

CERIAS Tech Report 2004-02

DEFINING AND MODELING DIGITAL EVIDENCE
USING DATA FLOWS

Brian Carrier, Eugene H. Spafford

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

Defining and Modeling Digital Evidence Using Data Flows

Brian Carrier ∗ Eugene H. Spafford

carrier@cerias.purdue.edu spaf@cerias.purdue.edu

Center for Education and Research in

Information Assurance and Security - CERIAS

Purdue University

West Lafayette, IN 47907 USA

Abstract

In this paper, we define, model, and show the uses of evidence in an investigation, specifically
a digital investigation. Digital evidence has been used in the courts to help prove cases, but
its characteristics and role in an investigation have not been formally defined or challenged.
This paper defines digital evidence by observing the role of evidence in a physical investigation,
modeling the role, and applying the model to a digital investigation. The model shows the data
flow between objects and how the data can be interpreted to produce information and evidence
of the incident. The model can also be used to identify the source of an incident and to find
additional evidence at a crime scene. The class and individual characteristics of digital evidence
are given and the data flow for the 4.4 BSD kernel is used as a case study.

Key Words: Digital Evidence, Digital Investigation, Digital Forensics

1 Introduction

The role of digital evidence has been increasing in many physical and digital investigations and
therefore the interest in “digital forensics” has been as well. The field of digital investigations has
been largely driven by commercial products and many definitions and procedures are based on
specific tools and technologies, not on general theory. Evidence plays an important role in any
investigation because it can show what did or did not happen. Most forensic science disciplines
have theories that are published, generally accepted, and testable, but digital forensics, or digital
investigations, does not [14]. Before the research community can develop formal theories and
techniques for digital investigations, a solid understanding of digital evidence must exist. This
paper examines digital evidence, formally defines it, models it, and shows how the model can be
used in an investigation and in future tools.

This work is based on the approach documented in [6], namely that the procedures and theories
of a physical crime scene are applied to a digital crime scene. The physical world has performed
investigations for thousands of years and the digital world should utilize their experience when
possible. Once recognized, digital evidence is used in an investigation for the same purposes as
physical evidence, but a major difference is that digital evidence is only a value and not a tangible
object.

∗Submitted to IEEE Security and Privacy 2004

1

To gain insight about what digital evidence actually is, we modeled evidence and applied it to
digital and physical environments. The model is based on data flow between objects at a crime
scene and the objects are interpreted to provide information about the incident. In a digital crime
scene, the types of data flow and the types of evidence that exist are specific to the operating
system and applications that are running. This paper provides the general theory of data flow in
a digital device and then focuses on the 4.4 BSD kernel design.

A digital investigation is the process of preserving a digital crime scene, searching it for evidence,
and reconstructing the events that lead to an incident. This has frequently been called digital
forensics, but that can been seen as an abuse of terms because forensics implies science and the
general process of investigating a digital device does not involve science, it involves engineering.
Specific analysis techniques that are used during the digital investigation may involve science, but
the general procedure is more accurately called a digital investigation [6].

A digital crime scene investigation has five major phases. The preservation phase preserves
the scene by making an image of the disks or by taking measures to reduce the impact on the
system. The survey phase takes a quick look at the system to find obvious pieces of evidence so
that an initial hypothesis can be formed. The scene is documented and then a full search of the
scene is performed to find all evidence. After the evidence from the scene has been collected, the
reconstruction phase puts the pieces of evidence together so that a full theory can be developed.

In this paper, we define the characteristics of digital data and show how the evidence model can
be used to find evidence during the crime scene search. The model is also used in the reconstruction
phase to show the link between a suspect object and the incident being investigated. The goal of
this paper is to define digital evidence and its characteristics in a simple manner that can be applied
to the theory of future analysis techniques and models.

Section 2 of this paper examines evidence by first looking at its role in physical investigations
and then applying that to digital investigations. The section will provide definitions for digital
evidence and define its characteristics. Section 3 describes the evidence model and the details for
the 4.4 BSD kernel. Section 4 uses the model to show the link between a suspect and the incident
and to show how existing evidence can be used to find additional evidence. Section 5 includes a
discussion of digital evidence and how it is unique.

2 Defining Evidence

2.1 Definitions

There are many existing definitions of digital evidence, but they are not general enough to be applied
to a model. The International Organization on Computer Evidence (IOCE) defined digital evidence
as “information stored or transmitted in binary form that may be relied upon in court [10].” The
Scientific Working Group on Digital Evidence (SWGDE) uses a similar definition (and correctly
removes the binary requirement) of digital evidence as “information of probative value stored or
transmitted in digital form [20].” Mandia and Proisise define evidence in their incident response
and investigation book as “any information of probative value, whether it confirms or dispels a
matter asserted [15].”

The US Department of Justice (DOJ) defines electronic evidence as “information and data
of investigative value that is stored on or transmitted by an electronic device” [22] and the UK
Association of Chief Police Officers (ACPO) has a similar definition for computer-based electronic
evidence as “information and data of investigative value that is stored on or transmitted by a
computer [4].” In the first edition of Casey’s book, digital evidence is defined as “digital data that
can establish that a crime has been committed, can provide a link between a crime and its victim,

2

or can provide a link between a crime and its perpetrator [7].” In the second edition, the definition
of digital evidence was refined to “any data stored or transmitted using a computer that supports
or refutes an hypothesis of how an offense occurred or that addresses critical elements of the offense,
such as intent or alibi [9].”

