

CERIAS Tech Report 2004-04

X-GTRBAC ADMIN:
A DECENTRALIZED ADMINISTRATION MODEL

FOR ENTERPRISE WIDE ACCESS CONTROL

Rafae Bhatti, James B. D. Joshi,
Elisa Bertino, Arif Ghafoor

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

X-GTRBAC Admin:
A Decentralized Administration Model for Enterprise Wide Access Control

Rafae Bhatti, James B. D. Joshi, Elisa Bertino, Arif Ghafoor

Contact author: rafae@purdue.edu

Abstract
Access control in enterprises is a key research area in the realm of Computer Security because of the

unique needs of the target enterprise. As the enterprise typically has large user and resource pools,

administering the access control based on any framework could in itself be a daunting task. This work

presents X-GTRBAC Admin, an administration model that aims at enabling policy administration within a

large enterprise. In particular, it simplifies the process of user-to-role and permission-to-role assignments,

and thus allows decentralization of the policy administration tasks. Secondly, it also allows for specifying

the domain of authority of the system administrators, and hence provides mechanism to distribute the

administrative authority over multiple domains within the enterprise. The paper also illustrates the

applicability of the administrative concepts presented in our framework for enterprise-wide access control.

1. Introduction
Modern day enterprises are faced with the challenge of achieving efficient resource utilization to

maintain a competitive edge, and simultaneously ensuring secure interoperation across its

constituent domains [URLi,j]. The access control challenges for an enterprise range from (i) the

need to be able to support an access control policy at multiple points of enforcement (i.e.

administrative domains) within the enterprise, and to express and communicate the policies in a

language that supports interoperation between the collaborating domains, to (ii) the need to be

able to express the sophisticated real-time constraints specific to the dynamically changing access

requirements within the enterprise. These challenges have been highlighted in [Bha03], and an

XML-based Generalized Temporal Role Based Access Control (X-GTRBAC) framework has

been proposed to address them. The X-GTRBAC specification language is based on Generalized

Temporal Role Based Access Control (GTRBAC) model [Jos02a]. X-GTRBAC augments

GTRBAC with XML to allow for supporting the policy enforcement in a heterogeneous,

distributed environment. The work presented in [Bha03] also provides a software architecture and

a prototype implementation for X-GTRBAC.

Although the X-GTRBAC framework has been designed with the goal of facilitating enterprise-

wide access control, the administration of the model may pose several challenges due to the huge

pool of enterprise users and resources. In fact, any access control scheme may not be fruitful

unless proper administrative mechanisms are provided to ensure effective policy administration.

Although X-GTRBAC has a mechanism to automate the user-to-role and permission-to-role

assignments, the task of managing a huge number of users and resources cannot realistically be

centralized in a small team of security administrators. Hence, decentralizing the details of the

access control scheme without losing central control over broad policy is a challenging goal

[San99]. To mitigate this concern, we introduce X-GTRBAC Admin, the administration model

for the X-GTRBAC framework. The primary focus of this paper is to elucidate the administrative

concepts related to X-GTRBAC and discuss the motivation and specification of the proposed

administration model.

The remainder of this paper is organized as follows. We begin with the background and

motivation of our particular approach. The salient features of the X-GTRBAC specification

language are thereby outlined. We next present X-GTRBAC Admin, the administrative model for

the X-GTRBAC framework for enterprise-wide access control, and consolidate the ideas

presented with the discussion of a generic enterprise example. A survey of related work in the

area of access control schemes and associated administration models is then provided. The paper

concludes with a discussion on the merits of our particular work, and a sketch of future research

goals.

2. Background and Motivation
In this section, we provide some background and motivation needed to discuss the administrative

concepts related to the X-GTRBAC framework.

2.1 RBAC and GTRBAC
X-GTRBAC is an XML-based policy specification framework that builds on the GTRBAC model

[Jos02a]. GTRBAC extends the widely accepted Role Based Access Control (RBAC) model

proposed in the NIST RBAC standard [Fer01]. RBAC uses the concept of roles to embody a

collection of permissions within an organizational setup. Permissions are associated with roles

through a permission-to-role assignment, and the users are granted access to resources through a

user-to-role assignment [San96]. A major advantage of the RBAC model is that it simplifies

authorization administration in large enterprises. RBAC models have been shown to be policy-

neutral, in that they can be used to represent a variety of security policies, including both DAC

and MAC policies [Osb00]. Although several approaches have been presented in the literature

based on RBAC to address various aspects of security administration within an enterprise, they

have their own drawbacks that render them unsuitable for enterprise-wide access control

[Bha03].GTRBAC provides a generalized mechanism to express a diverse set of fine-grained

temporal constraints on user-to-role and permission-to-role assignments in order to meet the

dynamic access control requirements of an enterprise. X-GTRBAC framework augments the

GTRBAC model with XML to allow for supporting the policy enforcement in a heterogeneous,

distributed environment. The motivation for using XML as the language of choice for specifying

GTRBAC policies is the heterogeneity of collaborating entities, within a large distributed

enterprise environment, that enable high level information system services. The functional

entities within an enterprise, connected through multiple media, and each comprised of

heterogeneous information systems that are linked together by the Enterprise Computing (EC)

technology [URLi], require a common policy specification language to efficiently express and

enforce the enterprise level access control policy. As XML provides a uniform, vendor-neutral

representation of enterprise data, and allows a mechanism for interchange, sharing and

dissemination of information content across heterogeneous systems, the access control needs of

an enterprise can adequately be addressed through an XML-based framework.

