus US(C ′, k, (r + 1, k)). �

The previous theorem implies that the best achievable MNCA for M − 1
colors can be no worse than the best achievable MNCA for M colors, or
equivalently that the best achievable MNCA for a specific number of colors
is a nondecreasing function of M . A coloring scheme that satisfies this prop-
erty is called MNCA-smooth. Many coloring schemes are not MNCA-smooth
(EXH, GRS, and FX), but we can modify these schemes so that this prop-
erty will hold. Define a function MA that given a coloring returns the MNCA
of the coloring. Given a coloring scheme {CM}∞

M=1, define a new coloring
scheme {DM}∞

M=1 where DM = (Ck mod M) where k is chosen such that
MA(Ck) = minM≤j≤MA(CM )(MA(Cj)). This process creates a MNCA-smooth
coloring scheme, which has MNCA no larger than {CM}∞

M=1 for all values of M .
When the number of watermarks is a Fibonacci number (recall that they

satisfy the recurrence F1 = 1, F2 = 1 and Fk = Fk−1 + Fk−2), the GRS coloring
scheme has a MNCA no larger than double the number of colors (see Theorem
3–5). Using Theorem 3–4, we can get a general bound of 10

3 times the number
of watermarks for any number of watermarks, see Corollary 3–6. Thus the GRS
coloring scheme has a MNCA which is O(M).

Theorem 3–5. The GRS coloring has a MNCA of no more than 2 ∗ Fk for
M = Fk colors where Fk is the kth Fibonacci number.

Proof Sketch: We need only to consider croppings of an M × M grid with
wraparound since the complete period of GRS is M . Suppose we are given such
a cropping. To finish the proof we need the concept of gaps that has been defined
for permutation schemes [3]. Given r consecutive rows there will be r instances
of any color (one per row); the set of distances between these values (including
the wraparound distance) will be the same for any color, and these distances
are called the gaps of these rows (See Diagram 2 on the next page for more
information on gaps). If an area is non-complete then it must have less columns
than the maximum gap. It was shown in [3] and [10] that the maximum gap
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for r(= Fi + s) rows where 0 ≤ s < Fi−1 is Fk−i+2. It can be shown that
(Fi + s)(Fk−i+2 − 1) < 2Fk. Thus, given any number of rows the maximum area
of a non-complete cropping is less than 2Fk, hence we have proven that MNCA
will be no larger than 2Fk. �

1 2 3 4 5 0
4 5 0 1 2 3
0 1 2 3 4 5

Diagram 2

Diagram 2 shows a permutation coloring for
(M = 6) colors with 3 rows. The gaps between
0’s are 2, 3, and 1. Notice that the gaps are
the same (not necessarily in the same order)
for any color.

Corollary 3–6. For M watermarks the MNCA-smoothed GRS scheme has
a MNCA no more than 10

3 M .
Proof: If M is a Fibonacci number, then this bound is clearly true. Suppose

M is not a Fibonacci number (note M ≥ 4) then let F be the next Fibonacci
number larger than M , note that F ≤ 5

3M , which is easy to verify with induction.
Now we can use GRS for F colors to obtain a coloring for M colors that has a
MNCA no larger than 2F (by theorem 3-4 and theorem 3-5). So the MNCA will
be no larger than 10

3 M . �

3.3 Minimum Non-full Area

Another desirable trait of a watermark placement scheme is for small areas to
have unique colors. For a coloring there is a minimum area that does not contain
unique colors, call this area the Minimum Non-Full Area(MNFA). Formally, the
MNFA of a coloring C for M colors is the value k such that
¬US(C, M, (k,min{M, k})) and US(C, M, (k − 1, min{M, k − 1})). The MNFA
is useful since it is the minimum area for which an attacker can attempt to “get
away with something”, i.e. a cropping that could contain more watermarks than
it actually does. It is desirable to maximize the MNFA of a coloring, and the
MNFA for a strictly optimal placement is ∞.

Lemma 3–7. If a coloring has a MNFA that is optimal for M colors, then
the coloring will be optimal for MNCA as well.

Proof: Since the MNFA of C is optimal we know that
∀k, US(C, M, (k,min{M, k})), so this must be true for k = M , and so
US(C, M, (M, M)). However, this implies that the MNCA is optimal. �

Theorem 3–8. The MNFA for any coloring of M watermarks is ∞ (i.e.
optimal) if and only if M = 1, 2, 3, or 5.

Proof: For M=1, 2, or 3 the DM coloring scheme has optimal MNFA. For
M = 5 the RPHM coloring has optimal MNFA. If for other values of M there was
an optimal coloring for MNFA then this coloring would be optimal for MNCA
(by lemma 3-7), but this contradicts theorem 3-4. �

Theorem 3–9. If a coloring C for M colors has a MNFA of r, then given
k ≥ M colors C has a MNFA ≥ r for k colors.

Proof: Since C has a MNFA of r we know that US(C, M, (r − 1, r − 1)), but
by applying the first part of lemma 3-2 repeatedly we get US(C, k, (r−1, r−1)).
�
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The previous theorem implies that the best achievable MNFA for M + 1
colors can be no worse then the best MNFA for M colors, i.e. the best achievable
MNFA is a nondecreasing function of M . A coloring scheme that satisfies this
property is called MNFA-smooth. Many coloring schemes are not MNFA-smooth
(EXH, GRS, and FX), but we can modify these schemes so that this property
will hold. Like the MNCA, we can define a MNFA-smoothing process. Define a
function MNFA that given a coloring returns the MNFA of the coloring. Given
a coloring scheme {CM}∞

M=1, define a new coloring scheme {DM}∞
M=1 such that

DM = Ck where k is chosen such that MNFA(Ck) = max1≤j≤M (MNFA(Cj)).
This process creates a MNFA-smooth coloring scheme, which has MNFA no
worse than {CM}∞

M=1 for all values of M . However, this transformation has a
drawback; if this smoothing process is used then some colors will not be used,
which means that some watermarks will not be contained in the data. However,
this problem can be fixed by treating each color in the smoothed scheme as a
group of colors and whenever a tile is assigned to a group it is randomly assigned
a watermark from that group. In Theorem 3–10 and Corollary 3–11 we prove a
lower bound of Ω(M) for the best achievable MNFA for any number of colors
M . Like the proof for the upper bound on MNCA, we use the GRS coloring
scheme to prove this lower bound on MNFA.