Any of the definitions in the preceding paragraph are acceptable for an informal discussion of
digital investigations, but they are not general enough for our needs because they either focus on
computers, focus on the legal system, or focus on a specific phase of an investigation. Evidence is,
obviously, not unique to digital investigations. Therefore, before we make a new definition from
scratch, we examine what has been defined as physical evidence.

Like digital evidence, there is no single definition of physical evidence, but many references use
definitions that convey the same meaning. In Criminalistics, Saferstein defines physical evidence
as “any and all objects that can establish that a crime has been committed or can provide a link
between a crime and its victim or a crime and its perpetrator [18].” Similarly, Rynearson defines
physical evidence as “any observation, relationship, or object which supports or refutes anyone’s
theory of the who, how, why, what, when, and where of a crime, or which addresses the critical
elements of the crime [17].” Many other references do not formally define the term.

These definitions have a common notion that evidence contains information about the crime
or incident being investigated. Objects contain information about many things and Rynearson
observed that “Everything is evidence of some event. The key is to identify and then capture
evidence relative to the incident in question [17].”

Database and knowledge theory show us that raw objects are data. Data can be processed
and interpreted to reveal information [16]. All objects at a crime scene are considered data and
the investigator must interpret the objects to determine what information they can provide and
determine which objects are relevant to the investigation and should be collected as evidence.

Evidence can have legal value and investigative value. The legal value of evidence is the in-
formation that can be entered into the appropriate court of law. The investigative value is the
information that can be used in the process of the investigation, for example to prove or disprove
a hypothesis or to find additional leads that produced relevant evidence. In general, legal require-
ments limit the evidence that can be used and the set of objects with legal value is a subset of the
objects with investigative value. This work considers the general theory of evidence and therefore
focuses on the evidence that has investigative value.

Using a combination of the previous definitions of evidence and knowledge theory, we provide
a general definition of evidence. We define evidence of an incident as any object that con-
tains reliable information that supports or refutes a hypothesis about the incident. The reliability
and relevance of the object are evaluated during the process of interpreting the data to produce
information. The definition of object can be refined to define a specific type of evidence.

Using the previous definition, we define digital evidence of an incident as any digital data
that contain reliable information that support or refute a hypothesis about the incident. Digital
evidence can be found in any digital storage medium that allows data to be written to it and the
same data to be read from it. Examples of digital storage locations where digital evidence can be
found include a hard disk, memory, network cables, and motherboard buses. Each location has
different properties that determine how long the data resides. Currently, most evidence is collected
from the hard disk and network, but monitoring devices, such as a hardware keystroke logger,
may provide additional evidence. The reliability of digital evidence has been examined [8], but
additional work is needed.

At some level, digital evidence has a physical form. The data on a hard disk is actually an
area of a physical disk with a magnetic field, the signals in a cable are electric pulses, and wireless
networks use radio waves to transmit encoded digital data. This paper focuses on the data in

3

its raw digital form and begins at the layer where there is a stream of bits that have not been
interpreted.

For completeness, we will now define other terms that are used in this paper. An incident is
an event that violates a policy or set of laws. An investigation of an incident is the process
of collecting relevant evidence, developing hypotheses of the incident, testing the hypotheses, and
developing a final theory of the incident that is supported by the evidence. Evidence includes the
objects that were not used to prove the final theory, but were used to disprove other hypotheses,
called exculpatory evidence.

A crime scene is defined as any environment where evidence of an incident was found, even if
no crime was actually committed there. For example, if a bank robber abandons his scooter on the
side of the road, then that site contains evidence and is therefore a crime scene. A server that is
compromised is a digital crime scene and the firewall that contains logs of the attack is also a crime
scene. Note that with our definition of evidence, a person who observes an incident is evidence
because she contains information about the incident (Hopefully she will not be locked up in the
evidence locker until a trial).

2.2 Characteristics

Objects are used as evidence because of the information that can be derived from the interpretation
of their characteristics and therefore evidence is classified by its class and its individual character-
istics. Digital data can be represented in many layers of abstraction and that will impact how it
is classified. For example, some cases require viewing a disk image with a hex editor and some
cases are better suited by processing the file system and viewing the files and directories [5]. An
investigator will decide how best to use the data and it should be classified at that level.

The class characteristics of an object are those that “can be associated only with a group
and never with a single source [18].” Examples of class characteristics for physical objects include
an object’s color, size, or manufacturer. Class characteristics of digital objects include values that
provide structure to the data and general values such as sizes and times. Examples of structural
data include the unique identifiers of a file format (magic values) and an object’s layout. Files can
be classified using the type in the inode (or other meta data structure) and the extension of the
file name. Table 1 shows several class characteristics for digital data in a 4.4 BSD system. The
table is organized by layers of abstraction and is not comprehensive with respect to the number of
abstraction layers and the characteristics within the layer.