In order to discuss the salient features of the X-GTRBAC specification language, and its

administrative extension, we provide the formal definitions of the component models of our

framework, namely RBAC and GTRBAC.

RBAC Model [Fer01] The RBAC model consists of the following components:

• Sets Users, Roles, Permissions and Sessions representing the set of users,
roles, permissions, and sessions, respectively;

• UA: Users × Roles, the user assignment function, that assigns users to roles;

• assigned_users(r: Roles)→ 2Users, the mapping of role r onto a set of users. Formally:
assigned_users(r) = {u ∈ Users | (u,r) ∈ UA}

• PA: Roles × Permissions, the permission assignment function, that assigns
permissions to roles;

• assigned_permissions(r: Roles) → 2Permissions, the mapping of role r onto a set of
permissions. Formally: assigned_permissions(r) = {p ∈ Permissions | (p,r) ∈ PA}

• user: Sessions → Users, which maps each session to a single user;

• role: Sessions → 2Roles that maps each session to a set of roles;

• RH ⊆ Roles × Roles, a partially ordered role hierarchy (written ≥).

Session si has the permission of all roles r’ junior to roles activated in the session, i.e.

{p | (V r in roles(si) and all r’ ≤ r)[(p,r) or (p,r’)∈ PA]}

GTRBAC Model [Jos02a] The GTRBAC model incorporates a set of language constructs for the

specification of various temporal constraints on roles, including constraints on their activations as

well as on their enabling times, user-to-role assignment and permission-to-role assignments. In

particular, GTRBAC makes a clear distinction between role enabling and role activation. An

enabled role indicates that a user can activate it, whereas an activated role indicates that at least

one subject has activated a role in a session. The notion of separate activation conditions is

particularly helpful in large enterprises, with several hundred users belonging to the same role, to

selectively manage role activations at the individual user level.

The temporal constraints in GTRBAC allow the specification of the following constraints and

events:

1. Temporal constraints on role enabling/disabling: These constraints allow one to specify

the time intervals during which a role is enabled. When a role is enabled, the permissions

assigned to it can be acquired by a user by simply activating the role. It is also possible to

specify a role duration. When such a duration is specified, the enabling/disabling event

for a role is initiated by a constraint-enabling expression that may be separately specified

at run-time by an administrator or by a trigger.

2. Temporal constraints on user-to-role and permission-to-role assignments: These are

constructs to express either a specific interval or a duration in which a user or a

permission is assigned to a role.

3. Activation constraints: These allow one to specify how a user should be restricted in

activating a role. These include, for example, specifying the total duration for which a

user is allowed to activate a role, or the number of users that can be allowed to activate a

particular role.

4. Run-time events: A set of run-time events allows an administrator to dynamically initiate

GTRBAC events, or enable duration or activation constraints. Another set of run-time

events allow users to make activation requests to the system.

5. Constraint enabling expressions: GTRBAC includes events that enable or disable

duration constraints and role activation constraints.

6. Triggers: Triggers allow one to express dependency among GTRBAC events as well as

capture the past events and define future events based on them.

A periodic expression is written as (I,P), where I is an interval and P is a set of infinite number of

intervals. (I,P) represents the set of all intervals such that P is contained in I. D is used to express

the duration specified for a duration constraint. The temporal constraint types and expressions in

GTRBAC are summarized in Table 1.

Table 1. Temporal Constraints and Event Expressions in GTRBAC

Constraint
categories

Events Expression

Enabling Role enabling (I, P,D, enable/disable r)
Activation Role activation <!--only occurs as a run-time event -->

User-to-role assignment ([I, P, D], assignU/deassignU r to u) Assignment
Constraint

Permission-to-role assignment ([I, P, D], assignP/deassignP p to r)

Trigger <!--any triggering event --> E1 ,…, En , C1 ,…, Ck → E after ∆t
Users’ activation request (s:(de)activate r for u after ∆t))

(assignU/de-assignU r to u after ∆t)
(enable/disable r after ∆t)
(assignP/de-assignP p to r after ∆t)

Run-time
Requests

Administrator’s run-time request

(enable/disable c after ∆t)

X-GTRBAC allows specification of all the elements of the GTRBAC model. These specifications

are captured through a context-free grammar called X-Grammar, which follows the same notion

of terminals and non-terminals as in BNF, but supports the tagging notation of XML that also

allows expressing attributes within element tags. The detailed specification of these elements of

X-GTRBAC framework can be found in [Bha03]. For the purposes of our present discussion, we

focus in the next subsection on the mechanisms of user-to-role and permission-to-role

assignments using their corresponding X-Grammar representations. We then introduce in Section

3 the administrative extensions to the GTRBAC model, and present the formal definition and X-

Grammar for the components of X-GTRBAC Admin.

