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ABSTRACT

A robust, invisible watermarking scheme is proposed for digital images, where the watermark is embedded
using the block-based Lapped Orthogonal Transform (LOT). The embedding process follows a spread spectrum
watermarking approach. In contrast to the use of transforms such as DCT, our LOT watermarking scheme allows
larger watermark embedding energy while maintaining the same level of subjective invisibility. In particular, the
use of LOT reduces block artifacts caused by the insertion of the watermark in a block-by-block manner, hence
obtaining a better balance between invisibility and robustness. Moreover, we use a human visual system (HVS)
model to adaptively adjust the energy of the watermark during embedding. In our HVS model, each block is
categorized into one of four classes (texture, fine-texture, edge, and plain-area) by using a feature known as the
Texture Masking Energy (TME). Blocks with edges are also classified according to the edge direction. The block
classification is used to adjust the watermark embedding parameters for each block.

Keywords: digital watermark, Lapped Orthogonal Transform (LOT), human visual system (HVS), perceptual
analysis

1. INTRODUCTION

In this paper we describe a robust, invisible watermark embedded in a host image. Such a watermark must be
resistent to attacks and at the same time the visual quality of the image must be preserved. In order to improve
the robustness of the watermark, one may increase the watermark embedding energy, which may increase the
visibility of the watermark. Therefore, our goal is to achieve a balance between robustness and transparency in
the embedding.

For invisible watermarking, the watermark must be inserted in a way that the presence of the watermark is
not noticeable under typical viewing conditions. Thus modelling the human vision system (HVS) plays a critical
role in watermarking [1, 2]. Algorithms for general watermark embedding/detection are described in [3–9].

The development of spread spectrum watermarking is a milestone in invisible robust watermarking [10, 11].
The watermark is embedded using spread spectrum techniques in the most significant components in a host
signal, thus guaranteeing its robustness.

It is worth mentioning that with respect to image quality watermarking is closely related to image compression.
Human visual system (HVS) research has been actively exploited in lossy image compression to improve the
coding efficiency while maintaining a good subjective quality. Theoretically, every aspect of HVS research can
be used in watermarking as well particularly in trying to determine how the watermark will manifest itself in
the watermarked image.

It has been recognized that watermark embedding in the frequency domain has many advantages in terms
of robustness and transparency. Many watermarking methods have been based on this concept. Some of the
methods obtain transforms of the entire image [10] while others use block-based transforms such as the DCT
[12]. The method we propose in this paper is based on the block-based Lapped Orthogonal Transform (LOT)
[13]. The advantage of using LOT as opposed to conventional block-based transform such as DCT is that it
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Figure 1. Block Diagram of LOT Watermarking

reduces the block artifacts caused by the watermark embedding. LOT was used in secure watermarking in
[14] with the watermark embedded using a template with log-polar-mapping to combat the geometrical attacks.
Our new method differs in the way the watermark is embedded using an HVS model. We use two types
of characteristics in HVS to embed the watermark in an image-content-adaptive manner, thus improving our
watermarking performance. Our technique also does not currently use a synchronization template.

2. GENERAL FRAMEWORK

As shown in Figure 1, our watermarking scheme follows the spread spectrum watermarking approach [10, 15]. In
contrast to the use of transforms such as DCT, we use block-based LOT. LOT divides an image into overlapping
16 × 16 blocks and maps each block into an 8 × 8 block in the frequency domain, hence obtaining an image in
the transform domain with the same size as the original. The use of LOT helps reduce the block artifact caused
by block-based embedding. Details of LOT are discussed in Section 3.1. To obtain a balance between robustness
and invisibility of the embedded watermark, we introduce a perceptual analysis module that uses HVS properties
to adaptively embed the watermark in each block. The perceptual analysis module first extracts a feature from
each block, namely the Texture Masking Energy (TME), described below. The blocks are then classified into
four categories according to the TME. Blocks classified as edge by the use of the TME are further classified into
four edge classes using an edge detector. The effect of this is that each block is classified into one of seven classes.
Details of the perceptual analysis are presented in Section 3.2. The watermark embedding energy in each block
is adjusted accordingly to adapt to the sensitivities of the HVS.