The individual characteristics of an object are the characteristics that “can be associated
with a common source with an extremely high degree of probability [18].” These are the charac-
teristics that “distinguish members of the same class [12].” Examples of individual characteristics
for physical objects include the markings on a bullet after it has been shot, the unique parts of a
fingerprint, or the pattern from an object being torn. For digital objects, the individual character-
istics are typically values that were created by a user, are not part of a file’s standard structure,
or are values that came from a remote system. Addresses for data structures, computers, and
storage locations are also individual characteristics because they should be the only objects with
that address. Table 2 shows several individual characteristics that are organized by abstraction
layer.

During the five phases of an investigation, evidence goes its own phases [12]. The first phase is
recognition, where the object is collected from the crime scene as potential evidence. This occurs
during the survey and search phases of the investigation. The second phase is identification, where
the class characteristics of the object are examined and compared to known samples to to determine
the class of evidence. The final phase is individualization, where the individual characteristics

4

Table 1: Class characteristics of digital objects
Partitions and Volumes Network Sockets

Type of partition Type of protocol (UNIX, Internet, raw, TCP, UDP)

Flags in partition data structure Network Packets

File Content Length of packet

Structural contents (i.e. magic values) Destination address or port

Allocation status of data unit IP TTL Value

Meta Data Application Specific

File type (regular, block, socket etc.) Application type in logs

File permissions and ownership Types of system calls in executable

File link number Libraries required by an executable

Modified, accessed, changed, and created times Users

Size of file Groups a user is a member of

Allocation status of meta data structure Processes

File Name Parent process ID (PPID)

Parent directory name Active terminal or console

Extension of file name Effective and real user ID of process

Allocation status of file name structure Start time of process

of the object are examined to determine if the object is unique among other objects in the class
or to determine if the object came from the same source as another object. With computers, it
is difficult to individualize digital objects to the same degree as can be done with physical objects
because the digital objects are generated from instructions and there is little randomness.

3 Modeling Evidence

3.1 Overview

To show how evidence is used in an investigation, we created a graph model that showed the
relationship between objects at the crime scene. We previously noted that an object is evidence
if it contains information that is relevant to the investigation and that information is the result
of interpreting data. Our model is a graph that uses the data flow between objects to show the
relationship between them.

Let graph G = (V,E) have a vertex in V for every object that has existed at the crime scene,
including objects that have been removed. The directional edge (oi, oj) exists in E if data flowed
from object oi to object oj. The data flow methods are different for the physical world and the
digital world and will be discussed in their respective sections. Each edge is labeled with the type
and time of data flow. The concept behind the edge direction is that if (oi, oj) exists then data
flowed from oi to oj and oj can be examined for evidence of oi, although the data may no longer
exist.

All objects can be represented at different abstraction levels. For example, a house can be one
object, or there can be one object for every room, or there can be one object for every wall, floor,
and ceiling. The objects in this model can be at any abstraction level, but they must be consistent.
There is no inheritance in this model.

As previously noted, evidence is used in all phases of the investigation. It is collected from the
scene, examined to determine if it is relevant, and then used in the reconstruction to support or

5

Table 2: Individual characteristics of digital objects
Partitions and Volumes Network Sockets

Partition location and on-disk layout Listening port number

File Content IP Address of host

Address of data unit Network Packets

Content not in general structure Packet content

Hash value of all content Application Specific

Meta Data System call sequence in executables

Address of meta data structure Users

File Name User ID (UID)

Full name and path Processes

Process ID (PID)

Memory contents not part of the generic structure

Figure 1: Graphical representation of sets of objects from the crime scene

V_col

V_rel

V_pres

V_inc

V

refute hypotheses. Therefore, we defined subsets of the objects in the set V to show the investigation
process. The subset Vinc ⊆ V is the set of objects that contain information that supports the true
theory of the incident. In other words, the objects in Vinc are those that the investigator wants to
collect from the crime scene and use to prove the final theory.

The subset Vcol ⊆ V is the set of objects that the investigator collected from the crime scene as
potential evidence. The objects in Vcol are examined and used in the incident reconstruction phase
where several hypotheses are considered. The subset Vrel ⊆ Vcol is the set of objects that are found
to be relevant to the investigation and support or refute a hypothesis of the incident. The subset
Vpres ⊆ Vrel is the set of objects that are used in the final presentation of the incident to prove the
final theory. This relationship can be seen in Figure 1.

Ideally, Vpres = Vinc and the evidence that is used to support the final theory of the investigation
is the same evidence that supports the true theory of the incident. If Vpres ⊂ Vinc, then there were
objects at the crime scene that were not collected or there were objects that were collected from
the crime scene but were incorrectly interpreted. If Vpres 6⊂ Vinc, then there were objects that were
used in the final theory that were incorrectly interpreted.

This graph can be quite large because every digital object is a vertex, but it is only a conceptual
graph that shows how the objects at the crime scene are related and what objects are missing as
potential evidence. The investigator never sees the entire graph and he treats it as a puzzle and
tries to identify the edges between the objects that he finds at the crime scene.