2.2. Motivation for an Admin Model

The assignment and activation conditions on roles can be specified in X-GTRBAC as constraint

statements. As mentioned earlier, our framework makes a distinction between assignment and

activation of a role. We consider the result of a user-to-role assignment operation as the set of

eligible users who could potentially activate the specified roles. Activation of a role only takes

place for the eligible users when an access request is made, subject to the evaluation of an

associated activation constraint. Hence the assignment conditions capture the static (i.e.

assignment-time) context available through supplied user-credentials, and the activation

conditions capture the dynamic (i.e. activation-time) context available at the time when the access

requests are made. Both the assignment-time and activation-time constraints are provided by the

System Security Officer (SSO) using the X-Grammar for GTRBAC elements and functions. The

X-Grammar for user specifies a list of user credentials that may be used in assignment to roles.

Similarly, the X-Grammar for role specifies a list of role attributes that may be parameters of the

context conditions which need to be dynamically evaluated for any role enabling/disabling or

activation/deactivation, or for assignment of eligible permissions to the role. The structure allows

evaluation of nested conditions expressed by multiple logical expressions within a constraint

statement. An XML User-to-Role Assignment Sheet (XURAS) is created by the SSO to supply

the assignment conditions on user-to-role assignment. Similarly, the X-Grammar for the XML

Permission-to-Role Assignment Sheet (XPRAS) is used to specify the assignment conditions on

permission-to-role assignment. The X-Grammar for the corresponding sheets is shown in Figures

1 and 2.

<!-- XML User-to-role Assignment Sheet> ::=
<XURAS [xuras_id = (id)]>
 {<!-- User-to-role Assignment>}+
</XURAS>

<!-- User-to-role Assignment> ::=
<URA ura_id=(id) role_name=(name)>
<[De]AssignUsers>
 {< !--[De]Assign User>}+
</[De]AssignUsers>
</URA>

 <!--[De]Assign User Constraint> ::=
<[De]AssignUserConstraint
 [op = {AND|OR|NOT|XOR}]>
 <!--[De] Assign User Condition>
</[De]AssignUserConstraint>

<!--[De]Assign User > ::=
<[De]AssignUser
 user_id=(id)>
 <!--[De]Assign User Constraint>
</[De]AssignUser>

<!--[De]Assign User Condition> ::=
<[De]AssignUserCondition
 cred_type=”type_name”
 [{pt_expr_id=(id) |
 d_expr_id=(id)}] >
 [<!-- Logical Expression>]
</[De]AssignUserCondition>

Figure 1: X-Grammar for XURAS

The evaluation of assignment constraint expressions in the model has direct relevance to our

current discussion related to the administrative concepts in X-GTRBAC1. This mechanism allows

the specification of automated assignment of users to roles based on the user credentials.

Credential based dynamic assignments of users to roles allows the administration of access

control policies by defining rules on credential attributes. Similarly, permission-to-role

assignment mechanism automates the process of associating permissions with roles. However, as

we have discussed, administering these policy assignments would be a challenging task in large

enterprises, as the administration of roles becomes increasingly complex with the increase in the

size of the user and resource pools of the enterprise. Hence, in order to attain effective and

scalable enterprise wide access control, our framework needs to be augmented with an

administration model. We next present X-GTRBAC Admin as a natural extension to the X-

GTRBAC framework.

1The activation constraints are an enforcement mechanism, and hence not directly part of the administrative
component of the model. The administration problem is conventionally viewed as one of dealing with user-
to-role and role-permission assignments. This process is independent of what activation conditions occur
on roles, and those are specified separately by the SSO in the X-Grammar for Roles.

