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Abstract—TopCat (Topic Categories) is a technique for identifying topics that recur in articles in a text corpus. Natural language

processing techniques are used to identify key entities in individual articles, allowing us to represent an article as a set of items. This

allows us to view the problem in a database/data mining context: Identifying related groups of items. This paper presents a novel

method for identifying related items based on traditional data mining techniques. Frequent itemsets are generated from the groups of

items, followed by clusters formed with a hypergraph partitioning scheme. We present an evaluation against a manually categorized

ground truth news corpus; it shows this technique is effective in identifying topics in collections of news articles.

Index Terms—Topic detection, data mining, clustering.
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1 INTRODUCTION

DATA mining has emerged to address problems of
understanding ever-growing volumes of information

for structured data, finding patterns within the data that are
used to develop useful knowledge. Online textual data is
also growing rapidly, creating needs for automated
analysis. There has been some work in this area [1], [2],
[3], focusing on tasks such as:

. association rules among items in text [4],

. rules from semistructured documents [5], and

. understanding use of language [6], [7].

In this paper, the desired knowledge is major topics in a
collection; data mining is used to discover patterns that
disclose those topics.

The basic problem is as follows: Given a collection of
documents, what topics are frequently discussed in the
collection? The goal is to assist human understanding, so a
good solution must identify topics in a way that makes sense
to a person. We also want to enable further exploration,
requiring the ability to link topics to source texts. This is
related to document clustering [8], but the requirement for a
topic identifier is closer to rule discovery mechanisms.

We apply data mining technology to this problem by
treating a document as a collection of entities, allowing us to
map this into a market basket problem. We use natural
language technology to extract named entities from a
document. We then look for frequent itemsets: groups of
named entities that commonly occurred together. Next, we
cluster the groups of namedentities, capturing closely related
entities that may not actually occur in the same document.

The result is a refined set of clusters. Each cluster is
represented as a set of named entities and corresponds to
an ongoing topic in the corpus. An example topic is:

ORGANIZATION Justice Department

PERSON Janet Reno

ORGANIZATION Microsoft

This is recognizable as the US antitrust case against
Microsoft. Although not as readable or informative as a
narrative description of the topic, it is compact and
humanly understandable. It also meets our requirement to
link to source texts as the topic can be used as a query to
find documents containing some or all of the extracted
named entities (see Section 3.4).

Much of this is based on existing commercial or research
technology: natural language processing for named entity
extraction, association rule data mining, clustering of
association rules, and information retrieval techniques.
The novelty of TopCat lies in how these disparate
technologies are combined, plus a few specific develop-
ments that have wider application:

. the frequent-itemset filtering criteria (Section 3.2.1),

. the hypergraph-based clustering mechanism, a gen-
eralization of the mechanism proposed in [9]
(Section 3.3),

. use of information retrieval measures for clustering
of associations (Section 3.5).

Although we only discuss identifying topics in text, these
developments apply to any problem that can be cast as a
market basket.

We next give some background on where this problem
originated. In Section 3, we describe the TopCat process
from start to finish. Section 4 describes an evaluation of
TopCat on the Topic Detection and Tracking project [10]
corpus of news articles, including an analysis of how
TopCat performs compared to a manually defined ground
truth list of topics. In Section 3.1.2, we discuss augmenting
the named entities with user-specified concepts. Section 5
concludes with a discussion of ongoing application of
TopCat and of future work.
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2 PROBLEM STATEMENT AND RELATED WORK

The TopCat project started with a specific user need. The
GeoNODE project at MITRE is developing a system for
making news available to analysts [11]. One goal is to
visualize ongoing topics in a geographic context; this requires
identifyingongoing topics (see Fig. 1).Wehadexperiencewith
identifying association rules among entities/concepts in text,
and noticed that some of the rules were recognizable as
belonging to major news topics. This led to a topic identifica-
tion mechanism based on data mining techniques.

Related problems are being addressed. The Topic
Detection and Tracking (TDT) program [10] looks at two
specific problems:

. Topic Tracking: Classify incoming documents into a
predefined set of topics, based on a manually
classified training set.

. Topic Detection: Recognize if a new document falls
into an existing topic, or belongs in a new topic.

Our problem is similar to the Topic Detection (clustering)
problem, except that:

. We must generate a human-understandable label for a
topic: a compact identifier that allows a person to
quickly see what the topic is about.

. Topic identification canbe retrospective.Wedonot face
the TDT requirement to identify each newdocument/
topic within a limited time after it arrives.

Although our goals are different, the test corpus developed

for the TDT project provides a means to evaluate our work.

TheTDTcorpus is a collectionofnewsarticles from the spring

of 1998 and a ground truth topic set with documents

manually classified into those topics. More discussion of the

corpus and evaluation criteria is given in Section 4. The TDT2

[10] evaluation requires that we go beyond identifying topics

and also match documents to a topic.
We thus define the topic identification problem as

follows:

Definitions: Data Source:

Document: wordþ Corpus: {Document}

TopicID: wordþ
Goal: Produce the following functions

TopicList(Corpus): {TopicID}

Topicmatch(TopicList(Corpus), Document 2 Corpus):

TopicID � TopicList(Corpus)

In Section 4, we show how to evaluate this problem using

the TDT criteria and give an evaluation of TopCat’s

performance.
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Fig. 1. GeoNODE screen shot showing identified topics at lower right.



One key item missing from the TDT2 evaluation criteria
is that the TopicID must be useful to a human. This is hard to
evaluate. Not only is it subjective, but there are many
notions of useful. We will argue that the TopicID produced
by TopCat is useful to and understandable by a human.