6

3.2 Physical Evidence Model

To show how this model can be applied to the physical world, we briefly discuss how it would be
used at a physical crime scene. For the physical crime scene, all physical objects are vertices. Data
are observed, sometimes with the assistance of machines, using the five senses and the directional
edge (oi, oj) is added to the graph when object oj sees, hears, smells, tastes, or touches object oi.
All senses except touch are uni-directional because only the object that sensed the action knows
that it sensed it. Touch is a special case because friction causes data to flow in both directions, so
both (oi, oj) and (oj , oi) are added to the graph.

In this model, any object that picks up odors, such as fabrics, is smelling and the object can be
analyzed to identify the odors. Any object that is affected by exposure to light is seeing, such as
a digital camera or scanner. Note that at a molecular level, it can be argued that hearing, sight,
smell, and taste are variations of touch. This model does not, by default, use that level of detail
because we would then have to include every air particle in the graph. Furthermore, witnesses
would have to testify in court that their ear drums vibrated because of the sound waves from the
suspect’s gun. If that level of abstraction is needed, then the investigator can create this graph
using only touch edges and use molecules as objects.

3.3 Digital Evidence Model

3.3.1 General Theory

When the model is applied to the digital crime scene, the vertices in V are digital objects, including
volatile and non-volatile digital data storage locations, processes, the kernel, and devices. The
digital data are represented at the highest level of abstraction that is relevant to the incident. For
example, if the incident involves writing to a specific file then the file is the object and if the incident
involves writing to a sector using the raw device then the sector is the object.

Edges in the graph are created because of data flow, so we must identify data flow types in
a digital environment. This paper focuses on a modern computer, but the same theory can be
applied to other systems that contain digital storage. Data flow in a computer is dictated by the
software and hardware, so we cannot make specific statements about all systems. In this section,
we will describe the general theory and then show the data flow for the 4.4 BSD kernel and process
architecture.

Evidence, and therefore this model, is concerned with stored digital data. There are few actions
that can be performed on stored digital data because it is just a value. When digital data are read
from memory and written to disk, no actual object is moving, just the value. Therefore, the only
actions that can be performed on stored data are reading and writing. These two actions are the
first two data flow types in our graph.

For reading, the edge directions are implementation specific. At a minimum, an edge (oi, oj) is
added to the graph from the object that was read (oi) to the object that performed the read (oj).
In some implementations, data may also flow to the object being read. For example, there could
be data flow to the object being read because the disk head touches the disk platter. For the rest
of this paper, we will assume that it is a uni-directional action.

When writing, the edge directions are also implementation specific. An edge (oi, oj) is added to
the graph from the object that performed the write (oi) to the object being written to (oj). Some
implementations may have data flow from the object being written to to the object that initiated
the write, but we will assume for this paper that this is not the case.

All actions in a computer can be reduced to reading and writing data, just like all senses in the
physical world can be reduced to touch. In some cases, it is more intuitive and simple to represent

7

actions at a higher level of abstraction, especially when we are dealing with higher-level abstraction
objects, such as processes and the kernel. To identify additional data flow types, we can focus on
the objects that can initiate data flow. In many current operating systems, data flow can only be
initiated by processes, the kernel (a special process), and hardware devices.

3.3.2 4.4 BSD Data Flow

The model was applied to the 4.4 BSD kernel because it is well understood [13] and its design is
similar to many other popular operating systems. In the BSD model, processes can read and write
to only their memory, processes must use system calls to request that the kernel perform operations
with hardware devices, and the kernel can read and write to any memory location. The processes,
kernel, and hardware devices can initiate actions on the system. We will now examine the data
flow between each of these higher-level objects.

Processes can read and write to the memory locations that have been allocated to them. Pro-
cesses communicate with the kernel using system calls, which will have a special edge type in the
graph. Processes communicate with each other using named pipes, Unix sockets, Internet sockets,
and shared memory (which map to files). System calls are used to communicate with pipes and
sockets, so no new edge type is needed. A process reads from and writes to shared memory like it
does to its private memory, so the basic read and write edges can be used. Processes can receive
data from other processes and the kernel with a signal. As will be shown, there are other forms of
data flow that are similar to signals and they will be grouped into the same edge type, an interrupt.
Processes and hardware cannot directly send data to each other.

The kernel can read from and write to its own memory, the memory of any process, and devices
(disks, network etc.). The kernel receives data from processes with system calls and sends data to
the processes in the return value. The kernel is also responsible for receiving hardware interrupts,
receiving hardware exceptions, and sending signals to processes.

Hardware devices are on the edge between the physical representation of digital data and the
digital data. As previously stated, our model focuses on the lowest level of digital data and therefore
we do not consider each chip and bus in the model. In this model, hardware devices, such as hard
disks and network cards, can read and write data to memory using DMA, and the kernel can read
and write data directly to the device. These actions will use the normal read and write edges.

Hardware devices can send data to the kernel with synchronous exceptions, which are created
for an illegal instruction, divide by zero, and other cases that the currently running process needs
to know about. Exceptions usually result in the kernel sending the process a signal. Hardware
devices can also send data to the kernel with an asynchronous hardware interrupt, which could
be created when a keyboard is typed on for example. These types of data flow are grouped with
process signals and called an interrupt type.

As described, we have identified four types of data flow in the BSD design.

Read: Edge (oi, oj) is added to E if object oi is read by object oj . Object oi is typically a data
object and oj is a process, the kernel, or a hardware device.

