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Abstract

We give the first solution to the problem of access control in an arbitrary n-node hierarchy G

(e.g., RBAC) where all of the following hold: (i) only hash functions are used for a node to derive
a descendant’s key from its own key, as opposed to the use of RSA public-key cryptography in
many previous schemes (which requires slow modular exponentiations); (ii) the space complexity
of the public information is the same as that of storing graph G (which is asymptotically
optimal), as opposed to the quadratic space complexity of some other schemes; (iii) the derivation
by a node of a descendant’s access key takes O(n) bit operations in the worst case, as opposed
to O(n2) bit operations in some of the previous schemes; (iv) updates are handled locally in
the hierarchy and do not “propagate” to descendants or ancestors of the affected part of the
tree; and (v) the scheme is resistant to collusion in that no subset of nodes can conspire to gain
access to any node that is not already a descendant of one of the conspirators (hence legally
accessible). Similar to a number of previous schemes, the private information at a node consists
of a single key associated with that node. The security of our scheme relies on the existence
of cryptographic one-way hash functions and the random oracle model. Another (more minor)
property of our scheme is that it does not require access graph G to be free of directed cycles.
We provide simple modifications to our scheme so it can handle Crampton’s extensions of the
standard hierarchies to “limited depth” and reverse inheritance [6].

1 Introduction

The problem of access control in a hierarchy is not new: it has been addressed in the prior literature
and became even more important after the development of Role-Based Access Control (RBAC)
models (i.e., see [7, 14] and all subsequent work). In this work we provide a new solution to this
problem which has advantages, over the previous work, that are subsequently listed in this section.

First of all, we consider an arbitrary hierarchy of access levels that can be modeled as a directed
graph. To the best of our knowledge, this is the first scheme that works for arbitrary access graphs —
even those that may contain cycles. When describing our scheme, we use a directed acyclic graph
(DAG) to model access graphs because normally access graphs are not expected to have cycles,
but the use of our scheme is not limited to DAGs. Throughout this paper we may also use RBAC
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as the most prominent example of our approach, even though the scheme is not limited to RBAC
models alone.

Another vital aspect of access control schemes is computational and storage space constraints re-
quired for key management and processing. It is clear that low computation and space requirements
allow a scheme to be used in a much wider spectrum of devices and applications than costly access
control schemes. For example, not only inexpensive smartcards, but also small battery-operated
sensors, embedded processors, and other kinds of computationally weak and memory-limited de-
vices can now carry out the required computations. Thus in order to make our scheme acceptable
for use with such weak clients, we do not use powerful cryptography but instead utilize only cryp-
tographic hashes. Throughout this paper, we use the word “smartcard” as a convenient shorthand
to refer to any such types of weak clients.

The scheme we propose is also optimal in terms of its storage space complexity. There is only one
key needed per access level (vertex) in the graph, to be stored at the client side. The server stores
information linear in the size of the representation of the access graph, which is asymptotically
optimal. Note that in order for any access scheme to work, the structure of the access graph must
be known (i.e., when a user that has privileges for access level ai is requesting an object stored at
level aj , the user should know the structure of the graph to determine whether and how his key
can be used to create a key for aj). In our scheme, along with storing the required structure, every
node and edge contains additional constant space data that is used for key generation.

Our scheme also achieves full resilience against collusion, meaning that no subset of nodes in
the access graph G can conspire to gain access to an object at a level to which they do not already
have access. An adversary could obtain such a subset of nodes if: i) it compromises more than one
smartcard or ii) it compromises a smartcard with multiple access levels. Even though the scheme
was mainly designed to be used with tamper-resistant smartcards, a number of prior publications
(see, e.g., [2, 3]) suggest that in some cases an attacker can obtain access to the contents of such
tamper-resistant cards, which adds a lot of value to collusion-resilient solutions. In addition, the
collusion-resilience of our scheme allows this approach to be used with other devices that do not
have tamper-resistance.