Natural language processing and term clustering have
both been employed in the Information Retrieval (IR)
domain, usually to improve precision and recall [12], [13],
[14]. Natural language processing has been used to auto-
matically generate concept thesauri, generate document
summaries, handle natural language queries, and reduce
the feature space for vector spacemodels, as discussed in [15].
A review of both statistical and natural language techniques
for term extraction is given in [16]. Term clustering has also
been used for automatic thesaurus generation, as well as for
document clustering [17]. However, these techniques have
rarely been used to understand a collection, as opposed to
individual documents. There has been work in visualization
of document collections (e.g., SPIRE [18]); however, these
show relationships among keywords rather than identifying
topics.

Perhaps the closest approach to this problem, other than
the Topic Detection and Tracking work mentioned above,
has been clustering of web search results. Such systems
have similar goals to ours, such as performance and
developing a human-browsable identifier. There are two
key differences. The first is the Web as a data source. This
provides information such as links and Web site addresses
that can be used as clustering and naming criteria [19],
[20]—many of our sources do not have these. The second,
and perhaps more critical, difference is that these systems
start with a focused search, as opposed to a broad-based
corpus. The use of recurring phrases, as in Grouper [21],
would seem less applicable with a broader corpus.

3 PROCESS

TopCat employs a multistage process, first identifying key
concepts within a document, then grouping these to find
topics, and finally mapping documents to topics and using
the mapping to find higher-level groupings. Fig. 2 gives an
overview. Natural language techniques extract named
people, places, and organizations; identifying key concepts
within a document. This gives a structure that can be
mapped into market basket mining.1 We then generate
frequent itemsets, or groups of named entities that often
appear together. Further clustering, using a hypergraph
splitting technique, finds groups of frequent itemsets with
considerable overlap.

The generated topics, a set of named entities, are used as
a query to find documents related to the topic (Section 3.4).
Where documents map to multiple topics, we perform a
further clustering step that both joins similar topics and
identifies topic/subtopic relationships.

Throughout this section, we will give examples and
numbers based on the full six month TDT2 data set. We will
use the following cluster, capturing professional tennis
stories, as a running example:

PERSON Andre Agassi PERSON Martina Hingis

PERSON Mary Pierce PERSON Pete Sampras

PERSON Serena PERSON Venus Williams

PERSON Marcelo Rios PERSON Anna Kournikova

This is a typical cluster (in terms of size, support, etc.) and
allows us to illustrate many of the details of the TopCat
process. This cluster results from merging two subsidiary
clusters (described in Section 3.5, formed from clustering
seven frequent itemsets (Section 3.3).

3.1 Data Preparation

TopCat first uses Alembic [22] to identify named entities in
each article. Alembic uses linguistic cues to identify people,
places, andorganizations in the text.2 This shrinks thedata set
for further processing. It gives structure to the data; treating
documents as a set of typed and named entities gives the
informationa schemasuited to themarket basketdatamining
problem. Third, and most important, from the start we are
working with data that is rich in meaning, improving our
chances of getting human understandable results.

Note that the use of named entities, as opposed to full
text, is debatable. It has been shown that careful feature
selection only slightly improves results in text categoriza-
tion, while poor feature selection can have a large negative
impact [23]. This leaves the question, are named entities a
good form of feature selection?

We tested this on our data set using Support Vector
Machines as classifiers [24]. Using the TDT2 training/
development sets as our training and test sets (stemmed
using thePorter stemmingalgorithm[25] and filtered for a list
of common stopwords), we obtained a precision of 95 percent
for full text categorization versus 82percent for namedentity-
based categorization (the recall was nearly identical, at 87
percent and86percent, respectively): Full textwasbetter than
named entities. Details of this test are given in [26].

However, for topic identification, the superiority of full
text is not nearly as clear. We tested TopCat with full text
and found two problems. The first was with computation
time. The stemmed/filtered full text corpus contained
almost 5 million unique word-document pairs versus
385,420 named entity/document pairs. On our prototype,
we were unable to generate frequent itemsets at the low
levels of support we used with named entities (at 5 percent
support, it took nine hours on full text and only a single
two-itemset was found.) We tried a smaller test set (one
week of data) and the TopCat process took approximately
one hour at 2 percent support. Using named entities from
the same data took only two minutes at 0.5 percent support.

More critical is the difference in the quality of the results.
With 2 percent support, operating on full-text generated
91 topics. Many were nonsensical, such as (tip, true) and
(chat, signal, insid3), or nontopic relationships such as
(husband, wife). The named entities, even at lower support,
generated only 33 topics for the week and none were
nonsensical (although some, such as (Brussels, Belgium),
were not good topics). Even the best full-text clusters were
not that good; Table 1 shows the Asian Economic Crisis
cluster from the full-text and named-entity versions. We
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1. Treating a document as a basket of words did not work well, as shown
in Section 3.1. Named entities stand alone, but raw words need sequence to
be meaningful.

2. Although not tested specifically on the TDT2 corpus, Alembic and
other top Named Entity tagging systems typically achieve 90-95 percent
precision and recall.

3. Note the use of stemmed words.



feel the named entity topic is as recognizable and gives

more useful information. A domain-specific keyword set

gives some improvement, as described in Section 3.1.2.

3.1.1 Coreference

One difficulty with named entities is that multiple names

may be used for a single entity. This gives us a high

correlation between different variants of a name (e.g., Rios

and Marcelo Rios) that add no useful information. We want

to capture that these all refer to the same entity, mapping

multiple instances to the same variant of the name, before

proceeding.
There are two issues involved:

1. How do we identify multiple references to the same
entity within a document and

2. How do we ensure that the same name is used to
refer to an entity between documents?

We have tried two approaches. The first is to find

association rules where the predicted item is a substring

of the predictor. This is used to build a global translation
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table, changing all occurrences of the substring to the long
version. This works well for names where the abbreviated
variant name is uncommon (e.g., organization abbrevia-
tions), but is less effective with person names.