Write: Edge (oi, oj) is added to E if object oi writes to object oj . Object oi is a process, the
kernel, or a hardware device and oj is typically a data object.

System Call: Edges (oi, oj) and (oj , oi) are added to E if process object oi executes a system call
to the kernel object oj .

Interrupt: Edge (oi, oj) is added to E if the object oi sends a signal, interrupt, or exception to
object oj.

8

The read and write actions here are presented as uni-directional. As previously mentioned,
some implementations may have a bi-directional edge. Note that the read() and write() system
calls may cause more than one edge to be added to the graph. For example, if a file is opened and
read, then the kernel will read the data and update the access time in the file’s inode. Therefore,
there is a read edge from the file’s content and a write edge to the inode value.

The interrupt action is used for hardware interrupts, hardware exceptions, and software signals.
All of these cases have a one-way flow of information. In fact, with hardware interrupts and signals,
the data is entered into a queue before the receiving object reads the data.

4 Using Evidence

In this section, we will use the evidence model to discuss two investigation techniques. For each
technique, its general theory is given and then it is applied to a digital crime scene example. The
first section outlines the case study, the second section describes a technique for showing the cause
of an incident, and the third section describes a technique for finding evidence at a crime scene.

4.1 Case Study

This case study will be used as an example for the techniques outlined in the following sections.
To simplify the example, data flow during network handshakes are ignored and individual buffers
in process and kernel memory are not tracked. In this incident, an SSH server has been modified
to record login and password information.

On startup, the kernel (o1) reads the contents of the SSH server executable /usr/sbin/sshd

(o2) at time t1 and creates a new process (o3) by writing the executable contents to it at time
t2. The SSH server (o3) opens a socket at time t3 with the socket() system call and waits for a
connection with the listen() system call at time t4. The network card (o4) reads data (o5) from
the network at time t5 and sends an interrupt to the kernel (o1) at time t6.

The kernel reads the data from the network device at time t7 and removes the network headers.
The packet is for the port that the SSH server opened and the kernel returns the listen() system
call at time t8. The SSH server uses the fork() system call to create a new process to handle the
session at time t9.

The kernel (o1) creates a new child process (o6) by reading the memory contents of the parent
SSH server (o3) at time t10 and writing the data to unused memory at time t11. The child SSH
server process issues a read() system call to the kernel at time t12 and the packet content is written
to the buffer, which was passed in the read() system call.

An attacker modified the SSH server executable (o2) to save login and password combinations
to a log file. Therefore, the child SSH process (o6) wrote the credentials to a log file by issuing an
open() system call at time t13 for file /dev/xyz (o7) and a write() system call at time t14 with
the credential information. The kernel processed the system call and wrote the login and password
information to the file at time t15. The child process closed the file at time t16 with the close()

system call.
This scenario created the graph as shown in Figure 2. Note that there would be additional

edges to application files, such as the server’s private SSH key, but they are left out to make the
graph more simple for the example.

9

Figure 2: Evidence graph for trojan SSH executable investigation

Kernel
O_1

sshd Proc
O_3

sshd Proc
O_6

/usr/sbin/sshd
O_2 NIC

O_4

/dev/xyz
O_7Packet

O_5

read
(t_1)

write (t_2)

read
(t_5)

read (t_10) write (t_11)

write
(t_15)

sys (socket) (t_3)

sys (listen) (t_4)

sys (fork) (t_9)

sys (write) (t_14)

sys (close) (t_16)

sys (read) (t_12)

sys (open) (t_13)

read
(t_7)

int
(t_6)

4.2 Path From Source To Victim

4.2.1 Description

Evidence uses data flow to support or refute hypotheses about an incident. This section will
describe how a theory that is supported by evidence can be seen in the graph because a path will
exist from the object that caused the incident to the incident. We will first describe the concept
and then show the technique with the digital case study.

We define an action as an event performed by an object on one or more objects that causes
data to flow to or from the other objects. Recall that we previously defined an incident as an
action that is not authorized by a given policy or set of laws. Therefore, the unauthorized action
has data flow edges associated with it and we can view those edges on the graph as the incident.
For example, if an investigation involved the unauthorized reading of a file, then the incident would
be the read edge from the file.

The victims of an incident are the objects that had data flow to or from them because
an incident was performed on them. Data flow to the victim occurs when the incident involves
an attack or modification and data flow from the victim occurs when the incident involves the
unauthorized reading of a file or document. We assume that the incident being investigated caused
data flow that can be represented in this model.

An action can occur by an object because it initiated the action or because an action was
performed on it. For example when a process calls the read() system call, it causes the kernel to
read the contents of a file. The process initiated the action and the kernel performed the actual
read because of the action performed on it. A single action by an object can cause a chain reaction
of actions, or an action chain. The source of an incident is the object that initiated the action
chain that lead to the incident. If there is no action chain, then the object that performed the
incident is the source. Note that the source of an incident is not necessarily the object that is
legally guilty of a crime.

