
CERIAS Tech Report 2004-27

AN ANALYSIS OF PROPOSED ATTACKS AGAINST GENUINITY TESTS

by Rick Kennell and Leah H. Jamieson

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



An analysis of proposed attacks against genuinity tests

Rick Kennell and Leah H. Jamieson

Purdue University, School of Electrical and Computer Engineering

August 9, 2004

Abstract

A number of attacks have been proposed against the idea

of a genuinity test. The rationale for these attacks is based

on misinterpretation of published details about this sys-

tem. We correct these misunderstandings by providing

a detailed analysis and contradictory evidence for each

claim.

1 Introduction

We proposed the notion of a genuinity test [3] to pro-

vide a means of discerning whether or not a distant

computer system consists of real hardware running an

expected software environment. The basic mechanism

used in such a test involves a software hash that evalu-

ates memory contents while it incorporates architectural

meta-information expected to be found for a real micro-

processor of a specific type. A separate evaluator, called

an Authority, can generate unique testcases and use each

one to challenge a remote system, called an Entity, to as-

certain its genuinity. Upon passing this test in a timely

manner, the Entity remains under the supervisory control

of the Authority.

While the general idea of a genuinity test is applica-

ble to many types of high-performance microprocessors,

we illustrated the development of a testcase for a spe-

cific type of microprocessor as an example. We deliber-

ately chose a low-performance processor—specifically, a

non-MMX Intel Pentium—in order to demonstrate the

resilience of the method to brute-force simulation and

similar attacks. The genuinity test that we illustrated was

randomly generated by an Authority system. It resulted

from a number of guidelines used in the construction of

the Authority’s test generator. This example was not nec-

essarily the only form of genuinity test possible for the

target microprocessor, nor was it optimal.

A sufficient amount of architectural meta-information

must be incorporated into the genuinity test in order to it

to provide a meaningful result. Central to the idea of test-

case development is the necessity for concrete evidence

that the code being evaluated is presently the code being

run. Without such an indication, no guarantees can be

made about the state of the system since proper termi-

nation of the testcase would not mandate the subsequent

execution of trustworthy software. The need for this type

of evidence is the first reason to rely on microarchitec-

tural meta-information. A second reason is to ensure that

the entire system is not simply running wholly within the

context of some form of simulator. Because of the in-

trinsic parallelism of many microarchitectural features,

simulation is necessarily slower than native execution.

A number of attacks against the example implemen-

tation which we described have been proposed. It is

clear that since our implementation is not the sole way

to construct a genuinity test for the architecture in ques-

tion some improvements may eventually be needed. Nev-

ertheless, we find that the attacks as described for the

example implementation cannot succeed, and additional

negative claims made about the security of our proposed

system, in general, are demonstrably false.

This report is organized as follows: In Section 2, we

consider the deficiencies of the example implementation

proposed by Seshadri, Perrig, van Doorn and Khosla re-

lated to their development of SWATT [4]. In Section 3,

we examine the attacks proposed by Shankar, Chew and

Tygar [5]. We summarize this report in Section 4.

2 Deficiencies proposed in the descrip-

tion of SWATT

Seshadri et al proposed a technique useful for software-

based attestation (SWATT) of the correct contents of a

1



region of memory found in a device with an embedded

processor. Their method is similar to ours in the sense

that a pseudo-random traversal of memory is used to

build a hash to indicate the contents of memory. Because

this method is intended for embedded devices, where the

availability of meta-information is rare, it is applicable to

more types of systems than ours. They employ tight tim-

ing bounds to ensure that the program running to perform

the attestation has not been tampered with. However,

they do not consider the use of a network for transport

of the attestation results.

In comparison to their system, the authors point out

two deficiencies with our approach:

• The act of sending a challenge testcase in the form

of executable code “introduces vulnerabilities due

to the threats of mobile code.”

• The technique “suffers from a security vulnerabil-

ity that enables an attacker to change an arbitrary

number of memory locations and remain undetected

with a 50% vulnerability.”