The second approach makes use of natural language
techniques that work within a document. We use corefer-
ence information generated by Alembic to generate groups
of names within a document that refer to the same entity
(solving Problem 1 above). We still face Problem 2,
however. Choosing the most common version isn’t the
right solution. (e.g., Marcelo Rios is referred to as Marcelo

Rios 82 times and Rios 264, but there are 73 references to
Rios that refer to someone else). Using the least common
variant is also a poor choice, as many documents may not
contain that variant (exacerbating Problem 2). Our solution
is to use the globally most common version of the name
where most groups containing that name contain at least one

other name within the current group. Although not perfect
(e.g., three documents referencing Marcelo Rios only as
Rios are missed), this does give a global identifier for an
entity that is both reasonably global and reasonably unique.

In many cases, this is better than such obvious
techniques as using a full name. For example, Serena
Williams is referred to simply as Serena in many articles
(the full name is never mentioned); the above technique
captures this in choosing a global identifier. More sophis-
ticated techniques could be used, such as a manually
prepared catalog of global names, but we find this sufficient
for our purposes.

Although the natural language technique is our primary
approach, we also use the association rule-based approach
with a minimum support of 0.05 percent and a minimum
confidence of 50 percent. This produces six additional
translations.

3.1.2 Keywords

Named entities capture “Who?” and “Where?” (and date
tagging exists to capture “When?”), but require that we use
our background knowledge to understand “What?” and
“Why?” As we have seen, full text gives a flood of often
irrelevant information. Another possibility is human-gen-
erated keywords. By generating a set of keywords that

capture concepts of interest, we can extend the concepts
used in topic identification at constant human cost.

Obtaining a good set of keywords is a difficult task. To
keep the human cost small, we do not require human
generation of a comprehensive keyword set. Instead, we use
WordNet [27] to automatically expand the keyword list to
cover the concept. WordNet is a semantic network that
forms a hierarchical lexicon of 100,000 word forms. It
includes synonyms, antonyms, and hierarchical relations:
hypernyms and hyponyms. A hypernym is a word that is
more general than another word, a hyponym is a word that
is more specific. For example, vehicle is a hypernym of
automobile and couch is a hyponym of furniture. The
WordNet hyper/hyponym relations form a set of directed
acyclic graphs (DAGs). We define the depth of root words
to be 1 and any other word to be one plus the depth of its
shallowest hypernym/hyponym. We qualitatively evalu-
ated hypernyms and hyponyms of each word in the topic
statement for 20 Text REtrieval Conference queries [28] for
relevance. At depth 5 and greater, the hypernyms repre-
sented similar concepts. Wide semantic jumps with hypo-
nyms tended to occur when a word has many hyponyms;
we found that the hyponyms of words with 15 or fewer
hyponyms avoided large semantic leaps. By exploiting
these relations, we expand a set of keywords to include
related words describing the same concept.

We have developed the following three heuristics for
controlling the aspects of WordNet that should be used in
keyword expansion:

1. A (word, sense) pair given by a WordNet relation
should be added to the expanded keyword list only
if the sense is the most common one for that word.

2. A hypernym relation should be used only if the
hypernym is at depth 5 or below.

3. A hyponym relation should be used only if there are
no more than 15 hyponyms for the corresponding
keyword.

These heuristics give a set of rules that produce a fairly
robust keyword set. For example, given the keyword set
president, U.S., keyword expansion yields President of the

United States, President, Chief Executive, head of state,
chief of state, United States, United States of America,
America, US, USA, U.S.A., North American country, North
American nation, a significant improvement in breadth.

We tested keywords with TopCat using four “concepts”
and keywords sets:

DISASTERS: accident, avalanche, death, disaster,
earthquake, tornado

TRIALS: court, lawsuit, lawyer, suit, trial

US_POLITICS: President, U.S., democrat, election,

legislation, republican

VIOLENCE: bomb, hostage, protest, raid, violence

Keyword expansion gave 137 total keywords from this
initial set of 22. In practice, we would expect the concepts to
be more tightly defined. With few occurrences of keywords
in a group, we could treat the keywords in a group as
identical (we have not done so with these groups as they
exceed the 5 percent stop limit defined below.) This would
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Asian Economic Crisis Topic: Full Text versus

Named Entities from One Week of News



help to customize the topics to the needs of the user, as well

as improve the clarity of the discovered topics. In Section 4,

we will discuss the relative performance of TopCat with

and without the addition of keywords.

3.1.3 Data Cleansing

Several data cleaning algorithms are applied to increase the

quality of the results, as shown in Fig. 3. The generic data

cleaning techniques include case normalization and a stop

algorithm. Named entity identification eliminates words

traditionally found in a stop list. Our stop algorithm

removes terms occurring in over 5 percent of the articles

as these are used in too many topics to effectively

discriminate between topics. The idea that frequency is

inversely proportional to the usefulness of a term is

commonly accepted (e.g., Salton’s TFIDF (term frequency/

inverse document frequency) term weighting scheme [29]

for Information Retrieval, see footnote 6.) This eliminates

only a few entities—in the TDT2 evaluation, United States

and Clinton. Although potentially confusing (note the lack

of United States in the Iraq/UN cluster in Table 7), it

becomes unnoticeable with use and results in more concise

topic identifiers.
TopCat also uses corpus specific data cleaning steps:

removal of duplicate stories (an artifact of pulling stories

from a newswire, where errors cause the entire story to be

retransmitted) and removal of what we refer to as composite

stories. A composite story is a multitopic story that contains

brief descriptions or recaps of stories reported elsewhere. In

print media, composite stories often appear on the first page

of a section,withbriefdescriptionsof stories containedwithin

the section or stories that have occurred in the previousweek.