An action by object o1 on object o2 that causes object o2 to perform an action on object o3

must have data flow from object o1 to object o2, otherwise it would not know that an action was
performed on it. Therefore, our data flow graph will show a path from the source of the incident to
the object that performed the incident. A path will not exist from the source to the victim if the
incident involved an action that only caused data flow from the victim (an unauthorized reading
for example). Each edge in the path must have a time that is equal to or greater than the previous
edge in the path. Creating the path from a suspect object to the incident edge shows that evidence
exists to determine that the object caused the incident, assuming that the evidence has been found
to be reliable. This technique can be used in the Reconstruction Phase of the investigation and the
Presentation Phase to show the path from the suspect, if a complete path could be found.

10

Figure 3: Evidence graph with path from the source in the digital example

Kernel
O_1

sshd Proc
O_3

sshd Proc
O_6

/usr/sbin/sshd
O_2 NIC

O_4

/dev/xyz
O_7Packet

O_5

read
(t_1)

write (t_2)

read
(t_5)

read (t_10) write (t_11)

write
(t_15)

sys (socket) (t_3)

sys (listen) (t_4)

sys (fork) (t_9)

sys (write) (t_14)

sys (close) (t_16)

sys (read) (t_12)

sys (open) (t_13)

read
(t_7)

int
(t_6)

4.2.2 Case Study

In the digital example that we previously gave, the initial incident being investigated is the action
that wrote the logins and passwords to the log file (o7), edge (o1, o7) at time t15. We have the
luxury of knowing the sequence of events that led up to the incident and can therefore identify
the process o6 as the source of the incident. The kernel performed the incident action at time t15,
but only because of the action that was performed on it at time t14. Therefore, we have the path
〈o6, o1, o7〉 from the source of the incident to the victim of the incident. The path can be seen in
the graph in Figure 3. A full investigation of the incident would also examine how the process was
loaded, where it was loaded from, and how the original executable was modified.

4.3 Finding Additional Evidence

4.3.1 Description

In the previous section, we saw that evidence can form a path from the source of the incident to the
incident. The path was used after the evidence was found and the relevant edges and vertices in the
graph were known. Unfortunately, many investigations do not have all of the nodes and edges in
the graph and much of the time at the crime scene is spent searching for evidence. In this section,
we will show how the characteristics of evidence can be used to find additional evidence. After the
evidence has been collected and analyzed, the previous technique for identifying the object that
caused the incident can be used.

The concept used in this section is not new. At a physical crime scene, investigators search
for evidence using several techniques, many of which rely on geometric shapes and patterns. The
link search method [12], or the logical association method [17], uses existing evidence and an
investigator’s experience to identify additional evidence that is related to the incident. For example,
if a building was broken into and there was evidence of forced entry, then the police will search the
scene for a tool that could have broken the door. If there was no evidence of forced entry, then
the search focus will be placed on other objects. Of course, this technique requires an open mind
so that conclusions and hypotheses are not created before enough supporting evidence has been
found. The link search method allows investigators to focus their limited resources on a specific
type of evidence. Fortunately, there is typically at least one piece of evidence that can be used as
a starting place for the investigation; otherwise you wouldn’t have an investigation.

The phenomenon of objects having information about other objects is well documented in the
physical investigation world by the Locard Exchange Principle [11]. The principle states that
“when two objects come into contact, a mutual exchange of matter will take place between them”.
This obviously does not always hold true, but is used as a motivation for examining objects for

11

information.
Using the graph model, this search technique starts with a known piece of evidence, oj , and

examines it to identify the class and individual characteristics that it has because of data flow from
other objects. Once the characteristics have been identified, the crime scene is searched for an
object, oi, that could have created the identified characteristics. If object oi is found, then it is
collected from the crime scene, added to the set Vcol, examined to identify its unique characteristics,
and the process continues until all of the existing evidence has been examined and its characteristics
searched for. The process can use either a breadth-first or a depth-first search algorithm, depending
on the size of the crime scene and the number of available resources. This technique can be used in
the Search Phase of the investigation and can utilize the evidence that was recognized during the
Survey Phase.

4.3.2 Case Study

We now apply the evidence link method to the digital example. The investigation started because
an administrator noticed the regular text file in the /dev/ directory. The file was examined and
its characteristics were identified, such as its file name and some of the ASCII strings that were in
the format of the file.

The investigator knew that only the kernel (o1) could write to a file, so he examined the kernel.
To search for the file name in the kernel, he used the lsof tool [2] to identify any file descriptors in
kernel memory that had a file with the same name. No processes were found. The kernel memory
was then searched for a unique ASCII string from the file format, but it was not found.

The investigator next looked for a running process that could have used a system call to cause
the kernel to write to the file. The running processes were searched to find an ASCII string of the
file name and the SSH server processes (o3) and (o6) were found. If no process was found, than
any process that called the write() system call could have been examined. The investigator could
also have identified these processes as suspect because they were one of the few processes that had
access to the login and password information.

The objects for the two SSH processes were added to the set of collected objects, Vcol, and the
set of relevant objects, Vrel. The memory for the two processes was saved to an evidence server. The
investigator knew that the kernel contained information about the process, so he used additional
analysis tools to determine that o3 was the parent process of o6 and that the parent process (o3)
was loaded from the /usr/sbin/sshd (o2) executable. The object for the executable was added to
the collected objects, Vcol, and relevant evidence, Vrel. The kernel also showed that the processes
had TCP port 22 open and that o3 was listening for connections.