<!-- XML Permission-to-role Assignment Sheet> ::=
<XPRAS [xpras_id = (id)]>
 {<!-- Permission-to-role Assignment>}+
</XPRAS>

<!-- Permission-to-role Assignment> ::=
<PRA pra_id=(id) role_name=(name)>
<[De]AssignPermissions>
 {< !--[De]Assign Permission>}+
</[De]AssignPermissions>
</PRA>

<!--[De]Assign Permission > ::=
<[De]AssignPermission
 [{pt_expr_id=(id) |
 d_expr_id=(id)}]
 {<PermId>(id)</PermId>}+
</[De]AssignPermission>

Figure 2: X-Grammar for XPRAS

3. X-GTRBAC Admin

X-GTRBAC Admin is introduced to simplify the process of user-to-role and permission-to-role

assignments within the X-GTRBAC framework. The latter lends itself well to an administrative

extension because the original model has emphasized separation of language schemas to provide

distinct specification of definitions of RBAC elements, user-to-role and permission-to-role

assignments and hierarchical and separation of duty constraints. Hence, this modular approach

not only makes it easy to extend one component of the model independently of the other, but also

complements the decentralized administration goal by distributing the tasks into multiple

domains, each responsible for its own set of policy specifications. For example, the task of

assigning roles to users is distinct from that of assigning permissions to roles within the

enterprise, and hence the two assignment specifications can be constructed independent of each

other. Furthermore, these tasks could further be separated into multiple domains within the

enterprise. To enforce common vocabulary, however, definition sheets for the different entities

(like credential types, separation of duty constraints, temporal constraints) within the system are

provided that must be adhered to across all domains.

We now turn to the specification of our administrative model. In order to include the

administrative concept in our X-GTRBAC framework, the specification language is extended to

include the specification of an Administrator Role (AdminRole) and an Administrative

Permission (AdminPermission). An important notion introduced here is that of an Administrative

Domain (Admin Domain) which is the key to scalable decentralization of the administrative tasks

within the enterprise. Each Admin Role and Admin Permission is associated with an (Admin

Domain).

The formal extension to the GTRBAC model is presented below.

Definition: The X-GTRBAC Admin model consists of the following extensions to its
GTRBAC component:

• AD = {ad1, …. , adk}, a set of administrative domains
• AU = {au1, …. , auk}, a set of administrative users
• RR = {rr1, …. , rrk}, a set of regular roles
• RO = {ro1, …. , rok}, a set of regular operations
• AR = {ar1, …. , ark}, a set of administrative roles
• AO = {ao1, …. , aok}, a set of administrative operations
• The set of regular roles RR for a domain ad ∈ AD is defined as

RRD = { (ad, rr) | ad ∈ AD, rr ∈ RR} ⊆ RR
• The set of regular permissions RP for a domain ad ∈ AD is defined as

RP = AD × RO = { (ad, ro) | ad ∈ AD, ro ∈ RO}
• The set of administrative roles AR for a domain ad ∈ AD is defined as

ARD = { (ad, ar) | ad ∈ AD, ar ∈ AR}
• The set of administrative permissions AP in domain ad ∈ AD is defined as

AP = AD × AO = { (ad, ao) | ad ∈ AD, ao ∈ AO}

• domain(r) returns the domain of a role. Formally: domain(r | r: RR or
r: AR) = {d ∈ AD | (d,r) ∈ RRD or (d,r) ∈ ARD }

• administers(ar) returns the set of all regular roles administered by an
administrative role. Formally: administers(ar | ar: AR) = {rr | (V ad in
domain(ar))[(ad,rr) ∈ RRD]}

• assigned_users(rr: RR
D
) → 2Users, the mapping of regular role rr onto a set of

users. Formally: assigned_users(rr) = {u ∈ Users | (u, rr) ∈ UA}

• assigned_permissions(rr: RR
D
) → 2Permissions, the mapping of regular role rr onto

a set of permissions. Formally: assigned_permissions(rr) = {p ∈
Permissions | (p,rr) ∈ PA}

• AUA: AU × AR, the administrative user assignment function, that assigns users to
Admin Roles;

• assigned_admin_users(ar: AR
D
)→ 2AU, the mapping of administrative role ar

onto a set of users. Formally: assigned_admin_users(ar) = {au ∈ AU | (au, ar)
∈ AUA}

• APA: AR × AP, the administrative permission assignment function, that assigns
Admin Permissions to Admin Roles;

• assigned_admin_permissions(ar: AR
D
) → 2AP, the mapping of administrative role

ar onto a set of administrative permissions. Formally:
assigned_admin_permissions(r) = {ap ∈ AP | (ap,r) ∈ APA}

The assignment functions in X-GTRBAC Admin are modified to include the domain of the users,

roles and permissions. The titles in bold indicate the changed definitions. We next explain the

usage of the model for the assignment of AdminRole and AdminPermissions within the various

domains across an enterprise.