Our scheme supports dynamic changes such as insertion or deletion of a node or an edge, which
also allow nodes to be moved within the hierarchy. The scheme can also be easily extended to
cover access models that go beyond the traditional inheritance of privilege. More precisely, we give
extensions that enable normal as well as reverse inheritance in the graph (i.e., access to objects down
or up in the hierarchy) and also allow for fixed-depth inheritance. Such extensions are useful not
only in the context of other standard models such as Bell-LaPadula [4], but can also apply to RBAC
(e.g., reverse limited-depth inheritance permits an employee to have access to documents stored
at the level of the department of that employee). There extensions are modeled after Crampton’s
work [6] and do not increase the space or computational complexity of our scheme.

The rest of this paper is organized as follows: Section 2 provides an overview of related literature
and of our contributions. In section 3, we give a formal description of the problem and list our
notation. Section 4 presents our base model along with its security proofs. In sections 5 and 6 we
give description of dynamic versions of the model. Section 7 describes extensions to our scheme
that permit its usage with other access models given in [6]. Finally, section 8 concludes the paper.
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2 Related Work/Our Contributions

2.1 Related literature

Many previous schemes [1, 8, 9, 10, 11, 12, 15, 16] (as do ours) rely on the idea that an ancestor
can store only one key as long as there is a way in which it can derive the key at any one of its
descendants. We briefly describe some of the schemes below. In what follows n is the number of
nodes in G (it is not an RSA modulus – which we henceforth denote by pq rather than by n).

Most of the previous schemes that handle arbitrary hierarchies (i.e., are not restricted to trees)
[1, 11, 10, 9] not only use expensive crypto operations (modular exponentiations required by their
reliance on RSA) but, in addition, suffer from other inefficiencies that have a single root cause:
The fact that the schemes require each node x of G to contain (and dynamically maintain) a public
integer Ix that can grow to be O(n) bits long. This huge number Ix is intended for use in a division
followed by an exponentiation that are done when x derives, in what these papers call “direct
access”, the key ky of a node y that is a descendant of x in G. The way the Ix numbers grow so
huge is because each Ix is the product (not modular – the full, unreduced product) of a set Px of
secret primes associated with x, where Px is the union of all the Py’s such that y is an immediate
successor of x in G (these are different primes from the p and q of the RSA system they use). The
use of such O(n)-bit integers in these schemes has many bad consequences: It implies that the
storage space for the public information stored along with G has a worst-case complexity of O(n2)
bits; it implies that “direct access” is more expensive than the “one operation” that is claimed
in these papers: The division of two O(n)-bit integers takes O(n2) bit operations, resulting in an
O(n) bit integer that is used as the exponent in a modulo pq exponentiation (which takes time
O(n log(pq)) bit operations because the exponent cannot be reduced modulo (p− 1)(q − 1) because
p and q are not known to a node, although this cost is dominated by the above-mentioned O(n2)
bit operations for doing the division). In addition to the above-mentioned issues, these previous
techniques require very large constants that hide behind the “O” notation used an asymptotic
analysis. The fact that Px is the union of the Py’s of its successors is also what caused poor
performance in the face of updates: A change (e.g., an insertion with a new prime) had to be
reflected in every node on the path to the root, with changes occurring in both the private and
public information of those nodes on the path. In our case the changes will be “contained” locally
to where the modification (insertion or deletion) took place. Some of these previous schemes suffer
from many other drawbacks not directly related to the above discussion: For example, the key
generation in [12] depends (in the variable called c of the default key generation routine) on the
number of paths in G between ancestor-descendant pairs, which can be exponential in n.

Papers that use only hashing (and no expensive crypto such as modular exponentiation) either
restricted themselves to trees [15], or, in the case of [8], made a restrictive assumption that bounded
n to be a polynomial of the number of public bits stored at a node and were also unable to locally
“contain” the changes caused by insertions/deletions in G (i.e., a local change to G had long-range
effects elsewhere in G).