If these stories are not filtered out before the knowledge

discovery phase, terms and stories are associated with each

other simply because the events are reported in the same

section of the newspaper or occur over the same time period.

A composite story is different froma simplemultitopic story as

the topics covered in a composite story are generally covered

elsewhere in the paper. The heuristic TopCat uses for

identifying composite stories is to look for reoccurring

identical headlines. Any headline that occurs on at least a

monthly basis (e.g., BULLETIN) is assumed to be a composite

story and is filtered out.

3.2 Frequent Itemsets

The foundation of the topic identification process is frequent
itemsets. In TopCat, a frequent itemset is a group of named
entities that occur together in multiple articles. Cooccur-
rence of words has been shown to carry useful information
[30], [31], [32]. What this information really gives us is
correlated items, rather than a topic. However, we found
that correlated named entities frequently occurred within a
recognizable topic—clustering the interesting correlations
enabled us to identify a topic. Before going into the
clustering method in Section 3.3, we will first describe
how to determine interesting correlations.

Discovery of frequent itemsets is a well-understood data
mining problem, arising in the market basket association rule
problem [33]. A document can be viewed as a market basket
of named entities; existing research in this area applies
directly to our problem. The search is performed directly in
a relational database using query flocks [34] technology,
allowing us to incorporate the filtering criteria described
below into the search while relying on the database query
processor for many algorithmic issues. The computational
complexity is essentially that of the Apriori algorithm [35].
Apriori grows linearly with the number of transactions
(documents) and the number of candidate itemsets. The
problem is, the number of candidate itemsets is potentially
exponential in the number of items (named entities). Setting
a high threshold on the support (frequency of cooccurrence)
decreases the number of candidate itemsets. Agrawal and
Srikant obtained roughly linear increase in execution time
as support decreased. Our results generally agree with
this—although, below a certain point, the number of
itemsets does increase exponentially. This occurred because
the corpus had duplicate (or near duplicate) documents,
such as multiple news stories based on the same newswire
article. Each duplicate document set gives a very large
itemset, with a combinatorial explosion in the number of
small itemsets that occur in that large itemset.

The use of support as a threshold causes TopCat to
ignore topics that occur in few documents. This fits well
with the original goal of the system. The TDT2 corpus used
many smaller topics, however, so we did test TopCat to see
how it would perform with low support thresholds. We
found that a threshold of 0.06 percent (30 documents in the
TDT corpus) gave reasonable results on the TDT2 training
data, as well as performing well with other corpuses.
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Fig. 3. TopCat data cleaning.



Since we are working with multiple sources, any topic of
importance is mentioned multiple times; this level of
support captures all topics of any ongoing significance.
However, this gives a total of 21,173 frequent itemsets, of
which 6,028 were 2-itemsets, and most of the rest were 3
and 4 itemsets. There were a few larger itemsets, with the
largest being an 11-itemset coming from the UN Security
Council/Iraq Arms inspections topic. Although the largest
itemsets were interesting, many of the smaller ones were
not important. We need additional filtering criteria to get
just the important itemsets.4

3.2.1 Filtering of Frequent Itemsets

The traditional market basket association rule filters are:

support the number (or percent) of baskets that must

contain the given rule (also known as

cooccurrence frequency); and
confidence the percent of time the rule is true (given the

antecedent, the consequent follows).

We have already discussed problems with support;
although useful, it is not sufficient as a filtering mechanism.
Confidence overemphasizes common items as consequents
and rare items as antecedents (e.g., “Key West ¼) United
States”). The consequent in such cases rarely adds much
meaning to a topic identifier.

Instead of confidence, we use mutual information [36]:

log2
P ðx; yÞ

P ðxÞP ðyÞ :

This is a measure of correlation strength, i.e., the ratio of the
actual probability of a frequent itemset occurring in a
document to the probability of the items occurring together
by chance. This measure emphasizes relatively rare items
that generally occur together and deemphasizes common
items. Mutual information has been shown to be an
effective word association norm; it is basically the same as
the interest measure used for text associations rules in [32]
and similar to the association ratio of [30] used for words
occurring in close proximity.

We use both support and mutual information. Very high
support itemsets are almost always significant, as are high
mutual information itemsets. We select all frequent itemsets
where either the support or mutual information is at least
one standard deviation above the average for that metric or
where both support and mutual information are above
average. The average and standard deviation are computed
independently for 2-itemsets, 3-itemsets, etc. For 2-itemsets,
this brings us from 6,028 to 1,033 and brings the total from
21,173 to 3,072. This is still dependent on the choice of a
minimum support; computing the averages efficiently with-
out a fixed minimum support is an interesting problem.