The search for evidence continued by examining every executable on the hard disk for charac-
teristics of the log file, but none were found. Finally, a search of all files and the unallocated space
of the file system was done, but still no additional evidence was found.

The search had identified one executable and two running processes that had characteristics that
could have created the log file. To identify that the executable had the ability to write passwords
to that file, it was reverse engineered in a lab. The results showed that the executable could write
login and password information to /dev/xyz. This was not a unique identifier though, because any
process with the appropriate permissions could open that file and write those values, but because
no other executables were found to possess the same characteristics it was determined that with a
high probability it was the process that created the file.

The graph in Figure 4 shows the edges labeled with letters in the order that they were followed
and the objects numbered in the order that they were found. The solid edges are those that were
used to find additional evidence, the dashed edges are those that were searched for, but a link could

12

Figure 4: Evidence graph with search order for trojan SSH executable investigation

Kernel
O_1

sshd Proc
O_3

sshd Proc
O_6

/usr/sbin/sshd
O_2 NIC

O_4

/dev/xyz
O_7Packet

O_5

read

write

read

read write

write

sys (socket)

sys (listen)

sys (fork)

sys (write)

sys (close)

sys (read)

sys (open)

read int
#1

#3 #2

#5

A

#4
B

CC

D

D

E

C

E

not be found, and the dotted edges are those that were not used in the investigation.
Note that this investigation found only the executable and process that may have been respon-

sible for the log file, but it did not find the person that was responsible for it. That would be a
followup investigation for the incident involving the modification of a system executable.

In this example, a full path was not found between the executable and the log file because the
kernel no longer had information about the incident. We have information about how the process
was loaded from the executable, but there is no evidence that shows that the SSH process wrote
the log file. This is similar to physical investigations where a direct link is not made between the
suspect and the victim. If a suspect was the only person that was seen entering the house where
an attack occurred, but no evidence existed that linked the suspect to the attack, then the suspect
can still be brought to court for the crime. This is sometimes called exclusive opportunity.

5 Discussion of Digital Evidence

This section discusses some of the unique aspects of digital evidence. The Introduction already
discussed how digital evidence is just a value and not a tangible object that can be collected. Fur-
thermore, passive digital evidence only exists because software developers made it exist. We define
passive digital evidence as the objects that were saved by the operating system and applications
and not the objects that were saved by a dedicated monitoring device. Operating systems and
applications create passive evidence when the developers want it to be created and often times it
is not created for the purpose of an investigation, temporary files for example. Physical evidence
is generally created by the laws of nature and therefore remain consistent. A benefit of digital evi-
dence is that additional evidence can be generated if the developer adds it to the software, but the
generation of new evidence can also stop at any time if the developer removes it from the software.
The notion of Locard’s exchange principle in the digital world only exists when the software de-
velopers allow it to. Network sniffers and other monitoring devices can be deployed to save digital
data that is not being saved by the operating system.

In addition to software developers controlling the creation of evidence, an attacker can as well.
The kernel and system executables can be modified by the attacker to prevent the creation of
evidence or to cause the system to create false evidence. A loadable kernel module or direct
modifications to the kernel by an attacker could create characteristics in a file that would lead an
investigator to a false conclusion. Modifications are not unique to the digital world, but physical
world modifications can sometimes be detected by sight. It is important in all investigations to
have multiple independent pieces of evidence that contain the same information.

Both physical and digital objects must be interpreted to produce information, but it is not

13

always clear on where the boundaries of digital data are, how to interpret the data, and at what
layer of abstraction. If an unknown physical object is found at a crime scene, an investigator’s
experience with the physical world can help him to identify what the object does, where the object
begins and ends, and if it is complete. With a 100 GB hard disk and a corrupt file system, it may
not be obvious where the files begin and end and what format they are. Some digital data may be
able to be interpreted as two different types of data and produce valid information.

Computers have been designed to execute a set of instructions over and over again. This causes
little randomness to exist in the system and therefore it is difficult to find unique characteristics
to link two digital objects together, like the physical world has DNA or fingerprints. On the other
hand, this makes it easier to classify data by its class characteristics.

In addition to a lack of randomness, the processes model and executable files also make the
digital investigation process more difficult because there are missing links and objects. When a
process starts, the kernel reads an executable file into memory, and the process performs actions
on other digital objects. When that process is done, it exits and there is little remaining evidence
of the process. The original executable has not changed and any evidence in memory will be lost
when the system is powered off or when a new process is started. An analogy of this design in the
physical world is a criminal who can create a clone of herself to commit a crime and then the clone
disappears with little evidence.

This process model causes difficulties when an investigator must testify how a file was created.
For example, many law enforcement investigations are based on a suspect downloading contraband
files from the Internet. A defense that is being more frequently used is that a pop up add downloaded
the file or that the computer was broken into and an attacker or virus put the files there [1,19]. To
show that the suspect intentionally downloaded these files, an investigator may want to show that
the files were created by an HTML browser and not a back door program.