2.2 Sandhu’s Method

Because our method is an outgrowth of Sandhu’s [13, 15], we briefly review Sandhu’s approach.
Sandhu’s method is simple and elegant, and uses only one-way hash functions. It proceeds from
the root down to the leaves, repeatedly deriving a child’s key by combining its own name with its
parent’s key (via a one-way hash of them). Specifically:

1. The root gets assigned a random key.
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2. A child y of a node x, that has already been assigned a key kx, gets assigned as key ky =
H(y, kx) where H is a one-way hash function.

The method is limited to trees, but it is more efficient than subsequent methods at generating a
descendant’s key from an ancestor’s key because it follows a path from the latter to the former,
doing an inexpensive hash each hop along the way (and the number of hops is bounded by O(n)).
The previous subsection gave more details on how access keys are derived in a number of previous
RSA-based schemes.

2.3 Our Contributions

Our contribution is to achieve simultaneously better storage performance and better access per-
formance (see the itemized list below); our measure of access performance is the number of bit
operations needed to derive a descendant’s key, which we view as the correct measure of perfor-
mance (i.e., when the operands are n-bit numbers, it is erroneous to count – as some papers in the
literature do – the number of arithmetic operations as the performance metric).

More specifically, our solution has the following characteristics:

• Only hash functions are used for a node to derive a descendant’s key from its own key (as
opposed to the use of RSA public-key cryptography in a number of previous schemes). This
implies that the security of our scheme relies only on the existence of cryptographic one-way
hash functions along with the commonly assumed Random Oracle Model [5].

• The space complexity of the public information is the same as that of storing G and is asymp-
totically optimal, as opposed to the quadratic space complexity of many previous schemes
(space linear in G was previously known only for the special case when G is a tree [15]).

• The derivation by a node of a descendant node’s access key requires O(n) bit operations in
the worst case (as opposed to O(n2) bit operations in some of the previous schemes).

• Updates are handled locally in the hierarchy and do not “propagate” to descendants or
ancestors of the affected part of the tree. In the “top down” previous schemes such as [15, 8]
all the descendants of the modified node had to be updated, and in the “bottom up” schemes
such as [1, 11, 9, 10, 12] a change at a node x had to be reflected in every node on the path
from x to the root, with changes occurring in both the private and public information of those
nodes on the path.

• Our scheme is resistant to collusion in that no subset of nodes can conspire to gain access to
any node that is not already a descendant of one of the conspirators (hence legally accessible).

• The private information at a node consists of a single key associated with that node.

• Our scheme does not require G to be free of directed cycles, whereas previous schemes required
acyclicity. Although we do not see immediate applications to allowing cycles, because RBACs
and most other practical situations involve an acyclic G, it is intriguing that none of the
previous schemes could handle cycles, as they required as “starting points” nodes of zero
in-degree (for the “top down” schemes such as [15, 8]) or nodes of out-degree zero (for the
“bottom up” schemes such as [1, 11, 9, 10, 12]).

• We provide simple modifications to our scheme so it can handle Crampton’s extensions of the
standard hierarchies to “limited depth” and reverse inheritance [6]
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3 Problem Definition/Notation

3.1 Problem Definition

There is a directed access graph G = (V, E, O) s.t. V is a set of vertices V = {v1, . . ., vn} of
cardinality |V | = n, E is a set of edges E = {e1, . . ., em} of cardinality |E| = m, and O is a set
of objects O = {o1, . . ., ok} of cardinality |O| = k. Each vertex vi represents an access level in
the access hierarchy (e.g., G could be an RBAC graph of roles). Each access level vi has a set of
objects associated with it. Function O : V → 2O maps an access level to a unique set of objects
such that |O(vi)| ≥ 0 and ∀i∀j, O(vi) ∩ O(vj) = ∅ if i 6= j. (For the sake of brevity of exposition
we use notation Oi to mean O(vi).)