3. WATERMARKING USING LOT AND HVS PERCEPTUAL ANALYSIS

3.1. The Lapped Orthogonal Transform

LOT is described in-depth in [13], which presents a DCT-based fast implementation for LOT and its inverse
transform (ILOT). In the one-dimensional (1D) case, for a discrete 1D signal x0 with length MN , LOT divides
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Figure 2. Block-based LOT as opposed to block-based DCT

the signal into M segments where each segment has length L that satisfies N≤L≤2N . This means that every
two adjacent segments have an overlapped portion of length (L−N)/2. LOT transforms each signal fraction into
an N -entry coefficient vector, and thus the transformed signal has the same total length as the original signal.
Like some other traditional transforms, it is straightforward to derive the two-dimensional (2D) separable LOT
from the 1D version. As shown in Figure 2, the 2D LOT maps every L×L block in the spatial domain to an
N×N block in the frequency domain. We chose N = 8 and L = 2N in our implementation. Since every block in
the transform domain contains information of the adjacent blocks in the spatial domain, block artifacts caused
by any processing in a block-by-block manner in the transform domain will not be as noticeable in the spatial
domain. LOT has been used in image and video compression [16].

3.2. Block Categorization Using HVS Perceptual Analysis

Characteristics of the HVS have been studied and exploited in the area of image and video compression [17].
The limits of the HVS in the intensity, spatial, and temple domain allows images to be represented with fewer
bits but adequate subjective visual quality. For example, the HVS has different sensitivities to different image
details, resulting in that changes in a “flat” region are more perceptible than the same amount of changes in a
complex texture region. The HVS perceptual analysis also provides methods in digital watermarking to increase
the energy of the embedded watermark while keep it imperceptible [1, 2].

In our perceptual model, two types of HVS properties are used: the sensitivity to the complexity of texture
and the sensitivity to the direction of edges. We classify the image blocks into different categories based on these
HVS properties. The block-by-block watermark embedding is then implemented accordingly. This is done to
maximize the capacity of each host block to keep the watermark invisible.

We first extract an HVS feature, known as the Texture Masking Energy (TME), from each block as follows
[18]

TE(k) =





N−1
∑

i=0

N−1
∑

j=0

Ĥ−1(i, j)2Xk(i, j)2

(i,j) �=(0,0)





1/2

. (1)

In the above equation, Xk(i, j) denotes the LOT transform coefficient located in position (i, j) of the kth block.
Ĥ(f) is the HVS relative sensitivity function with respect to the spatial frequency f , where f is related with the
spatial position (i, j) as follows

f(cycles/degree) =

√

i2 + j2

2N
(cycles/pixel)×fs(pixels/degree), (2)

and we chose fs = 32. Ĥ(f) can be obtained as [18]

Ĥ(f) = |A(f)|H(f)

SPIE-IS&T/ Vol. 5306     515



(a) Block classification using the TME
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Figure 3. An enlarged block classification using the HVS perceptual analysis of crowd (the image given in Figure 4)

H(f) = (0.31 + 0.69f) exp(−0.29f)

A(f) =







1

4
+

1

π2

[

ln

(

2πf

δ
+

√

4π2f2

δ2
+ 1

)]2






1/2

,

where δ = 11.636 degree−1.

Note that T 2
E(k) is a sum of the energy in the kth block weighted by the reciprocal of the square of the

sensitivity function Ĥ2(f). This implies that the TME provides a metric measuring the insensitivity, or equiva-
lently, the capability of the block being resistant to noise. We also divide each N×N block into four N/2×N/2
sub-blocks, and obtain the TME for each sub-block, namely TE(k, l), l = 1, 2, 3, 4, in a similar way.