We also use mutual information to choose between
“contained” and “containing” itemsets (e.g., any 3-itemset
contains three 2-itemsets with the required support.) Since
the information in the contained itemsets is represented in the
containing itemset,we can eliminate them.However, a strong
2-itemsetmay bemoremeaningful than aweak 3-itemset. An

ðn� 1Þ-itemset is kept only if it has greater mutual informa-

tion than the corresponding n-itemset and an n-itemset is
usedonly if it hasgreatermutual information thanat least one

of its contained ðn� 1Þ-itemsets. This filter brings us to 416

(instead of 1,033) 2-itemsets, with even greater reduction

among the larger itemsets (for example, all of the 10-itemsets

were contained in the 11-itemset). Overall, this reduced the

number of frequent itemsets to 865.
A problem with using frequent itemsets for topic

identification is that they tend to be over-specific. For

example, the tennis player frequent itemsets consist of those

shown in Table 2. These capture individual matches of

significance, but not the topic of championship tennis as a

whole. There are also some rules containing these players
that are filtered out due to low support and/or mutual

information, such as locations of matches and home

countries of players (interesting, perhaps, but not relevant

to the overall topic).

3.3 Clustering

We experimented with different frequent itemset filtering

techniques, but always found an unacceptable trade off

between the number of itemsets and the breadth of topics

covered. Further investigation showed that some named

entities that should be grouped as a topic would not show

up as a frequent itemset under any measure; no article

contained all of the entities. Therefore, we chose to perform

clustering of the named entities grouped by the frequent
itemsets. We use a hypergraph-based method, based on

that of [9].5 We treat the frequent itemsets as edges in a

hypergraph, with named entities as the nodes. We

repeatedly partition the hypergraph; the remaining con-

nected graphs give the named entities in a topic.
Clustering based on the partitioning of a frequent itemset

hypergraph was chosen for two reasons. First, the method

easily handles the large number of dimensions associated

with the text domain. Second, the method is efficient given

thatwe have already found frequent itemsets. The hypergraph

clustering method of [9] takes a set of association rules and

declares the items in the rules to be vertices and the rules
themselves to be hyperedges. Since association rules have a

directionality associated with each rule, the algorithm

combines all rules with the same set of items and uses an

averageof the confidence of the individual rules as theweight
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4. The problems with traditional data mining measures for use with text
corpuses have been noted elsewhere as well. See [31] for another approach.

5. There have been other methods proposed for clustering frequent
itemsets. A method based on large items (those appearing frequently in
itemsets) [37] was considered, but was inappropriate for our problem as it
concentrated clusters around common named entities that appear in
multiple human-defined topics.

TABLE 2
Individual Matches of Significance



for a hyperedge. Clusters can be quickly found by using a

hypergraph partitioning algorithm such as hMETIS [38].
We adapted the hypergraph clustering algorithm de-

scribed in [9] in several ways to fit our particular domain.

Because TopCat discovers frequent itemsets instead of

association rules, the rules are not directional and do not

need to be combined to form undirected edges in a

hypergraph. The mutual information of each itemset was

used for the weight of each edge.
Upon investigation, we found that the stopping criteria

presented in [9] only works for very highly connected

hypergraphs. Their algorithm continues to recursively

partition a hypergraph until the weight of the edges cut

compared to the weight of the edges left in either partition

falls below a set ratio (referred to as fitness). This criteria has

two fundamental problems:

. It will never divide a loosely connected hypergraph
into the appropriate number of clusters as it stops as
soon as it finds a partition that meets the fitness
criteria; and

. It always performs at least one partition (even if the
entire hypergraph should be left together). This can
inappropriately partition a group of items that
should be left together. If the initial hypergraph is
a group of items that logically belong to a single
cluster, the algorithm will go ahead and partition the
items anyway.

To solve these problems and to allow items to appear in

multiple clusters, we modified the algorithm as follows:

. hMETIS tries to split the hypergraph into two
relatively equal parts while minimizing the weight
of the edges cut. It will allow the number of vertices in
each split to be unequal up to a given unbalance factor
as long as this results in a lower cut weight. Our
algorithm allows hMETIS to use as high an unbalance
factor as necessary, with the restriction that the
smallest partition size possible is two vertices. (A
cluster of one item is rarely meaningful.) The
algorithm automatically adjusts the unbalance factor
based on the size of the hypergraph to allow for the
maximum unbalance. This prevents a bad split from
being made simply to preserve equal partition sizes.

. A cutoff parameter is used that represents the
maximum allowable cut-weight ratio (the weight of
the cut edges divided by the weight of the uncut
edges in a given partition). The cut-weight ratio is
defined as follows. Let P be a partition with a set e of
m edges and let c be the set of n edges cut in the
previous split of the hypergraph:

cutweightðP Þ ¼ �n
i¼1WeightðciÞ

�m
j¼1WeightðejÞ

:

A hyperedge is counted in the weight of a

partition if two or more vertices from the original

hyperedge are in the partition. For example, a cut-

weight ratio of 0.5 means that the weight of the

cut edges is half the weight of the remaining

edges. The algorithm assumes that natural clusters

will be highly connected by edges. Therefore, a
low cut-weight ratio indicates that hMETIS made
what should be a natural split between the vertices
in the hypergraph. A high cut-weight ratio
indicates that the hypergraph was a natural cluster
of items and should not have been split.

. Once the stopping criteria has been reached for all of
the partitions of a hypergraph, vertices are added
back to clusters depending on the minimum-overlap
parameter. Up to this point in the algorithm, a given
vertex can only be a member of one cluster. Often,
there are vertices that could logically belong to
several clusters. For each partial edge that is left in a
cluster, if the percentage of vertices from the original
edge that are still in the cluster exceed the minimum-
overlap percentage, the removed vertices are added
back in. Overlap for an edge is calculated as follows,
where v is the set of vertices:

overlapðe; P Þ ¼ jfv 2 Pg [ fv 2 egj
jfv 2 egj :

For example, if the minimum-overlap is set to
50 percent, and three of the original four vertices
of an edge end up in the same cluster, the fourth
vertex is added back in since the overlap for the edge
is calculated to be 0.75. Once this is done, a check is
made to remove any clusters that are a pure subset
of another cluster (this often occurs with small
clusters whose vertices are from an edge that is also
part of a larger cluster).