As we describe, at the end of Section 3 of [3], the first

vulnerability is mitigated by the use of a public key em-

bedded in the kernel of the Entity. Since we assume that

the initial kernel is obtained from the Authority, the Au-

thority can use the corresponding private key to sign a

challenge before sending it to the Entity. This allows

the Entity to discriminate against invalid challenges by

checking that the test code is properly signed by the Au-

thority. We give more information about detecting and

overcoming denial of service attacks in Section 3.3.

The second criticism is overstated since the attack they

describe involves only the manipulation of the most-

significant bit of 32-bit words in the evaluated memory.

The authors claim this deficiency comes as a result of our

checksum algorithm reading 32-bit words. However, we

state that our checksum algorithm reads bytes from mem-

ory and incorporates them into a 32-bit checksum value

(Section 5.3, point 7 of [3]). Therefore, it is not subject

to the described vulnerability.

The authors acknowledge in the description of their

own technique that the final word has not been writ-

ten about the best way to structure hash algorithms for

purposes that we have each considered. Our own tech-

nique is not wedded to one particular implementation of

checksum algorithm, and we look forward to seeing more

defining work in this area.

3 Attacks proposed by Shankar, Chew

and Tygar

Shankar et al (referred to hereafter as simply, “the au-

thors”) have proposed attacks [5] against the example

implementation of a genuinity test for the Pentium that

we described. They make a number of claims which we

summarize as follows:

1. A substitution attack is possible against our de-

scribed implementation as well as a broad class of

genuinity tests in general.

2. Testing the genuinity of a system is practically in-

feasible due to the lack of precise architectural

meta-information.

3. Denial of service attacks can be efficiently launched

against either an Entity or an Authority.

4. Our technique is not sufficient to prevent adversaries

from attacking protocols such as NFS.

5. We are promoting the use of genuinity tests for

software-only systems (independently of hardware).

We show each of these claims to be false. The basis

for each claim is a result of several misunderstandings of

the authors including:

• Neglecting to follow development guidelines in

construction of a genuinity test.

• Invalid attempts to apply specific nuances of an ex-

ample testcase that was generated for a specific mi-

croprocessor to a general class of microprocessors.

• Misunderstandings with respect to crucial microar-

chitectural concepts.

The authors acknowledge that our described exam-

ple was generated for a non-MMX Pentium processor.

However, since they did not have ready access to such

a system on which to evaluate their attacks, they used a

Pentium-4—a very different type of microprocessor—to

evaluate such a test. In so doing, they discounted the

architectural artifacts that were different without taking

advantage of the newer features that would have made

the test more resilient to attack.

2



3.1 Substitution attacks do not work

A substitution attack involves replacing the genuinity test

code so as to compute the correct result while hiding the

indications that the code has been modified. The goal

is such that, at the conclusion of the test, the Authority

will believe that the Entity is genuine although it will be

running the imposter code. Although the authors did not

indicate how the imposter code was to be inserted into

the testcase, we can assume that it would have to be ei-

ther implanted while in transit over the network, or in-

strumented in situ on the target Entity.

The authors point out that it is important for the at-

tack code to avoid loading values from or storing val-

ues to memory. Doing so would affect the state of hard-

to-simulate meta-information sources such as the DTLB.

Furthermore, since the ITLB will detect large-scale pro-

gram deviations involving multiple pages, it is necessary

to constrain the attack code within the page allocated

to the testcase. To do so they suggest a clever scheme

that replaces the code that normally interrogates the state

of the instruction cache with expanded code (within the

same virtual page) that covers over its own existence with

only a small runtime expansion. When the code is in-

voked, if an inquiry is being made about the region it

resides in, it detects and corrects for the situation using a

series of branches and immediate loads.

Five problems exist with this approach:

1. Although the quoted time expansion, alone, may

still fall within the Authority’s deadline, it does not

include the time necessary to extract the testcase

from the network, analyze the testcase, find the ap-

propriate place(s) to insert the attack code, repack-

age the testcase in such a manner so as to forge the

Authority’s signature (discussed previously in Sec-

tion 2), and re-send the test to the Entity. Even if the

attack was performed in situ on the target Entity, the

analysis required to determine the multiple points to

re-instrument the code would require a long period

of time. Because every genuinity test consists of a

unique arrangement of code, these steps are always

necessary to initiate a substitution test. These delays

were not considered by the authors.