<!-- XML Admin Role Sheet> ::=
<XARS [xars_id = (id)]>
 {<!-- Admin Role Definition>}+
</XARS>

<!-- Admin Role Definition> ::=
<AdminRole admin_role_id = (id)
 admin_role_name = (role name)>
 [<!--Attributes>]
 [<!--{En|Dis}abling Constraint>]
 [<!--[De]Activation Constraint>]
 {<DomainID> (id) </DomainID>}+
 [<Cardinality> (number) </Cardinality>]
</Role>

Figure 3: X-Grammar for XARS

Admin Role: An administrator in an Admin Role is authorized to handle assignment of users to

regular roles within a given Admin Domain. This authority is given by a set of associated Admin

Permissions (which are discussed below). An Admin Role is represented in our framework in an

XML Admin Role Sheet (XARS), an instance of which is shown in Figure 3. Typically a set of

selected candidate users for the Admin Role within various Admin Domains of the enterprise

would be created by the respective SSOs. We introduce a credential admin to specifically

identify a set of users being considered for AdminRoles, and an optional “target_domain”

credential to indicate a restriction on their target domains. The assignment of such users to Admin

Roles may involve evaluation of other user-specific credentials, as is needed in the case of regular

roles, and may as well be based on context conditions (such as a day_time vs. night_time

administrator, or regular_hours vs. emergency_hours administrator). This assignment is handled

by an AUA function similar to the UA function of the original model, and is represented in an X-

Grammar syntax similar to that of XURAS of Figure 1. Admin Roles are constrained by enabling

and activation constraints similarly as regular roles, and have a cardinality attribute that is also

interpreted similarly. In addition, the scope of the administrative authority for the Admin Roles is

restricted to a set of Admin Domains within the enterprise. Each Admin Role may have authority

over multiple domains. This scope is defined by the SSO or the system designers when the policy

sheets are composed, and is updateable at runtime by the SSO. X-GTRBAC Admin is, thus,

designed to allow specification of domains of authority in order to provide a fine-grained

mechanism to distribute the administrative authority according to the functional units within

the enterprise. This not only results in simplified policy administration, but also keeps in

check undue authorizations through cascading or collusion that could inflict damage onto

the system. Note that the administrative level constraints imposed by the XARS introduce

domain-specific restriction on top of those enforced by the XURAS. This means that the

assignment of a user to a regular role per the XURAS may be executed by an

administrator in an Admin Role whose administrative domain specified in XARS is the

same as that of the regular role. Both XURAS and XARS could thus be used jointly to

constrain both the context and scope, respectively, of the user-to-role assignment. Hence

the modularity of the language schemas allow the SSO to configure the system in various

modes, depending on the level of decentralized administration deemed necessary for the

target enterprise.

<!-- XML Admin Permission Sheet> ::=
<XAPS [xaps_id = (id)]>
 {<!-- Admin Permission Definition>}+
</XAPS>

<!-- Admin Permission Definition> ::=
<AdminPermission admin_perm_id = id
 domain= (id)>
 {<PermId>(id)<PermId>}+
</AdminPermission>

Figure 4: X-Grammar for XAPS

Admin Permission: An Admin Permission specifies a collection of permissions associated with

an Admin Role belonging to a particular Admin Domain. An Admin Permission is represented in

our framework in an XML Admin Permission Sheet (XAPS), an instance of which is shown in

Figure 4. Typically a set of available permissions for the various Admin Domains within the

enterprise would be created by the respective SSOs. We introduce can_assign, can_deassign,

can_enable, can_disable, and can_review as the basic set of Admin Permissions. The meanings

of these permissions are straightforward; for instance, can_assign permission for a given domain

means that the corresponding Admin Role can assign users to roles within that domain; and so on.

Because the assignment of Admin Permissions to Admin Roles is based on the attributes of the

role and the context conditions provided in the role definition, it is handled by an APA function

similar to the PA function of the original model, and is represented in an X-Grammar syntax

similar to that of XPRAS of Figure 2. A prerequisite for this assignment is that the domain of the

Admin Permission should be the included in the set of Admin Domains for the Admin Role. The

mechanism of assignment of Admin Permissions thus contains the scope of authority of the

administrators by restricting the set of available permissions that could be assigned by them to

roles, and hence prohibiting any permission flow outside their respective domains. Note that the

administrative level constraints imposed by the XAPS introduce domain-specific restriction on

top of those enforced by the XPRAS. This means, for instance, that the assignment of a

permission to a regular role per the XPRAS may be executed by an administrator in an Admin

Role who has been assigned an Admin Permission can_assign such that the permission belongs

to the corresponding domain specified in XAPS. Both XPRAS and XAPS could thus be used

jointly to constrain both the context and scope, respectively, of the permission-to-role assignment.

We again maintain that this separation of administrative and access layers leads to a

flexible decentralized administration scheme for the target enterprise.

We next present an example of a generic enterprise that demonstrates how the features of X-

GTRBAC Admin would be useful in our X-GTRBAC framework for enterprise-wide access

control.

4. Enterprise-Wide Access Control and X-GTRBAC Admin

The administrative concepts presented in X-GTRBAC Admin are now illustrated in the

context of a generic enterprise environment. Let the users and permissions from within

various domains within the enterprise be given in Tables 2 and 3 respectively. We

assume the user-to-role and permission-to-role assignment criteria for the regular roles

have been specified by the SSO, using the XURAS and XPRAS sheets in our framework.