If there is a directed path in G from node vi to node vj , node vi is a ancestor of node vj, i.e.,
vi ∈ Anc(vj). In the access hierarchy, a path from node vi to node vj means that any subject that
can assume access rights at access level vi is also permitted to access any object at access level vj

such that o ∈ Oj . The function O∗ : V → 2O (we use O∗
i as a shorthand for O∗(vi)) maps an access

level vi ∈ V to a set of objects accessible to a subject at access level vi; the function is recursively
defined as O∗

i = (
⋃

vi∈Anc(vj)
O∗

j ) ∪ Oi. When the set of edges E is not essential to our current

discussion, we may omit it from the definition of the graph and use notation G = (V, O) instead.
Our goal is to define a key allocation mechanism that implements such an access graph, that is,

an assignment of keys to users and objects where a user can access an object iff he has a key for the
object. It is desirable to minimize the number of keys required to be held for an access level and
to minimize the number of keys assigned to an object. We now formally define the key allocation
policy.

Definition 1 Suppose we are given a key-space K. A key allocation, KA : V ∪ O → 2K, maps
objects and access levels to a subset of keys.

One of our techniques for improving the efficiency of our schemes is to compress an ancestor’s key
space by having its’ descendants keys be computable from one of their keys via a one-way function.

Definition 2 Given two keys k and k′, we say k generates k′, denoted by k
G
⇒ k′, iff there exists

a polynomial-time algorithm D such that D(k) = k ′. When there does not exist a Probabilistic
Polynomial Time algorithm that outputs k′ when given k with more than a negligible probability,

we say k
G
6⇒k′. Sometimes we allow these algorithms to have auxiliary information.

We are now ready to formally define what is meant by “implementing” an access control policy.

Definition 3 We say that a key allocation KA implements an access DAG G = (V,O) iff the
following two conditions are true:

1. Completeness: ∀(vi, oj) ∈ V × O∗
i ,∃(k, k′) ∈ KA(vi) × KA(oj) s.t. k

G
⇒ k′. In other words,

for every object that an access level has rights to access, that access level should be assigned
a key that can generate a key that is used to encrypt the object.

2. Soundness: ∀(vi, oj) ∈ V × O \ O∗
i ,∀(k, k′) ∈ KA(vi) × KA(oj), k

G
6⇒ k′. In other words, for

every object that an access level does not have rights to access, there is no key in that access
level key space that can be used to generate any of the keys used to encrypt the object.
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Definition 4 We say that a key allocation KA that implements an access DAG G = (V,O) is fully
collusion-resilient (or just collusion-resilient) iff for any set of attackers with access to levels V ′ =
vi1 , . . . , vir , where V ′ ⊂ V and 1 < r < n, we have that ∀(vij , oℓ) ∈ V ′ × O \

⋃
vij

∈V ′ O∗
ij

,∀(k, k′) ∈

KA(vij ) × KA(oℓ), k
G
6⇒ k′. In other words, collusion does not allow the coalition V ′ to produce

decryption keys for objects to which they did not already have access.

3.2 Notations

We now list some of our notations:

1. Given a directed graph G = (V,E), we define an ancestry function Anc(x,G) which is a set
such that y ∈ Anc(x,G) if there is a path from y to x in the graph G. In terms of access
control, y ∈ Anc(x,G) iff y inherits x’s attributes.

2. In a directed graph G = (V,E) we also define the set of descendants of node x as Desc(x,G),
where y ∈ Desc(x,G) if there is a path from x to y in G.

3. For a directed graph G = (V,E), we use a function Pred(x,G) to denote the set of immediate
predecessors of x in G, i.e., if y ∈ Pred(x,G) then there is a directed edge from y to x in G.
Similarly, we define Succ(x,G) to be the set of immediate successors of x in G.

4. When it is clear what graph we are discussing, we omit G from the notation and use instead
the shorthand notation Anc(x), Desc(x), Succ(x), and Pred(x).

5. We consider a node to be its own ancestor and descendant, but we do not consider it to be a
predecessor or successor of itself.

4 Base Scheme

This section describes a scheme in which every node has one key associated with it, the public
information is linear (rather than quadratic) in the size of the access DAG G, and a computation
by node v of a key that is ℓ levels below it can be done in O(ℓ) evaluations of a hash function. In
this section we focus on key allocations for a static access hierarchy. We describe our scheme in
Section 4.1 and then prove its security properties in Section 4.2. Extensions of this base scheme
are given in sections 5, 6, and 7.