2. The fact that the genuinity test illustrated in our ex-

ample had only 22 nodes, only one of which inter-

rogated the caches, was simply an artifact of the

random generation process of the Authority. Test-

cases are readily generated with fewer or many more

nodes. A test may also have multiple cache interro-

gation nodes. Generally, it is desirable to generate

tests in such a manner that they completely fill the

pages that they reside in. Doing so complicates the

necessary analysis to find insertion points for the

imposter code. It also makes it more difficult for

an attacker to determine how the imposter code can

repair the damage created by its own presence.

3. Both the signed copy of the test sent over the net-

work and the in-kernel public key can be exposed to

the memory checksum, resulting in a further broad-

ening of necessary attack code exclusions. For this

reason alone, it is doubtful that a remote substitu-

tion attack is possible due to the limited memory

constraints of the test environment.

4. The ability for an attacker to augment or diminish

the core genuinity test would violate our stated prin-

ciple that there must be some evidence that the code

being tested was actually being run. Because this

attack was implemented on a Pentium-4, the ap-

propriate meta-information would have been differ-

ent than the ones described in our example. How-

ever, the authors chose to limit the utilized meta-

information sources to only the ITLB miss count

and branch count, thereby allowing an imposter to

be inserted and run anywhere on the memory page

used for the test. The code that the authors attacked

did not constitute a complete genuinity test.

5. Had this Pentium-specific example been run and at-

tacked on a Pentium, the instruction cache, by virtue

of the fact that it is a complex indicator of what is

being run, would have still exposed the presence of

introduced attack code.

We expand on the last item. To do so we must explain

the function of the Pentium instruction cache in detail.

The Pentium icache is arranged as sets of two 32-byte

lines. When an instruction is to be fetched, its address

is divided by the line size, and the lower bits of the re-

sult are used as an index into one of the sets. Each line

includes an extra bit to indicate whether it is in a valid

or invalid state as well as a tag that contains the remain-

ing upper bits of the address that were not used for the

set index. If the tag bits of one line match those of the

3



fetched address, the cache access is a hit, and the fetch

completes quickly. Otherwise, the fetch must be satisfied

with a memory request, and one of the two lines of the

appropriate set must be replaced with a valid entry. One

additional bit per set keeps track of which of the two lines

is the newest so that, in the case that both lines are valid

when a replacement is needed, the older of the two will

be replaced. We referred to this bit as the Least Recently

Used (LRU) indicator.

The testability registers for the Pentium [1] allow a

program to issue a request to directly examine the con-

tents of a given line. To do so, the set index, the 1-bit

line selector, and the 3-bit buffer offset are placed into

the appropriate testability register to instruct the proces-

sor to interrogate the cache. Thereafter, a second testa-

bility register contains a 32-bit portion of the line at the

selected offset. A third testability register contains the

address tag for the selected line as well as the one bit

LRU indicator and valid flags for the set.

We specified that the appropriate testcase node of our

example implementation extracted the tag and replace-

ment data from the icache1. The icache set and line

were selected using the running checksum value at the

time. This raw meta-information source was, like all

other sources, incorporated into the checksum using a

32-bit XOR operation. This information changes dynam-

ically; it is not invariant, as the authors suggest.

The authors of the substitution attack discounted this

fact and instead described an attack where the memory

data of an icache line was incorporated into the check-

sum. It is important to recognize that such an operation

provides no more information to the genuinity test than

does the customary summing of bytes. Nevertheless, an

inserted attack would still be required to maintain enough

state to keep track of the LRU bit as well as which lines

were currently present in the cache set corresponding to

the replaced cache set.

To describe this situation, consider a testcase consist-

ing of a number of nodes which branched to each other in

a pseudo-random fashion. If the testcase were arranged

so that each node mapped to the same icache set, there

would always be a question of which two cache blocks

were present in the cache as well as which way the LRU

indicator was set. In the case of limited cache associativ-

ity, it is also possible to occasionally jump to trampolines

1Actually, the node in question also interrogated the dcache in a

similar manner. This does not affect the nature of the attack.

embedded in kernel pages to create additional contention

for a given icache set. At minimum, this would require

a substitution attack to keep track of enough bits to rep-

resent the LRU and encode all the possible variations of

two-line combinations in the icache set.