Since the TME represents the insensitivities of a block and its sub-portions to noise, we use both TE(k) and
TE(k, l) to classify the kth N×N block into four major categories: texture, fine-texture, edge, and plain-area.
This is done using a similar approach as in [18].

Studies of the HVS have shown that different edge orientations have different masking capabilities. The HVS
is less sensitive to changes along the direction of an edge than changes perpendicular to the edge. Thus we
further classify each edge block into four types according to the edge direction: vertical, horizontal, diagonal,
and anti-diagonal, using the Sobel operator [16].

An example of the result of our perceptual analysis is shown in Figure 3.

3.3. Watermark Generation and Embedding

In this subsection, we use the spread spectrum approach to generate and embed the image watermark [10].
We use the results of the perceptual analysis described in Section 3.2 to adaptively embed the watermark in a
block-by-block manner in the LOT transform domain.

The watermark is formed using an independent, identically Gaussian-distributed pseudo random sequence,
with zero-mean and unit-variance. In our implementation, we fixed the number of LOT coefficients that bear
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the watermark in each block to be 5. Thus for a 512 × 512 image, the total length of the embedded watermark
is 20480.

We obtain a quantization matrix for the kth block as follows

QL(k) = QS×Mblock(k)×Medge(k), (3)

where “×” denotes the element-wise multiplication. QS is the standard quantization matrix used in JPEG [19],
which reflects the HVS sensitivity to spatial frequencies [12]. Any “noise” added to the transform coefficients
shall be barely perceptible, as long as the magnitude of the noise is within the quantization steps designated by
QS . We design two additional matrices, Mblock(k) and Medge(k), to adjust the quantization steps in QS for the
kth block, based on our perceptual analysis,

Mblock(k) =















0.8 plain-area

1.0 + min(TE(k)×0.25/ωedge, 0.25) edge

1.0 + min(TE(k)×0.25/ωfine−texture, 0.25) fine-texture

1.25 + min(TE(k)×0.25/ωtexture, 0.25) texture

, (4)

Medge =







M1 horizontal edge
MT

1 vertical edge
M2 diagonal/anti-diagonal edge

. (5)

In (4), we chose ωedge = 600, ωfine−texture = 300, and ωtexture = 400. In (5), M1 and M2 are designed as

M1 =

























1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.3
1.1 1.0 1.0 1.0 1.0 1.1 1.3 1.3
1.2 1.2 1.0 1.0 1.1 1.1 1.3 1.4
1.2 1.2 1.2 1.0 1.1 1.3 1.3 1.4
1.2 1.2 1.2 1.2 1.3 1.3 1.4 1.5
1.2 1.2 1.2 1.3 1.3 1.4 1.5 1.5
1.2 1.2 1.3 1.3 1.4 1.5 1.5 1.5
1.2 1.3 1.4 1.4 1.5 1.5 1.5 1.5

























, M2 =

























1.0 1.0 1.0 1.1 1.2 1.2 1.3 1.3
1.0 1.0 1.0 1.0 1.2 1.2 1.3 1.3
1.1 1.0 1.0 1.0 1.2 1.2 1.3 1.4
1.1 1.0 1.2 1.0 1.2 1.2 1.3 1.4
1.2 1.2 1.2 1.2 1.2 1.2 1.4 1.5
1.2 1.2 1.2 1.2 1.2 1.4 1.5 1.5
1.3 1.3 1.3 1.3 1.4 1.5 1.5 1.5
1.3 1.3 1.4 1.4 1.5 1.5 1.5 1.5

























, (6)

and MT
1 is the transpose of M1.