The last column in these tables, hence, lists the “eligible” role that the user or permission

could be associated with, provided the assignment conditions are satisfied. Tables 4 and 5

Table 2: A set of regular users.

Domain Perm Id Eligible Role

(ER)

1 ENG P1 R1

2 ENG P2 R2

3 HR P3 R3

4 FIN P4 R4

Domain User Id Eligible Role

(ER)

1 ENG john R1, R5

2 ENG nancy R2

3 HR george R3, R6

4 FIN carla R4

Admin Role

(AR)

Valid

Intervals

AR Domain

1 AR1 MO-FR 9-5 ENG

2 AR2 SA-SU 10-4 ENG

3 AR3 MO-FR 9-5 HR, FIN

4 AR4 TEMP SPECIAL

Admin Permission (AP) AP

Domain

1 AP1 (can_assign,can_deassign) ENG

2 AP2 (can_assign) HR, FIN

3 AP3 (can_deassign) HR, FIN

4 AP4 (can_review) ALL

Table 5: A set of Admin Permissions.

Table 3: A set of regular permissions.

Table 4: A set of Admin Roles.

give the candidate users for the Admin Roles and the set of available Admin Permissions,

respectively, for the various domains within the enterprise. We next observe the

administrative features provided by X-GTRABC Admin to administer the enterprise

access control policy.

 Assignment of administrative roles and permissions: The assignment of administrators to

Admin Roles AR1-AR4, and the assignment of Admin Permissions AP1-AP4 to these Admin

Roles is done by X-GTRBAC Admin by using a similar mechanism as the XURAS and XPRAS

shown in Figures 1 and 2 respectively. For the purpose of this example, we do not explicitly need

to indicate the users assigned as administrators, and would just use the Admin Roles by name in

subsequent discussion. It may be noted that the context conditions supplied in Table 4 restrict the

activation of the Admin Roles by the assigned users to only within the stated validity period.

Such conditions reflect the realistic scenario within an enterprise, where the activation of Admin

Roles may need to be time-constrained. The clear distinction between role assignment and role

activation in GTRBAC allows this constraint to be effectively enforced. We emphasize that our

framework allows for context conditions other than time to be specified as well. For instance, the

role activation may also depend on a pre-requisite event sequence to have completed, as is

typically the case in Workflow Management Systems (WFMS). Such pre-requisite conditions

may be expressed as constraint conditions in X-GTRBAC, and dynamically evaluated at the time

of a role activation request.

From the information in Tables 4 and 5, we note that AR1 and AR2 can only be assigned AP1,

whereas AR3 can be assigned AP2 and AP3 because it has administrative authority over the

respective domains to which these permissions belong. Also, AP4 can be assigned to any Admin

Role because it is designated as available for ALL domains. On the other hand, the domain for

AR4 has been designated as SPECIAL, which implies that it is an Admin Role that may be

enabled temporarily during non-usual activity periods, such as special projects. In such cases,

additional domains of administrative authority are typically needed according to the scale of the

project. Hence AR4 can be configured to act as an Admin Role for the SPECIAL project

domain(s), and would remain valid for the TEMP duration of the project. The corresponding

Admin Permissions for these Admin Roles would be project-specific, and created by the SSO.

 Assignment of regular roles and permissions: The administrators in Admin Roles can then

execute the assigned permissions within their respective domains. For instance, the Admin Role

AR1 (or AR2) can assign the user john to role R1 because it has the required permission

(AP1) and required scope (i.e. its domain is same as the domain of R1). AR3 has can_assign

permission (AP2) over the domains of HR and FIN, and can hence assign george and carla

to their respective eligible roles. Also, the permissions P1 and P2 will be acquired by the roles

R1 and R2, whereas P3 and P4 will be acquired by the roles R3 and R4, respectively.

Hierarchical relationships between roles: The Admin Roles in an enterprise may be related by I,

A or IA temporal hierarchy relations proposed in [Jos02b]. Hence, the inheritance semantics

desired in the target enterprise can be incorporated in the X-GTRBAC Admin by modeling the

Admin Role hierarchy in the appropriate manner.

Independent, interoperable administrative domains: The XML documents containing user, role,

and permission information from Tables 2-5 for these various domains could be composed

independently of each other. The respective SSOs would have a common vocabulary available to

them to express the domain-specific, yet enterprise-conformant and interoperable policies using

the syntax and semantics of the X-GTRBAC specification language.

5. Related Work and Discussion

There has been a growing interest in administration models built on RBAC and related schemes.

One aspect of the administration models is the process of user-to-role assignment (some schemes

have used the term “role activation” to include both assignment and activation in a single step).