By requiring an attacker to keep track of state, it means

that all code sections that affect that state must also be

instrumented with imposter code. As the problem un-

folds the required solution approaches simulation. Sim-

ulation of implicitly parallel microarchitectural features

is inevitably slow. Furthermore, it raises the question of

where to save the state needed for the simulation. We

consider this further in Section 3.1.2.

It is worth noting here that a genuinity test where all

nodes caused contention in one icache block would be

slow—possibly slow enough that brute-force simulation

on a faster system would become feasible. Because of

this, it is important that the arrangement of the testcase

only occasionally execute certain nodes in order to limit

the number of cache misses to a reasonable level but still

cause enough runtime ambiguity regarding the current

contents of the icache. A pseudo-randomly directed test-

case can use biases to avoid the excessive invocation of

certain testcase nodes.

3.1.1 Two-page substitution attacks do not work

Another attack similar to the basic substitution attack in-

volves replacing a previously zero-filled page with im-

poster code that is invoked as needed. Since this attack

will execute code found on an entirely different page, an

assumption is made that the ITLB misses will be cor-

rected by the imposter code.

A number of technical errors exist in the description of

this attack:

1. The authors incorrectly state that the Pentium has a

48-entry, fully-associative ITLB. We are not aware

of any x86 microprocessor with such an ITLB con-

figuration. The Pentium has a 32-entry, 4-way set-

associative ITLB [1].

2. The authors assume that it will be possible to run the

test in advance to determine how and when its ITLB

miss count will stabilize. This assumes that 22-

nodes of a genuinity test (plus 22 imposter nodes)

will be used with a 48-entry ITLB. This implies that,

in addition to all of the delays involved with ana-

lyzing and modifying the uniquely-generated test,

4



this attack also requires a first run to characterize

the ITLB fill pattern. Even using a much faster ex-

ecution host, this will certainly miss the Authority’s

deadline. In reality a 22-node testcase would not be

appropriate for a 48-entry, fully-associative ITLB.

There must always be more nodes in the genuin-

ity test than the associativity of the ITLB in order

to avoid reaching a steady-state condition. If not,

the miss count is worthless as an execution meta-

information source. Simulation of the ITLB (in-

cluding full 4-way pseudo-LRU evaluation) is nec-

essary for a two-page substitution attack.

3. The authors assume that the testability registers can

be used to insert values into the icache in order to

mimic the natural effects. Artificial insertion of val-

ues into the icache of a running system would be

likely to eventually replace a line that was currently

being executed. This could cause the flow of execu-

tion to be changed in a manner that would undo the

imposter’s intent. It might also cause the processor

to halt because of illegal instructions if it fetched a

new cache line while that line was being updated.

Furthermore, this approach also does not obviate

the need for the same icache replacement simulation

as would be required for the single-page version.

There must be some stored state to indicate what

configuration the icache should be in under natural

circumstances.

3.1.2 The hopelessness of other substitution attacks

As the complexity of a proposed substitution attack in-

creases, so does the need for simulation. Although the

problem of simulation latency may be mitigated by us-

ing a faster processor implementation, it does not address

how or where to store the additional simulated state. For

instance, full simulation of a single Pentium cache set

requires the storage of two ’valid’ bits, one LRU bit and

two 20-bit address tags. Although the additional required

state could be reduced by symbolically encoding all pos-

sible line states for the set, it would still require storage

and manipulation of a few bits. Even more bits would be

required for simulation of a mechanism such as a TLB

set because of the higher associativity.

Storage of the values in memory would lead to either

corruption of (or full simulation of) the DTLB which has

already been identified as a difficult problem. The x86

architecture has a very constrained register set, so find-

ing space to store and manipulate values there requires

a careful, efficient encoding. Even for an architecture

with more registers, a mechanism to detect such an at-

tack would be easily incorporated into a genuinity test by

simply initializing all extra registers, using them for tem-

porary storage of intermediate values, and occasionally

incorporating them into the memory checksum.