Based on the TDT training and test data, we chose a cutoff
ratio of 0.4, and a minimum-overlap ratio of 0.6.

Fig. 4 shows the hypergraphs created from the tennis
player frequent itemsets. In this example, each hypergraph
becomes a single cluster. Cuts are performed before the
stopping criteria is reached, for example the Agassi/
Sampras and Agassi/Rios links are cut. However, they
are added back in the final step.

This produces the following two clusters:

PERSON Andre Agassi PERSON Martina Hingis

PERSON Pete Sampras PERSON Venus Williams

PERSON Marcelo Rios PERSON Anna Kournikova

PERSON Mary Pierce

PERSON Serena

The TDT data produces one huge hypergraph containing
half the clusters and several independent hypergraphs.
Most of the small hypergraphs not partitioned. One that
does become multiple clusters is shown in Fig. 5. Here, the
link between Joe Torre and George Steinbrenner (shown
dashed) is cut. This is not the weakest link, but the attempt
to balance the graphs causes this link to be cut rather than
producing a singleton set.

This is a sensible distinction. For those that don’t follow
US baseball, in 1998, George Steinbrenner owned and Joe
Torre managed the New York Yankees. Darryl Strawberry
and David Cone were star players. Tampa, Florida is where
the Yankees train in the spring. During the January to April
time frame, the players and manager were in Tampa
training, but George Steinbrenner had to deal with repairs
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to a crumbling Yankee Stadium back in New York—thus,
the end result does reflect what really happened.

3.4 Mapping to Documents

The preceding process gives us reasonable topics. However,
the original goal of supporting analysis of news requires
allowing analysts to drill down from a topic to the stories
making up that topic. We could trace back to the source
data, tracking each frequent itemsets directly to its set of
supporting documents. This has two problems:

1. A document can be responsible for multiple frequent
itemsets for evaluating against the TDT2 criteria we
need to identify a single topic for each document and

2. A document may relate to a topic, but not contain
the all the entities of any of the frequent itemsets.

We instead use the fact that the topic itself, a set of
named entities, looks much like a Boolean query. We use
TFIDF6 as a distance measure between a document and a
topic, then choose the closest topic for each document. (In
practice, we also use cutoffs when a document isn’t close to
any topic and allow multiple mappings if it is close to
many.) Note that this calculated with named entities; we
need not refer to the full text.

3.5 Combining Clusters Based on
Document Mapping

Although the clustered topics appeared reasonable, the
segments were too fine-grained with respect to the TDT
human-selected topics. For example, we separated men’s
and women’s tennis; the TDT human-defined topics had
this as a single topic.

We found that the topic-to-document mapping provided
a means to deal with this. Many documents were close to
multiple topics. In some cases, this overlap was common
and repeated; many documents referenced both topics (the
tennis example was one of these). We used this to merge
topics, giving a final tennis topic of:

PERSON Andre Agassi

PERSON Martina Hingis

PERSON Mary Pierce

PERSON Pete Sampras

PERSON Venus Williams

PERSON Serena

PERSON Marcelo Rios

PERSON Anna Kournikova

These relationships capture two different types of over-

lap between topics. In the first, marriage, the majority of

documents similar to either topic are similar to both. In the

second, parent/child, the documents similar to the child are

also similar to the parent, but the reverse does not

necessarily hold. The tennis clusters were a marriage merge.

A graphic description of the types of relationships is given

in Fig. 6. The calculation of these values is somewhat more

complex as it also uses negative relationships.

3.5.1 Marriage Relationship Calculation

The marriage similarity between clusters a and b is defined

as the average of the product of the TFIDF scores for each

document across the clusters, divided by the product of the

average TFIDF score for each cluster:

Marriageab ¼

P
i2documents

TFIDFia�TFIDFib

NP
i2documents

TFIDFia

N

P
i2documents

TFIDFib

N

:

This is again amutual information style ofmetric. Intuitively,

if a document is in a and not in b, that document contributes 0

to the sum in the numerator—if the clusters have no overlap,

the numerator is 0. Since the TFIDFmeasure is continuous, it

ismore complex. Basically, if a document is similar to a and b,

it contributes to the numerator and, if it is dissimilar to both,

it doesn’t contribute to the denominator. If the TFIDF values

were assigned randomly (no particular correlation, either

positive or negative, between a and b), the expected value for
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6. The TFIDF weight between a document i and topic t is calculated as
follows: [29]

TFIDFit ¼
P
k2t

tfik �ðlogðN=nkÞÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2tðlogðN=njÞÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2tðtfijÞ

2ðlogðN=njÞÞ2
q ;

where tfik is the term frequency (number of occurrences) of term k in i, N is
the size of the corpus, and nk is the number of documents with term k.

Fig. 4. Hypergraph of tennis player frequent itemsets.

Fig. 5. Hypergraph of New York Yankees baseball frequent itemsets.



Marriageab would be 1. Values less than 1 imply a negative

correlation between the clusters.
Based on experiments on the TDT2 training set, we chose

a cutoff of Marriageab � 30 for merging clusters. This is not

a transitive measure; this could pose a problem where

clusters a and b are marriages, b and c are marriages, but a

and c are not. However, to merge clusters, we take a union

of their named entities, not the related documents. Since

topic identifiers need not partition the set of entities, the

lack of transitivity is not a practical issue (we get two topics

from the original three). We merge into a single cluster

where such transitivity exists.
We had 47 pairs with similarity greater than 30 for the

marriage relationship in the TDT data. The two examples

with highest similarity are given in Table 3. Most consisted

of two topics; however, one each contained three, five, and

six topics; reducing the total number of topics by 36. The

largest of these merges the various weather forecasters

(originally individual topics) into the single group shown in

Table 7.