Theorem 3–10. The GRS coloring scheme has a MNFA larger than 3
7Fk

for M = Fk colors where Fk is the kth Fibonacci number.
Proof Sketch: We only need to consider croppings of an M × M grid with

wraparound since complete period of GRS is M . Suppose we are given a such
a cropping. we will use the same concept of gaps as in the proof of Theorem
3–5. If an area is non-full then it must have more columns than the minimum
gap. It was shown in [3] and [10] that the minimum gap for r(= Fi + s) rows
where 0 ≤ s < Fi−1 is at least Fk−i. It can be shown that (r)(Fk−i + 1) ≥
(Fi)(Fk−i + 1) > 3

7Fk. Thus given any number of rows there must be at least
3
7Fk tiles before there is a duplicate. Hence, the MNFA will be no less than 3

7M
�

Corollary 3–11. For M watermarks there is a coloring where the MNFA is
no less than 9

35M .
Proof: If M is a Fibonacci number, then this bound is clearly true. Suppose

M is not a Fibonacci number (note M ≥ 4) then let F be the largest Fibonacci
number smaller than M , an easy induction shows that F ≥ 3

5M . Now we can
use GRS for F colors to obtain a coloring for M colors that has a MNFA no
smaller than 3

7F (by theorem 3-9 and theorem 3-10). So the MNFA of the MNFA-
smoothed scheme will be no smaller than 9

35M . �

3.4 Other Satisfiability Properties

Suppose that to prove ownership of an item an entity only has to recover about
half of its watermarks. The question becomes how much area is needed so that
about half of the colors are represented. Theorem 3–12 states that it is possible
to color a grid with M = 2k colors in such a way that any area containing M
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tiles has at least M
2 = 2k−1 distinct colors. Corollary 3–13 generalizes this result

for non-powers of two.
Theorem 3–12. Given M = 2k colors, there is a coloring C such that

US(C, M, (M, M
2 )).

Proof Sketch : Use the RFX coloring scheme for M colors. We only need
to consider wraparound croppings in an M × M grid since the complete period
for RFX is M when M is a power of 2. It can be shown that if you partition the
columns into 2s groups each with 2k−s columns (that have a common prefix of
size s), then given any column partition and any 2s consecutive rows (including
wraparound), the 2k−s × 2s cropping defined by the intersection of the column
partition and the rows will contain unique colors (and hence all colors). Further-
more, any cropping containing M tiles must have at least M

2 tiles in one of these
regions, hence there must be at least M

2 colors. �.
Corollary 3–13. Given M colors, there is a coloring C such that

US(C, M, (2�log(M)�, 2�log(M)�−1))).
Proof: By theorem 3-12, we know that there is a coloring C such that

US(C, 2�log(M)�, (2�log(M)�, 2�log(M)�−1))). But since M ≥ 2�log(M)�, by Lemma
3–2 we can conclude that US(C, M, (2�log(M)�, 2�log(M)�−1))). �
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Fig. 1. MNCA of various MNCA-smoothed schemes

4 Experimental Results

To compare colorings we looked at the performance of various schemes with
regards to their MNFA and MNCA. The colorings that were examined are: DM,
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FX, RFX, RPHM, EXH (optimized for MNCA), EXH (optimized for MNFA),
and GRS. Due to page constraints we only include the MNFA of these MNFA-
smoothed schemes for up to 80 colors (Figure 1). Note that DM and FX are
omitted due to poor performance.

Figure 1 shows that the stronger schemes are EXH and GRS, with EXH
slightly outperforming GRS. When smoothing is used the criterion used to opti-
mize EXH appear to have little effect on the performance of the scheme. Similar
results occur when the performance criterion is MNFA.

5 Conclusion

Watermarking is a tool for digital rights management, and inserting multiple
watermarks into the same data is an important application. A scheme for insert-
ing multiple watermarks into an object consists of tiling the data into uniform
rectangles and placing each watermark into a set of tiles; placement of the wa-
termarks in such an environment effects the resilience of the object to croppings.
This problem is relates to the distributed database declustering problem, but
differs from the latter in significant aspects.

We propose two orthogonal heuristics to compare schemes: MNCA and
MNFA. Other than in very limited cases, it is impossible to have optimal perfor-
mance for either heuristic for every cropping in a grid. Given M colors to place
in a grid, the GRS scheme that is smoothed for MNCA has a MNCA of O(M)
for any grid, and the GRS scheme that is smoothed for MNFA has a MNFA
of Ω(M). Furthermore, if M is a Fibonacci number then the GRS scheme will
achieve both of these bounds; extending both bounds to any number of colors
is left for future work. Also, the RFX scheme was proven to have good prop-
erties if only half of the watermarks need to be recovered. Furthermore, we
performed experiments to evaluate the performance of various schemes with re-
gards to MNCA and MNFA and found that the GRS and EXH schemes have
the strongest performance among the colorings schemes that were analyzed.

Acknowledgments. The authors would like to thank Dr. Rei Safavi-Naini
for introducing us to this area and Dr. Sunil Prabhakar for his help with the
distributed database declustering background.
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