We note that even normal genuinity tests use a hidden

bit of storage (for instance, in one of the x86 debug regis-

ters) to indicate whether the running test should be used

only to generate results for a test without subsequently

jumping into secure operation. It is possible to preserve

some such storage without allowing its illicit use to pro-

liferate.

The authors claim that the problem of augmenting

their attacks to be able to work against additional mea-

sures such as self-modifying code and dynamically-

varying performance counters does not seem insur-

mountable. However, these attacks would also require

additional state, much more aggressive analysis, and fur-

ther instrumentation of code unrelated to the imposter.

Simulation becomes the only mechanism likely to suc-

ceed.

Finally, although the authors show how to cleverly im-

plement imposter code that avoids the use of memory ac-

cesses, additional branches are introduced into the flow

of execution. Such branches will have an impact on the

branch predictor and this will have a subsequent impact

on other processor subsystems due to the entanglement

of meta-information discussed in the next section.

3.2 Obtaining meta-information is possible

The authors of the attacks make several claims that the

meta-information sources found on the Pentium, as well

as other processors, do not produce deterministic values

and are therefore unacceptable for incorporation into a

genuinity test. Intuitively, this is a difficult notion to ac-

cept since the internal state of a microprocessor is finite.

At some level, its entire operation must be determinis-

tic. While we readily grant that certain operations of the

processor may vary according to unpredictable delays in

execution (e.g. dynamic memory refresh contention), as

long as processor decisions are not based on these val-

ues, operation will remain predictable. A case in point

is our use of a timestamp counter to generate a random,

or at least unpredictable, value due to timing variations

5



introduced by the memory subsystem. As long as no de-

cisions are made based on this value, it should not affect

the operation of the processor.

Ostensibly, internal race-conditions that exist within a

complex speculative processor are similarly determinis-

tic. Given two identical processors with equivalent state,

running the same code, with the same memory contents,

one would have every expectation that they will produce

the same values. Often there is some difficulty in forc-

ing a particular processor into a deterministic state. This

situation requires some investigation in order to find the

correct manner of doing so. For instance, for the Pen-

tium, simply invalidating the caches and TLBs does not

necessarily force all of their LRU information into the

same state each time. However, some post-processing in-

struction sequences can be executed reasonably quickly

that will produce a definite start state.

Another difficulty in using these meta-information

sources lies in the possibility of predicting their values

using a simulator. Certainly, the simulator must match

the full functionality of the processor, but this is tedious,

time consuming, and, very often, difficult because of un-

documented corner cases and processor implementation

bugs. Because some subsystems affect others, the nec-

essary complexity of the simulator often grows to an un-

manageable level. For instance, the branch predictor of a

processor indirectly affects the ITLB since mispredicted

branches cause the wrong line (from the wrong page of

memory) to be fetched. Even though the ITLB miss

count may be preserved, low-level access to the ITLB

may still show the effects. In the case of the Pentium, it

is easy to initialize the branch predictor to a certain state.

However, incorporating branch prediction functionality

into a simulator proved to be harder than it was worth.

In order to be able to legitimately compare an example

of such a test to a simulator, we instead used a genuinity

test for which branch prediction was disabled. For most

purposes, in order to avoid the need to create precise,

high-performance simulators, we advocate using native

calculation of the testcase results.

Finally, we must also consider trends in future mi-

croprocessors in order to anticipate different sources of

meta-information. Although it is possible to envision a

microprocessor for which no execution meta-information

is made available, in reality it will always be obtain-

able. For instance, a mispredicted branch will always

take longer than a correctly predicted branch. Further-

more, as architectural complexity increases, there is a

growing need to use internal information sources simply

as an indication of whether or not a processor is function-

ing correctly. This was the case even with the Pentium

and was the motivation for creation of the testability reg-

isters. There are many undisclosed and undocumented

sources of meta-information hidden in other micropro-

cessors as well.

3.3 Avoiding denial of service attacks

The authors claim that denial of service attacks are eas-

ily mounted against the unchecked Entity as well as the

Authority. We contend that such attacks are not as effi-

cient as the authors claim and that the ones which may

be successful occur in pathological circumstances where

most other network services would fail as well. In any

case, behavior of our system in the presence of denial of

service is always fail-stop.