The entries in QL are an indication of the insensitivities of the LOT coefficients subject to quantization noise.
That is, the smaller the entry in QL, the more important the corresponding LOT coefficient is in maintaining
the subjective imperceptivity when the image block is distorted by quantization noise. Therefore, motivated by
the concept of spread spectrum watermarking [10], we choose the five most visually important AC coefficients
in each block, whose corresponding entries in QL have the least values (except the one located in the (0, 0)
position that is excluded from watermark embedding), to bear the watermark. The watermark is embedded in
the following way

X ′
k(in,k, jn,k) = Xk(in,k, jn,k) + αQL(in,k, jn,k)w(n), (7)

where w(n) is the watermark element, and (in,k, jn,k) denotes the specified position to bear the watermark in
the kth block. X denotes the LOT coefficient of the original image, and X ′ is the corresponding watermarked
coefficient. α determines the overall intensity of the watermark embedding energy, which usually takes a value
between 1/6 to 1.

3.4. Watermark Detection and Identification

We need the original unwatermarked image to implement the watermark detection. We take LOT for both the
original image and the possibly corrupted watermarked image, as well as the location and intensity information.
For each watermarked frequency component, we extract the watermark using

ŵ(n) = (X̂ ′
k(in,k, jn,k) − Xk(in,k, jn,k))/(αQL(in,k, jn,k)). (8)
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(a) crowd (b) umas

Figure 4. Original images

Let Ŵ denote the extracted watermark vector, and W a candidate watermark. We identify the watermark by
obtaining the similarity (correlation) as follows

sim(W, Ŵ ) =
W · Ŵ

√

Ŵ · Ŵ
, (9)

where “·” denotes the inner production. It is easy to show that if W is a sequence of identically independently
distributed (i.i.d.) random variables with zero-mean unit-variance, and also independent of Ŵ , sim(W, Ŵ ) is a
zero-mean unit-variance Gaussian random variable. If sim(W, Ŵ ) is greater than a threshold, we claim that Ŵ
comes from the original watermark W , hence identifying the embedded watermark. In our implementation, we
chose 6 as the threshold, which corresponds to a false alarm probability of 10−9(= 1−Φ(6), where Φ(x) denotes
the cumulative distribution function, i.e. c.d.f., of a Gaussian random variable with zero-mean unit-variance).
Note that when Ŵ = W , sim(W, Ŵ ) achieves its maximum value 143.11(=

√

5 × 512 × 512/(8 × 8)).

4. EXPERIMENTAL RESULTS

We used our LOT watermarking scheme to watermark several 512 × 512 gray scale images shown in Figure 4.
We also implemented a block-based DCT watermarking scheme for comparison. The only difference between the
two schemes is the transform. The Stirmark 3.1 benchmark [20] is used to attack the watermarked images and
test the robustness of the embedded watermark. Some major results are given in Table 1, Table 3, and Figure 5.

It can be observed from Table 1 that under the same embedding intensity α, our LOT scheme is slightly
more resistant to blurring attacks, but slightly more vulnerable to sharpening attacks.

Figure 5 suggests that using the same α, the DCT watermarking is slightly more resistant to lossy JPEG
compression. We have argued that one distinguished advantage of the block-based LOT, as opposed to the block-
based DCT, is its capability of reducing block artifacts. Thus we can choose a slightly larger α for our LOT
method to increase its robustness without compromising the transparency. For example, if we chose α = 0.60,
the LOT watermarking scheme will outperform the DCT scheme with α = 0.50 as described in Table 2. The
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Table 1. Watermark identification after attacks using common filtering operations (sim(W, Ŵ ))

Image Scheme α Median Gaussian Average Sharpen

2 × 2 3 × 3 3 × 3 3 × 3

LOT 0.25 15.8 32.3 48.4 36.7 30.2

DCT 15.7 28.9 44.1 34.5 33.2

crowd LOT 0.50 31.9 61.6 83.5 67.2 56.5

DCT 30.8 57.5 76.9 62.9 62.2

LOT 2.00 94.2 127.0 133.8 127.7 120.0

DCT 90.0 124.7 130.1 122.7 120.5

LOT 0.25 19.3 39.3 54.7 39.4 33.8

DCT 15.7 35.7 42.1 33.2 40.5

umas LOT 0.50 36.3 71.2 90.8 70.8 62.6

DCT 31.1 66.2 75.7 62.7 71.5

LOT 2.00 98.3 130.4 135.8 129.4 124.8

DCT 91.2 129.0 130.7 123.8 125.8
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Figure 5. LOT vs. DCT watermarking using a lossy JPEG compression attack to crowd
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Table 2. JPEG attack performance of LOT watermarking with increased α for crowd (sim(W, Ŵ ))