3.5.2 Parent/Child Relationship Calculation

The parent/child relationship is similar, but nonsymmetric.

It captures the relative similarity between child documents

and the parent. For example, if a is a large cluster and b is

small, they would not be similar under Marriageab as the

first term in the denominator would dominate. The parent/
child relationship similarity is calculated as follows:

ParentChildpc ¼

P
i2documents

TFIDFip�TFIDFic

NP
i2documents

TFIDFic

N

:

This metric ranges from 0 to 1, with a value of 1 indicating
that everything in the child is contained in the parent. We
calculate the parent/child relationship after the marriage
clusters have been merged. Merging the groups is again
done by a union of the named entities.

The Parent/Child relationship gave 16 pairs with a
similarity greater than 0.3 in the TDT data. These are
divided into seven hierarchies. Many marriage and parent/
child relationships overlapped; seven parent/child pairs
remained after merging with the marriage relationship. The
three highest similarity pairs (note that the India/Pakistan
topic has two children) are given in Table 4.

Note that there is nothing document-specific about these
methods. The same approach could be applied to any
market basket problem.

3.6 Parameter Settings

TopCat has several parameters whose adjustment affects
results (Table 5). The results are not that sensitive to
changes in most parameters. We now discuss how the
default values were chosen, effects of modifying those
parameters, and suggestions for practical uses.

The first three parameters, used in data preparation,
affect a very small number of items and can be checked
manually. The frequent item cutoff eliminated only United
States and Clinton in the TDT2 evaluation set. In the full
TDT2 data set, Washington was also dropped. There were
only five items with support between 4 and 5 percent. This
cutoff eliminates items that are so frequent as to skew the
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TABLE 4
Topics with Greatest Similarity under Parent/Child Relationship

TABLE 3
Topics with Greatest Similarity under Marriage Relationship



results and that contain little semantic information (bylines
in news articles are a common example.) The name
translation parameters produce a small number of items
(six in the TDT data set), but, as they are frequent, it has a
substantial impact on the results. Most are straightforward
(e.g., sports team full names versus short names, such as
New York Rangers versus Rangers); these are frequently
abbreviated in short articles and are missed by the single
document natural-language approach. The only question-
able translation was Korea to South Korea; a sample of the
documents affected showed this to be appropriate. While
we have found no need to adjust these for other corpuses, a
simple sanity check when moving to a new type of data is
appropriate.

The support level and filtering criteria for frequent
itemsets are perhaps the most difficult parameters. The
filtering criteria were set empirically using the TREC Wall
Street Journal data set and a continuously varying collection
of broadcast news, and proved quite resilient to adjust-
ments. They are self-adjusting as the support level and data
set change. However, the evaluation was sensitive to
changes in the support level. Topics that are discussed in
a few stories disappear as the support level increases. While
okay for many applications (e.g., a top 10 list of topics), it
posed problems for the TDT2 test. However, at extremely
low support levels, near-duplicate stories cause the number
of frequent itemsets to explode. This is a particular problem
with small data sets where near-duplicate stories are likely,
e.g., identifying topics in the results of a query. We are
currently working on dynamic approaches to setting
minimum support based on the relative number of k and
kþ 1 itemsets.

Topic identification was quite insensitive to changes in
the cutoff and minimum overlap parameters. For example,
varying the cutoff from 0.4 to 0.6 produced 169 versus
177 topics. The added topics were of little significance.
Varying the overlap from 0 to 0.65 (at cutoff 0.5) increased
the number of items in the 175 topics from 453 to 521, and
generated two additional topics.

The marriage and parent/child parameters had a
significant effect on the TDT training data. The marriage
cutoff of 30 was a reasonably clear choice—on the training

and test data sets, there were few topics with similarity in

the range 25 to 35. The parent/child similarity also had a

natural cutoff at 0.3; the highest similarity was 0.4 and the

closest to 0.3 were 0.27 and 0.35. In practice, these steps are

unnecessary as the combined topics generally make sense

as independent topics. These steps are more useful to show

the relationship between topics (see Fig. 7). However, they

were needed to give the topic granularity required for the

TDT2 training (but not evaluation) data, as discussed in

Section 4.

4 EXPERIMENTAL RESULTS: TOPCAT VERSUS

HUMAN-DEFINED TOPICS

Evaluating TopCat is difficult. The goal is to identify a topic

that makes sense to a person, a subjective measure. The only

large document corpus we are aware of with clearly defined

topics is the Topic Detection and Tracking program [10]. This

corpus contains January to June 1998 news from two

newswires, two televised sources, and two radio sources. It

has over 60,000 stories, themajority from the newswires. One
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TABLE 5
TopCat Parameters

Fig. 7. Display of relationships found in broadcast news.



hundred topicswere chosen andall stories on each topicwere
manually identified, covering about 10 percent of the corpus.
An example topic is Bombing AL Clinic, about the 29 January
1998 bombing of a clinic in Alabama, and the following
investigation. (TopCat identified this as “Alabama Birming-
ham, Eric Robert Rudolph”—Rudolph was a prime suspect.)
Details on the construction of the corpus are given in [39].
Other commonlyusedcorpuses, suchasReuters-21578 [40] or
usenet newsgroups, donot define topics in away that enables
an objective topic discovery evaluation.