Although role assignment/activation process has been investigated in the RBAC context by the

research community [Bac02, Kah02], none incorporates all the features outlined in this work that

are essential to enterprise-wide access control. While the role assignment scheme in [Kah02] is

based only on static attributes of a user with no support for context-dependent constraints, the one

in [Bac02] supports dynamic conditions on role activation. It, however, relies on the notion of

appointment certificates to assign roles to eligible users, and does not explicitly recognize role

hierarchies- a feature that discounts role relationships which are useful in various access

decisions. An administration model for RBAC (ARBAC99) has been proposed in [San99]. The

model also uses RBAC itself for role administration within an RBAC system, and introduces the

notion of an administrator role, with administrative permissions. It uses can_assign and

can_revoke relations that can be interpreted to determine (i) the “role range” that an administrator

role has authority over, and (ii) the “pre-requisite role” (also called pre-requisite condition)

needed to exercise that authority. The conditions it specifies are static, and would not be a viable

approach for a dynamically changing enterprise environment, where the administrators’ authority

may need to be restricted based on context conditions. Also, certain weaknesses in the model

have been highlighted in [Oh02]. The most significant of them include (i) undesired flow of

permissions from a role in the “role range” to another role outside the “role range” because of

role hierarchy relationships, and (ii) unrestricted assignment of permissions from the “pre-

requisite roles” to the roles in “role range”. An ARBAC02 model has been presented in [Oh02] to

overcome these weaknesses, and it uses the organization structure as the basis for pre-requisite

conditions, instead of pre-requisite roles in a role hierarchy. Although using the organization

structure as a pre-requisite condition avoids the dependencies that arise because of using role

hierarchies, it still does not facilitate administration in large enterprises with context-dependent

access control requirements, because a constraint expressed even in terms of organizational unit’s

parameters is still a static constraint. Our credential mapping mechanism captures the essence of

the ARBAC02 model because it uses the attributes specific to the organization as a criterion for

role assignment. In addition, the optional constraint expressions together with the predicate

grammar of X-GTRBAC can be used to specify any restrictive constraint on role assignment

based on hierarchical relationships between roles, should the need arise to do so. Hence, we see

our approach as providing a balance between both ARBAC99 and A-RBAC02 models. Along

another but related direction, [Ker03] have proposed a role-based administrative approach called

A-ERBAC after their Enterprise Role-Based Access Control model. They build on their notion

of “enterprise roles”, which they claim are helpful in reducing the administration effort required

to maintain users and their access rights in large enterprises. A-ERBAC implements the

administrative security system as a component system within the ERBAC model itself. The

administrators are defined as accounts in this system, and receive access rights via roles

containing administrative permissions. Administrative accounts and permissions are normal

ERBAC objects. They discuss “scopes” of authority for administrator accounts, which are related

to the organizational structure. The model emphasizes separation of administrative domains for

user-to-role and permission-to-role assignments, much like the separation of language schemas

for the corresponding assignments in our X-GTRBAC framework. However, this model is also

inadequate for supporting enterprise-wide access control for the same arguments as those for

ARBAC02. They have augmented their work with the discussion of a commercial security

administration tool implementing these concepts. Their observations regarding performance gains

achieved through separation of administration and access layers in an application security system

match our initial results obtained during the on-going implementation effort on our prototype

system [Bha03].

We maintain that a distinct feature of our approach is that it is suitable for generic, heterogeneous

enterprise environments, with varying levels of access control requirements, because of the

salient features provided by the X-GTRBAC framework. These include a semantically rich

specification language that supports context-aware constraint expressions, an XML-based

representation well-suited to heterogeneous, interoperable systems, and a consistent vocabulary to

express access control policies. A common vocabulary further enhances reusability of the

language schemas, in that the same set of schema definitions can be imported in multiple

assignments, and hence significantly reduces the overhead of having to process similar constraint

expressions for a typical several hundred users in a large enterprise. All the objects in our X-

GTRBAC system, including roles created for administration, are treated uniformly which keeps

the administrative concept simple in practice. Thus, a resulting benefit that accompanies our

framework is the fact that the user-to-role assignment mechanism can also be applied to the users

being assigned to administrative roles, in addition to those being assigned to regular roles. An

analogous fact holds for permission-to-role assignments. These features further facilitate policy

administration tasks.

In addition to the above merits, another major advantage in the realm of EC technology is the

availability of widely-adopted XML-based standards for integration into external applications.

The fact that ours is a “pure” XML framework would not only enhance interoperability, but

would also make it a light-weight deployable component within the distributed EC network of the

target enterprise.