3.3.1 The Entity can resist DoS attacks

The proposed DoS attack against the Entity involves an

attacker that waits for an Entity to request a challenge

from an Authority. While the Entity computes the result,

the attacker sends invalid responses to the Authority dis-

guised to look as though they were sent by the Entity. The

goal is to get the Authority to send refusals to the real En-

tity in order to prevent it from making forward progress

in establishing a relationship with the Authority. How-

ever, such an attack is easily detected by the Authority

since multiple responses from the same Entity indicate

the presence of an adversary. The Authority must record

the time that each response packet is received. However,

it can accumulate the responses and simply defer evalu-

ation until some reasonable time has elapsed. Each re-

sponse can be evaluated to determine if any one of them

is correct and received before the appropriate deadline.

The Authority sends a “qualification” packet to the En-

tity (and, likely, the adversary as well) that carries no in-

formation other than an indication that the Authority is

ready to negotiate a key exchange. Only the Entity that

has passed the genuinity test will be able to respond to

the Authority correctly. Subsequent attempts by the at-

tacker to send invalid data for the key exchange will also

be detected.

6



3.3.2 DoS attacks against the Authority are hard

The proposed DoS attack against the Authority rests on

the assumption that computation of the correct check-

sum value for a particular uniquely-generated genuinity

test must always be performed by the Authority using a

simulator. However, we did describe (in Section 5.2 of

[3]) a way of precomputing testcase results natively us-

ing systems under the direction of the Authority that are

already known to be genuine. Without the availability

of a simulator there is naturally some challenge in get-

ting the Authority’s testcase generator bootstrapped for

each of the supported architectures. We can accomplish

this by forcing the Authority to trust a known-good sys-

tem that is physically secure in order to generate initial

testcase results. Once other Entities are known by the

Authority to be genuine, they can each be instructed not

only to compute testcase results but to generate the test-

cases as well, allowing the Authority to off-load much of

its work. While testcases can be constructed during reg-

ular operation of the Entity, the evaluation of that test-

case must be done with interrupts temporarily turned off.

From the perspective of a user, this would appear to be a

short pause. It is best to avoid doing this to non-idle Enti-

ties with interactive users. Evaluation of testcases on ei-

ther idle Entities or non-idle Entities with non-interactive

use would not cause a perceptible problem. Groups of

known-genuine Entities can thereby generate new test-

cases much faster than a single Entity can use them.

A number of policies can be constructed to prevent the

Authority from depleting its supply of testcases for a par-

ticular architecture. First, it is reasonable to expect that

an Entity that fails a genuinity test be denied additional

attempts for a progressively longer period of time. In-

deed, at some point, multiple failures from a given IP

address (or group of IP addresses) are more likely an in-

dicator of either an attempted attack or a general failure

of the system. Second, it would be reasonable for an

Authority to maintain jurisdiction over zones of IP ad-

dresses from which it might expect requests for genuinity

test challenges rather than serving as a global Authority.

3.4 Appropriateness for securing network pro-

tocols

The authors suggest that our proposed system would not

be suitable for a number of network-based applications.

AIM clients are mentioned in this category; we address

this matter in Section 3.5. Our primary practical exam-

ple was the discussion of how to allow remote systems

to act as NFS clients. We now repeat this example in or-

der to eliminate misunderstandings of how the system is

intended to work.

3.4.1 Genuine entities can act as reliable NFS clients

Our example involves Alice, a scrupulous system admin-

istrator, who tends to the needs of a number of adversar-

ial client users. Among them are Bob, a hard-working

NFS user, and Mallory, a thief. Bob would like to use

a collection of remote computer systems (which Alice

does not maintain) for the purpose of performing a large,

distributed computation. Bob requires that these systems

have access to Alice’s NFS server. Mallory would like to

subvert one or more of the NFS clients in order to gain

access to Bob’s data. For the sake of example, we might

even assume that the machines are physically accessible

to Mallory.