4.1 Scheme

In this section we describe the static version of the scheme that does not include insertions or
deletions. We assume that we are given a cryptographic hash function H : {0, 1}⋆ → {0, 1}ρ.
Below we provide a description of the private key generation process and the nature of public
information stored at each node of the graph.

Private key Each vertex vi is assigned a random private key ki in {0, 1}ρ. An entity that is
assigned access levels V ′ ⊆ V is given a smartcard with all keys for their access levels vj ∈ V ′.

Public information For each vertex vi there is a unique label ℓi in {0, 1}ρ that is assigned to the
vertex. Also for each edge (vi, vj), the value yi,j = kj −H(ki, ℓj) mod ρ is stored publicly for
this edge.
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Example: We give an example of how the key allocation mechanism assigns keys to a graph that
is more complicated than a tree. Our sample graph is depicted in Figure 1, and we show two
examples regarding this figure. First, it is possible for the node with k1 to generate key k2. This
is because that node can compute H(k1, ℓ2) and use it, along with the public edge information, to
obtain k2. Similarly, the node with k3 cannot generate k2, since this would require inversion of the
H function.

ℓ1;k1

ℓ2;k2 ℓ3;k3

ℓ4;k4

�
�

�
��+

Q
Q

Q
QQs

Q
Q

Q
QQs

�
�

�
��+

k2 − H(k1, ℓ2) k3 − H(k1, ℓ3)

k4 − H(k2, ℓ4) k4 − H(k3, ℓ4)

Figure 1: Allocation for example access graph; all arithmetic is modulo ρ

4.2 Proof of Security

For the proof of our scheme we assume that H is a random oracle.

Theorem 1 The scheme described in Section 4.1 is complete.

Proof Suppose that a card has key ki corresponding to access level vi ∈ V . Also assume that
access to object oj at access level vj (i.e., oj ∈ O(vj)) is requested such that oj ∈ O∗

i . This means
that access to oj can be obtained using key kj and also there is a directed path in G from node vi

to vj . Then in order for vi to generate kj , vi sequentially processes every edge (vx, vy) on the path
between vi and vj .

Given an edge (vx, vy) for which both vx’s private key kx and the stored public information is
known, vi can generate vy’s private information ky (as the values ℓy and yx,y = ky−H(kx, ℓy) mod ρ

are in the public information, it is trivial to compute kj). Due to the sequential nature of key
generation on the path between vi and vj , vi will be able to derive keys of all necessary nodes and
produce key kj that will enable access to oj.

�

Theorem 2 The scheme described in Section 4.1 is sound, even in the presence of collusion.

Proof Suppose this is not the case, i.e., that there is a an adversary with vertex set A ⊂ V

that can obtain access to at least one object oj ∈ O \
⋃

vij
∈A O∗

ij
. This means that, if oj ∈ Oj ,

then the adversary can generate key kj and there is no direct path from any node in A to vj , i.e.,
Anc(vj) ∩ A = ∅. Let w be a vertex such that (i) oj ∈ O(w) and (ii) this property does not hold
for any of its ancestors, i.e., there is no object above w in the hierarchy to which the adversary can
gain unauthorized access. By the well ordering principle such a vertex w must exist. There are two
cases to consider: 1) w has no ancestors and 2) w has at least one ancestor.
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1. In this case the only public information about kw is the edges from w. Suppose Succ(w) =
{vs1

, . . . , vsm
}, then the public information will be ksi

− H(kw, ℓsi
) mod ρ, and in the worst

case the adversary could create a set of values of the form H(kw, ℓsi
). However, since H is a

random oracle, this reveals no information about kw.

2. In this case the public information that kw is the edges to and from w. Recall that w has
no ancestors for which the adversary knows the key. Suppose Pred(w) = {vp1

, . . . , vpn
}

and Succ(w) = {vs1
, . . . , vsm

}. The only public information about kw is of the form ksi
−

H(kw, ℓsi
) mod ρ or of the form kw − H(kpi

, ℓw) mod ρ. From Case (1) it is clear that the
first set of values is of no help to an adversary, however learning kw from the second group of
values requires that the adversary know kpi

, which is a contradiction to our assumption that
w has no ancestors for which the system is not sound.