6. Conclusion

In this paper, we have presented X-GTRBAC Admin, an administration model for the X-

GTRBAC framework. We have elucidated the administrative concepts related to X-GTRBAC,

and motivated the need for the proposed administration model. X-GTRBAC Admin achieves

simplification of policy administration tasks by defining language schemas that facilitate the user-

to-role and permission-to-role assignments within the enterprise. Our administration model

integrates very well within our existing framework because of the modular design of the latter

which emphasizes separation of language schemas for various policy specification tasks. A

generic enterprise example has been provided to consolidate the ideas presented in the paper. We

plan to augment our existing X-GTRBAC prototype system with the administrative extensions,

and report our implementation experiences in some future work. We also intend to explore the

issues related to administration of policies in multi-domain environments, and how the set of

Admin Permissions would need to be extended, for instance, to allow modifications in role

hierarchy, or to export a set of roles to another domain. Also of interest would be to provide

consistency and availability guarantees for the system, to avoid a situation where the context

constraints prevent a valid administrative authority to be assigned to or exercised by any user in

the system. These challenges need to be addressed for effective administration of access control

policies in a widely-distributed dynamic enterprise

References

[Bac02] J. Bacon, K. Moody, W. Yao, “A model of OASIS role-based access control and its

support for active security”, ACM Transactions on Information and System Security
(TISSEC) Volume 5 , Issue 4 , November 2002.

[Bha03] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, "X-GTRBAC: An XML-based Policy
Specification Framework and Architecture for Enterprise-Wide Access Control”,
Submitted to ACM Transactions on Information and System Security. Available as
technical report at:
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2003-27.pdf

[Fer01] D. F. Ferraiolo , R. Sandhu , S. Gavrila , D. Richard Kuhn , Ramaswamy Chandramouli,
“Proposed NIST standard for role-based access control”, ACM Transactions on
Information and System Security (TISSEC),
Volume 4 , Issue 3 (August 2001).

 [Jos02a] J. B. D. Joshi, Elisa Bertino, Usman Latif, Arif Ghafoor, "Generalized Temporal Role
Based Access Control Model (GTRBAC) (Part I) - Specification and Modeling",
Submitted to IEEE Transaction on Knowledge and Data Engineering. Available as
technical report at:

 https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-47.pdf
[Jos02b] J. B. D. Joshi, Elisa Bertino, Arif Ghafoor, “Temporal hierarchies and inheritance

semantics for GTRBAC”, In proceedings of 7th ACM Symposium on Access Control
Models and Technologies, June 2002

[Kah02] M. A. Al-Kahtani, R. Sandhu, “A Model for Attribute-Based User-Role Assignment”, In
proceedings of 18th Annual Computer Security Applications Conference, Las Vegas,
Nevada, December 2002.

[Ker03] A. Kern, A. Schaad, J. Moffett, “An administration concept for the enterprise role-based
access control model”, In proceedings of 8th ACM Symposium on Access Control
Models and Technologies, June 2003

[Oh02] S. Oh, R. Sandhu, “A model for role administration using organization structure”, In
proceedings of the seventh ACM symposium on Access control models and technologies,
June 2002.

[Osb00] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary Access Control Policies,” ACM Transactions on
Information and System Security, Vol. 3, No. 2, February 2000, pp. 85-106.

[San96] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role Based Access Control
Models”, IEEE Computer Vol. 29, No 2, February 1996.

[San99] R. Sandhu and Q. Munawer. The ARBAC99 model for administration of roles. In
Proceedings of the 15th Annual Computer Security Applications Conference, Dec 1999.

[URLi] Overview of Enterprise Computing
http://faculty.washington.edu/jtenenbg/courses/455/s02/sessions/ec_overview.ppt

[URLj] XACML 1.0 Specification
http://xml.coverpages.org/ni2003-02-11-a.html

http://portal.acm.org/toc.cfm?id=J789&type=periodical&coll=portal&dl=ACM&CFID=5873549&CFTOKEN=90303084
http://portal.acm.org/toc.cfm?id=J789&type=periodical&coll=portal&dl=ACM&CFID=5873549&CFTOKEN=90303084
http://portal.acm.org/toc.cfm?id=581271&type=issue&coll=portal&dl=ACM&CFID=5873549&CFTOKEN=90303084
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2003-27.pdf
http://portal.acm.org/toc.cfm?id=J789&type=periodical&coll=Portal&dl=Portal&CFID=4274248&CFTOKEN=12265029
http://portal.acm.org/toc.cfm?id=J789&type=periodical&coll=Portal&dl=Portal&CFID=4274248&CFTOKEN=12265029
http://portal.acm.org/toc.cfm?id=501978&type=issue&coll=Portal&dl=Portal&CFID=4274248&CFTOKEN=12265029
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-47.pdf
http://faculty.washington.edu/jtenenbg/courses/455/s02/sessions/ec_overview.ppt
http://faculty.washington.edu/jtenenbg/courses/455/s02/sessions/ec_overview.ppt
http://xml.coverpages.org/ni2003-02-11-a.html