Alice begins by setting up an Authority system that

will create and dispense genuinity tests. The remote En-

tities, running without the use of their local disks (as we

describe in Section 5 of [3]), will not be subject to ei-

ther the configuration of their local administrator, nor are

they expected to be modifiable by Mallory. Each Entity

requests, evaluates and passes a genuinity test. They re-

main under the administrative control of the Authority

(and, transitively, Alice). Thereafter, each Entity negoti-

ates with the Authority to perform a key exchange after

which they can communicate securely with each other.

In particular, they also negotiate IPsec keys for trans-

parent encrypted and authenticated encapsulation of net-

work packets. If we assume the Authority is the NFSv3

server, the Entities can then be trusted to mount its NFS

exports. The Entities are known to be trustworthy, the

server is assumed to be trustworthy, and the network

transport is secure. Some additional negotiations are re-

quired to allow the Authority to enable a peer NFS server

to use IPsec encapsulation between itself and the Entities

which the Authority has found to be genuine.

Bob is allowed to remotely log in to the systems which

are running under the administrative control of Alice’s

Authority. This may be done by either manually creating

local accounts or using a network authentication mech-

anism such as LDAP. Mallory might even be allowed to

log in as well, either remotely or on the console. The

usual Unix file permission mechanism applies to the gen-

7



uine Entities as well as it does for any known physically-

secure system. In order for Mallory to subvert a known-

genuine Entity, it would be necessary to physically attack

the system via its memory bus. We discuss weaknesses

such as this in Section 4.3 of [3].

To further clarify the situation, we correct some of the

authors’ misunderstandings. First, neither Bob nor Mal-

lory act as administrators of the remote Entities and can-

not misconfigure the systems. They are all under the ad-

ministrative control of Alice’s Authority. This means that

the Authority will instruct the Entity as to what filesys-

tems to mount at boot, what peripherals it should use and

what daemons it will run. We also reasonably assume

that Alice knows what she’s doing. Second, using NFSv4

instead of NFSv3 does nothing to augment (or diminish)

the security of the system. The negotiated IPsec encap-

sulation ensures that the file system transport is secure

as well as any distributed user authentication system that

Alice puts in place.

The authors correctly point out that our system was

not designed to address user authentication. Genuinity

of computer systems is an orthogonal issue with respect

to authentication in the same sense that secure network

routing is orthogonal to user authentication. However, it

is possible for one to leverage the other to provide aug-

mented services.

The authors also astutely note that our system does not

ensure globally-unique identification of systems. Gen-

erally, this is unnecessary, so long as the Authority has

some reliable means of interacting with a known-genuine

Entity. For instance, a genuinity test and its subsequent

negotiations should be capable of transiting a firewall.

Finally, we note that NFSv4, although it is a desirable

extension to the NFS suite, would not serve as a singu-

lar solution to the particular problem we posed. If Alice

exported an NFSv4 share to a remote system for which

Bob had remote access and for which Mallory had root

access, all that Mallory would be required to do is wait

for Bob to log in, “change user” to Bob, and read and

modify anything. Even for modern credential systems

that we are aware of, user processes are generally equiv-

alent in capability in order to allow systems like “cron”

to function without requiring a password for filesystem

access. In any case, if Mallory is able to gain root access,

the system’s credential policies could be easily modified

as well.

3.4.2 Other network applications are possible

One application that we did not suggest that the authors

of the attacks did was the situation of a set-top box used

for brokered or distributed gaming. Since we show that

substitution attacks and several other forms of attack are

unlikely to be achievable, this scenario presents an ideal

opportunity for the use of a genuinity test. The reasons

for this are as follows:

• The full specifications of the hardware are known

in detail, thereby allowing the development of a

genuinity test that uses as many execution meta-

information sources as possible.

• The owner of such a system could select which

Authority would be of greatest use, enabling the

development of a market structure whereby game

providers (or other service providers) could com-

pete for clients.

• Because the system would not rely on internal

hardware-based trusted secrets, it could still be used

for general purpose tasks when the original ser-

vice provider eventually drops support. Meanwhile,

other systems that rely on an internal hardware-

enforced trusted computing base (such as the Xbox)

are doomed to extinction once their support ends

since there will be no one to sign software that will

run on them.

The authors propose various attacks against such hard-

ware involving several forms of direct interrogation of

hardware to discover a negotiated key. We also men-

tioned this in our description of attacks as being the most

likely means of breaking in to a known-genuine Entity.