In either case, the adversary cannot learn a node’s secret values unless it contains an access level
that is an ancestor of that vertex. This implies that the adversary cannot obtain the key to gain
access any unauthorized object oj ∈ O \

⋃
vij

∈A O∗
ij

.
�

5 Extension: Preliminary Dynamic Version

In this section we describe the way dynamic changes are handled in our base scheme. The types
of changes we consider are: insertion and deletion of an edge and insertion and deletion of a node.
Deletion of an edge is the only change that involves recarding (node deletion will result in recarding
as well, if it requires edge removal); more precisely, in this preliminary solution, there is recarding
of descendants of the node from which the edge is removed. We eliminate the problem of recarding
in the next section.

5.1 Insertion of an Edge

Suppose the edge (vi, vj) is inserted into G. Then we simply add yi,j = kj −H(ki, ℓj) mod ρ to the
description of G by attaching it to the edge (vi, vj).

5.2 Deletion of an Edge

Suppose the edge (vi, vj) is deleted from G. Then the following updates are done. For each node
vt ∈ Desc(vj , G), perform:

1. Replace key kt with a new arbitrary key k′
t.

2. For each edge (vp, vt) where vp ∈ Pred(vt), update the value of yp,t according to the new key
kt.

5.3 Insertion of a new node

If a new node u is inserted, together with new edges into it and new edges out of it, then we consider
this as happening in two stages:

• First, the creation of the node u without any edges touching it, which is trivial to do since
all it requires is generation of a random key ku for that node.

• Second, we add the edges one by one, using each time the procedure outlined above for
edge-insertions.
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5.4 Deletion of a node

If a node vi is deleted, together with all the edges that touch it, then we consider this as happening
in two stages:

• First, we delete the edges touching vi one by one, using each time the procedure outlined
above for edge-deletions.

• Second, now that vi has no edges touching it, removing it is trivial.

6 Extension: Better Dynamic Version, without Recarding

A downside to the previous scheme for dynamic changes to the access hierarchy is that the scheme
requires some access levels to be recarded (i.e., obtain new cards). In this section we introduce a
variation on the previous scheme that will allow up to t removals (these can be batched into groups
of removals) to the access hierarchy without having to recard any access level. After t removals
have been done, then the system will need to recard the users. However, t can be chosen such that
this even is unlikely to happen before the devices expire.

6.1 Modifications to our scheme

Our new scheme is as follows:

Private key Each vertex vi is assigned a random private key ki in {0, 1}ρ. An entity that is
assigned access levels V ′ ⊆ V is given a smartcard with all keys for their access levels vj ∈ V ′.

Public information For each vertex vi there is a unique label ℓi in {0, 1}ρ that is assigned to the
vertex. There is a revocation number P that is initialized to t. It is worth noting that the
key used to send things to an access level vi is HP (ki) (i.e., H applied P times to the value
ki) Also for each edge (vi, vj), the value yi,j = HP (kj)−H(ki, ℓj) mod ρ is stored publicly for
that edge.

Note that an alternative construction it to assign each node its own P value. In such a case we
would be able to allow t removals that effect each node. However, for simplicity we describe the
scheme with a single P value.

6.2 Insertion of an Edge

Suppose the edge (vi, vj) is inserted into G. Then we simply add yi,j = HP (kj) − H(ki, ℓj) mod ρ

to the description of G by attaching it to the edge (vi, vj).

6.3 Deletion of an Edge

Suppose the edge (vi, vj) is deleted from G. Then the following updates are done:

1. If P = 0, then the system must recard, otherwise proceed as follows:

2. Remove the edge (vi, vj).

3. For each edge (vx, vy) ∈ E, change yx,y = HP−1(ky) − H(kx, ℓy) mod ρ.

4. Decrease P by 1.
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6.4 Insertion of a new node

This is the same as node insertion that was described for the previous protocol.