If the system has been powered off since the files were downloaded, then the memory contents of
the download are gone. If the downloaded file was a JPEG image, then finding unique characteristics
in it that will link it to a specific HTML browser would be difficult. An exception to this is if it
occurred on a Apple computer and the HFS+ file system was used because it saves the creator ID
of the application that created the file [3]. In most cases though, the history files, cache, and book
mark files are used to find evidence that supports the hypothesis that the suspect intentionally
downloaded the files.

6 Future Work

Our future work in this area will apply this model to each of the phases in a digital investigation
so that models and requirements can be developed. In our experience with conducting digital
investigations and developing digital forensic tools, the model can be applied to existing technologies
to make them more effective at searching for evidence. Future work will include examining each of
the class and individual characteristics of digital data to identify how reliable they are. The process
will use probabilities to identify the most likely source of digital data, and this moves the digital
investigation process from an engineering process to a scientific process.

7 Conclusion

This work has examined and modeled digital evidence, one of the key components to a digital
investigation. Digital evidence has been given many definitions and this is the first work to focus

14

on it, model it, and formally discuss its uses. Furthermore, by viewing evidence as a result of data
flow, we have shown how evidence is created and where to look for it.

The class and individual characteristics of digital data were also given so that data can be
classified and the characteristics can be used to search a digital crime scene for evidence. Our
experience in conducting digital investigations shows us that this evidence model applies to current
technologies and can be used to develop new and more effective technologies.

The model and definition of digital evidence rely on data flow between objects. In the physical
world, the data flow is dictated by the laws of nature, but in the digital world it is dictated
by software and hardware. This paper documented the general theory of data flow and digital
evidence and then showed the specifics for the 4.4 BSD kernel. This model can also be applied to
other operating systems, such as Microsoft Windows.

Models and formal theories are useful for digital investigations because many of the same tech-
niques that physical investigations use can be applied to digital investigations by generalizing the
concepts and then applying them to the digital world. The U.S. courts rely on published and gen-
erally accepted procedures for entering scientific evidence [21], and accepted models and definitions
allow important procedures to be developed, published, and accepted. This work can be used to
publish and describe how existing technologies work, to develop new tools that search for related
information, and to show that a digital object was the source of an incident.

References

[1] Man cleared of porn ’nightmare’. BBC News World Edition, Oct 2, 2003.

[2] Vic Abell. lsof v4.69. available at: http://freshmeat.net/projects/lsof/, October 16, 2003.

[3] Apple Computer Inc. Technical Note TN1150 HFS Plus Volume Format.

[4] Association of Chief Police Officers. Good Practice Guide for Computer based Electronic Evi-

dence, 2003. available at: http://www.nhtcu.org.

[5] Brian Carrier. Defining Digital Forensic Examination and Analysis Tools Using Abstraction
Layers. International Journal of Digital Evidence, Winter 2003.

[6] Brian Carrier and Eugene Spafford. Getting Physical With The Digital Investigation Process.
International Journal of Digital Evidence, Fall 2003.

[7] Eoghan Casey. Digital Evidence and Computer Crime. Academic Press, 1 edition, 2000.

[8] Eoghan Casey. Error, Uncertainty, and Loss in Digital Evidence. International Journal of

Digital Evidence, Summer 2002.

[9] Eoghan Casey. Digital Evidence and Computer Crime. Academic Press, 2 edition, 2004.

[10] International Organization on Computer Evidence. G8 Proposed Principles For The Procedures

Relating To Digital Evidence, 2002. available at: http://www.ioce.org.

[11] Stuart James and Jon Nordby, editors. Forensic Science: An Introduction to Scientific and

Investigative Techniques. CRC Press, 2003.

[12] Henry Lee, Timothy Palmbach, and Marilyn Miller. Henry Lee’s Crime Scene Handbook.
Academic Press, 2001.

15

[13] Marshall McKusick, Keith Bostic, Michael Karels, and John Quarterman. The Design and

Implementation of the 4.4 BSD Operating System. Addison Wesley, 1996.

[14] Gary Palmer. A Road Map for Digital Forensic Research. Technical Report DTR-T001-
01, DFRWS, November 2001. Report From the First Digital Forensic Research Workshop
(DFRWS).

[15] Chris Prosise and Kevin Mandia. Incident Response: Investigating Computer Crime. McGraw-
Hill Osborne Media, 2001.

[16] Edward Quigley and Anthony Debons. Interrogative Theory of Information and Knowledge.
In Proceedings of the 1999 ACM SIGCPR conference on Computer personnel research, 1999.

[17] Joseph Rynearson. Evidence and Crime Scene Reconstruction. National Crime Investigation
and Training, 6 edition, 2002.

[18] Richard Saferstein. Criminalistics: An Introduction to Forensic Science. Pearson, 7 edition,
2000.

[19] John Schwartz. Acquitted Man Says Virus Put Pornography on Computer. New York Times,
Aug 11, 2003.

[20] Scientific Working Group on Digital Evidence. ASCLD Glossary Definitions, 2002. available
at: http://www.swgde.org.

[21] Fred Smith and Rebecca Bace. A Guide to Forensic Testimony. Addison Wesley, 2003.

[22] Technical Working Group for Electronic Crime Scene Investigation. Electronic Crime Scene

Investigation: A Guide for First Responders, July 2001.

16