The authors suggest that an attack of this nature would

be easily mounted by use of an ordinary bus-mastering

I/O card. However, it is unlikely that a secret would be

stored in a location mapped into available I/O space. A

memory bus attack is a more viable approach. Neverthe-

less, such an attack would be complicated because the

hardware needed to snoop the memory bus is not readily

available, hard to build, and difficult to use. Furthermore,

the location of the key could be obfuscated by the system,

and active techniques could be employed to avoid leaking

secret cache values to the external memory bus.

One illustrated attack on a memory bus [2] involved a

system that used trusted hardware to hold a secret key.

8



Once the complexity of building the memory snooping

system was overcome, this attack was somewhat sim-

pler than an attack on a general purpose system because

the bus transactions involving the key were easily iden-

tified. After the secret key was discovered by snooping

the memory bus on one system, it (and all other systems

like it) could be modified and exploited relatively easily

since they all used the same secret key.

By contrast, since our method does not involve static

keys in hardware, compromise of one system does not

imply a compromise of all systems. Furthermore, the

only way to leverage one compromised system to ex-

ploit others would be to set up an infrastructure as the

authors suggest with their economic attack. A primary

recommendation of the work presented in [2] was that

all chip-to-chip busses of the system should be dynami-

cally encrypted. In a set-top box scenario, such a mech-

anism could actually be implemented without risk of

backwards-incompatibility with other systems, and this

threat, as well as the remaining possible hardware at-

tacks we illustrated in Section 4.3 of [3], are eliminated.

Note that memory bus encryption can and should be done

without the need for static stored secrets in the hardware

in order to avoid the problems of vendor lock-in and ob-

solescence pointed out above.

3.5 Software-only systems are not the subject of

genuinity tests

The authors claim that we described our system to fill a

need in authenticating software systems. Indeed, the title

of their paper seems to promulgate this misunderstand-

ing. In particular, they claim that we proposed our sys-

tem to be used for authenticating AOL Instant Messenger

(AIM) clients. We did refer to AIM as an example of a

failed form of software-only attestation. We did not and

do not claim that a genuinity test can serve as a discrimi-

nator of software alone. Although a known-genuine sys-

tem (hardware and software) could be used to ensure that

an arbitrary user did not invoke an illegitimate form of

software, this is not the type of problem we are attempt-

ing to solve.

4 Summary

We have shown how the attacks and deficiencies de-

scribed in [4] and [5] are not sufficient to defeat systems

that use genuinity tests. Our proposal stands as a poten-

tial method of creating remote trusted computing systems

in a variety of applications, although much work remains

to be done in evaluating different architectures and test-

ing deployments of the system.

Because our system differs substantially from previ-

ously proposed solutions for trusted computing environ-

ments, some misunderstandings are not unexpected. In

particular, a typical argument for or against using a gen-

uinity test comes down to a basic question:

• When a trusted remote system is required for an ap-

plication, which is easiest to do? Add a hardware-

based mechanism for sealed storage of secrets and

software attestation that can be useful for establish-

ing identity of a system? Or exploit the nuances

of existing microprocessors to determine whether or

not they are real and running an expected software

environment?

Because we find evidence indicating that trusted sys-

tems can be built using existing microprocessors, we are

motivated to pursue the latter course as being the more

general solution.

References

[1] Intel Corporation. Embedded Pentium Processor Family

Developer’s Manual, volume 1. 1998.

[2] Andrew Huang. Keeping Secrets in Hardware: The Mi-

crosoft Xbox Case Study. In Proceedings of CHES2002.

Springer-Verlag, August 2002.

[3] R. Kennell and L. H. Jamieson. Establishing the Genuinity

of Remote Computer Systems. In Proceedings of the 12th

USENIX Security Symposium, pages 295–310. USENIX

Association, August 2003.

[4] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.

Swatt: Software-based attestation for embedded devices.

In IEEE Symposium on Security and Privacy. IEEE, 2004.

[5] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not

sufficient to authenticate software. In Proceedings of the

13th USENIX Security Symposium. USENIX Association,

August 2004.

9