6.5 Deletion of a node

If a node vi is deleted, together with all the edges that touch it, then we consider this as happening
in two stages:

• First, we delete the edges touching vi in one large batch as this requires us to only reduce P

by 1.

• Second, now that vi has no edges touching it, removing it is trivial.

7 Extension: Other Access Models

Traditionally, the standard notion of permission inheritance in access control is that permissions
are transfered “up” the access graph G. In other words, any vertex in Anc(vi, G) has a superset of
the permissions held by vi. Crampton [6] suggested other access models, including:

1. Permissions that are transfered down the access graph. For these permissions, any node in
Desc(vi, G) has a superset of the permissions held by vi.

2. Permissions that are transfered either up or down the access graph but only to a limited
depth.

In this section, we discuss how to extend our scheme to allow such permissions. We can achieve
upward and downward inheritance with only two keys per node. Also, we can achieve all of these
permissions with four keys at each card for a special class of access graphs that are “layered” DAGS
(we define this later) when there is not collusion.

7.1 Downward inheritance

To handle such queries, we construct the reverse of the graph G = (V,E,O), which is a graph
GR = (V,E′, O) where for each edge (vi, vj) ∈ E there is an edge (vj , vi) ∈ E′. Then we use our
base scheme for both G and GR, which results in each node having two keys, but the scheme now
supports permissions that are inherited upwards and downwards.

7.2 Limited depth permission inheritance

We say that an access graph is layered if the nodes can be partitioned into a group of sets, denoted
by S1, S2, . . . , Sr where for all edges (vi, vj) in the access graph it holds that if vi ∈ Sm then
vj ∈ Sm+1. We claim that many interesting access graphs are either layered, but any DAG can be
made layered by adding enough virtual nodes.

Given such a layering, we can then support limited depth permissions. This is done by creating
another graph which is a linear list that has a node for each layer, and an edge has an edge from
each layer to the next layer. The reverse of this graph is also constructed, and these graphs are
assigned keys according to our scheme. A node is given the keys corresponding to its layers. Clearly,
with such a technique we can support permission requirements of the form all nodes higher than
some level and of the form all nodes lower than some level.
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We now show how to utilize these four key assignments to support permission sets of the form
“all ancestors of some node vi that are lower than a specific layer L” (an analogous technique can
be used for permission sets of the form “all descendants of vi above some specific layer”). Suppose
the key for the permission requirement “all ancestors of node vi” is ki and the key for permission
requirement “all nodes lower than layer L” is kL. Then we establish a key for both permission
requirements by setting the key to H(ki, kL). Clearly, only nodes that are an ancestor of vi can
generate ki and only nodes lower than level L can generate kL, so the only nodes that could generate
both keys would be an ancestor of ki AND below level L, assuming that there is no collusion.

8 Conclusions and Future Work

In summary, we give the first solution to the problem of access control in an arbitrary hierarchy G

where all of the following hold:

(i) only hash functions are used for a node to derive a descendant’s key from its own key;

(ii) the space complexity of the public information is the same as that of storing graph G;

(iii) the derivation by a node of a descendant’s access key requires O(n) bit operations in the
worst case;

(iv) updates are handled locally in the hierarchy and do not “propagate” to descendants or an-
cestors of the affected part of the tree;

(v) the scheme is resistant to collusion in that no subset of nodes can conspire to gain access to
any node to which they do not have permission to have access.

We do all of the above while requiring the private information at a node to consist of a single key
associated with that node. Finally, we provide simple modifications to our scheme that allow to
handle Crampton’s extensions of the standard hierarchies to “limited depth” and reverse inheritance
[6].

Future directions of this work include:

1. Extend our scheme to support temporal constraints.

2. Extend our scheme to support “limited depth” permission inheritance in access graphs that
are not layered without adding virtual nodes and in a collusion resilient manner.

3. Investigate time-space tradeoffs: Decreasing the number of bit operations needed to access a
descendant’s key, at the expense of some increase in the storage space of the public informa-
tion.
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