Quality 10 20 30 40 50 70 90

LOT (α = 0.60) 42.8 78.0 101.6 114.8 123.0 133.8 141.4

DCT (α = 0.50) 42.1 76.1 100.7 114.0 122.8 134.0 141.4

Table 3. LOT watermark identification using a cropping attack to crowd (α = 0.6)

Cropping Area size: 171 × 170 Area size: 51 × 51

(upper-left position (x, y)) (193, 169) (292, 45) (57, 290) (150, 125) (315, 53) (15, 252)

sim(W, Ŵ ) 48.1 47.5 49.3 14.9 14.1 14.7

LOT watermarked image has the same or even better subjective quality compared with the DCT watermark,
as shown in Figure 6. The difference images between the original image and the watermarked images are also
given, showing that LOT effectively reduces the block artifacts.

Our LOT watermark survives the cropping attack, as shown in Table 3. Intuitively, if we lose 90% of the
image, we lose 90% of the watermark sequence. However, considering our goal is to verify the similarity between
the extracted sequence and the original sequence, losing 90% of the extracted data only makes the similarity
function to be 1/

√
10 of its original value. Usually the correlation is still well above 6, so we can still make a

correct decision after a severe cropping. We chose two cropping sizes, 171 × 170 and 51 × 51, which correspond
to 1/9 and 1/100 of the original image size respectively. The theoretical values for the maximum similarity
between the extracted watermark and a candidate watermark (i.e. sim(W,W )) are 47.70(=

√

5 × 512 × 512/9)

and 14.31(=
√

5 × 512 × 512/100) for the above two size choices. As discussed in [10], since we are using a
non-blind approach in our watermarking, i.e., we have the original image available upon watermark detection,
the watermark detector can easily obtain the position of the watermarked cropped area relative to the original
image (such as using image correlation). For each cropping size, we tried three different cropping locations, as
given in Table 3 and Figure 7.

In addition, we used the Stirmark 3.1 JPEG attack on the cropped area, and our LOT watermarking can
still survive as long as the cropping size is large enough, as shown in Table 4.

One approach to improve our LOT watermarking scheme is to adaptively adjust the number of watermark
elements embedded in each block rather than fix it at 5. A better transparency-robustness balance should be
expected.

5. CONCLUSION

In this paper, we presented a LOT-based adaptive image watermarking scheme. LOT inherits all the best
properties of the DCT, such as decorrelation and energy compaction. Specifically, LOT greatly reduced block
artifacts compared with DCT, making the embedded watermark less perceptible with same embedding energy. In
addition, we used the HVS perceptual analysis to embed the watermark in an adaptive manner. Our experiments
showed that our scheme obtains a good balance between robustness and transparency of the watermark.

Table 4. LOT watermark identification under cropping and JPEG lossy compression attacks to crowd (cropping size of
171 × 170 with upper-left corner (292, 45); α = 0.6)

Quality 10 15 20 30 40 50 70 90

sim(W, Ŵ ) 6.6 8.2 11.3 16.6 20.8 24.0 33.4 43.5

520     SPIE-IS&T/ Vol. 5306



(a) Watermarked image using LOT (α = 0.6) (b) Watermarked image using DCT (α = 0.5)

(c) Difference image using LOT (α = 0.6) (d) Difference image using DCT (α = 0.5)

Figure 6. LOT vs. DCT image watermarking for crowd
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(a) Original image with the cropping area marked

(292, 45)

(462,214)

(b) Enlarged cropped area (171 × 170)

Figure 7. Image cropping attack
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