While comparing theTopCat-produced topic identifiers to
the human-defined TDT2 labels would be subjective, the
quality of topics can be measured by treating this as a
clustering problem. The TDT2 program addressed clustering
and classification of documents. Since clustering documents
into topics (the Topic Detection task of TDT) enumerates
topics, the human-generated TDT test corpus provides a
useful testbed for TopCat. Each topic has a corresponding
group of documents—comparing the cluster with the actual
documents gives miss and false alarm ratios. The TDT2
program combines the probability of failing to retrieve a
document that belongs with the topic (PMiss) and the
probability of erroneously matching a document to the topic
(PFalseAlarm) into a single cost of detection orCDetect score [41]:

CDetect ¼ CMiss � PMiss � Ptopic þ CFalseAlarm � PFalseAlarm �
ð1� PtopicÞ

where:

PMiss ¼
P

R jR�HðRÞj=
P

R jRj
PFalseAlarm ¼

P
R jHðRÞ �Rj=

P
R jS �Rj

R is the set of stories in a reference target topic.

HðRÞ is the set of stories in the TopCat-produced

topic best matching R.

Ptopic ¼ 0:02 (the a priori probability of a story in the

corpus being on a given topic.)
CMiss ¼ 1 (the chosen cost of a miss.)

CFalseAlarm ¼ 1 (the chosen cost of a false alarm.)

The TDT2 evaluation process specifies that the mapping
HðRÞ between TopCat-identified topics and reference topics
be defined as the mapping that minimizes CDetect for that
topic. This is calculated as follows:

HðRÞ ¼ argmin
H

fCDetectðR;HÞg

CDetectðR;HÞ ¼ CMiss � PMissðR;HÞ � Ptopic þ CFalseAlarm �
PFalseAlarmðR;HÞ � ð1� PtopicÞ

PMissðR;HÞ ¼ NMissðR;HÞ=jRj
PFalseAlarmðR;HÞ ¼ NFalseAlarmðR;HÞ=jS �Rj
NMissðR;HÞ ¼ the number of stories in R that are not in

H.

NFalseAlarmðR;HÞ¼ the number of stories in H that are not

in R.

jXj ¼ the number of stories in the set X of

stories.

S ¼ the stories to be scored in the evaluation

corpus being processed.

For the TDT2 competition, the corpus was divided into
separate training, test (parameter setting), and evaluation
data. Using the TDT2 evaluation data (May and June), the
TopCat CDetect score was 0.0062 using named entities

alone, with improvements up to 0.0053 when a selection
of keywords in the categories DISASTERS, TRIALS,
VIOLENCE, and US_POLITICS were added (as described
in Section 3.1.2). This was comparable to the results from
the TDT2 topic detection participants [42], which ranged
from 0.0040 to 0.0129. This shows that TopCat’s perfor-
mance at clustering is reasonable. We will discuss this in
more detail in Section 4.1; however, first we give more
discussion of the results of TopCat on the TDT2 corpus.

Of particular note is the low false alarm probability of
TopCat (0.0021); further improvement here would be
difficult. The primary impediment to a better overall score
(contributing � 2=3 of the CDetect score) is the miss
probability of 0.19. Performance of TopCat on the entire
six month TDT2 corpus was substantially lower—a CDetect

score of 0.011. The false alarm probability stayed similar
(0.0026), but the miss ratio went to 0.42. The TDT2
participants experienced similar results—this is primarily
due to several large, evolving topics that were in the
training and test sets but not part of the evaluation criteria.

The main reason for the high miss probability is the
difference in specificity between the human-defined topics
and the TopCat-discovered topics. (Only three topics were
missed entirely; containing one, three, and five documents.)
Many TDT2-defined topics corresponded to multiple
TopCat topics. Since the TDT2 evaluation process only
allows a single system-defined topic to be mapped to the
human-defined topic, over half the TopCat-discovered
topics were not used, and any document associated with
those topics was counted as a “miss” in the scoring. In
testing against the full six months of data, over half of the
misses were associated with three big topics: The East Asian
economic crisis, the problems in Iraq, and the 1998 Winter
Olympics. TopCat often identified separate topics corre-
sponding to the human-selected TDT2 topic. For example,
TopCat identified both an overall Iraq conflict topic (shown
later at the top of Table 7), as well as a US specific topic of
Madeleine Albright/Iraq/Middle East/State. The East Asian
economic crisis was even more significant, with TopCat
identifying topics such as Jakarta/Suharto (Indonesia) and
IMF/International Monetary Fund/Michel Camdessus in
addition to the following “best” topic (lowest CDetect score):

LOCATION Asia

LOCATION Indonesia

LOCATION Japan

LOCATION Malaysia

LOCATION Singapore

LOCATION South Korea

LOCATION Thailand

This is the best Asian economic crisis topic, but it has a miss
probability of 0.61. Including all 14 TopCat topics that
match the Asian economic crisis better than any other topic
would lower the miss probability to 0.22. Although various
TopCat parameters could be changed to merge these, many
topics that the ground truth set considers separate (such as
the world ice skating championships and the winter
Olympics) would be merged as well.

The TFIDF-based topic merging of Section 3.5 addressed
this, substantially improving results in the training set.
Interestingly, topic merging did not have a significant effect
on the evaluation—without it, TopCat would have had
CDetect ¼ 0:0061. This results from the way the evaluation
set was constructed: The evaluation set did not include
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topics found in the training and test sets, eliminating big
evolving topics.

The miss probability is a minor issue for topic identifica-
tion. Our goal is to identify important topics and to give a user
the means to follow up on that topic. The low false alarm
probability means that a story selected for follow-up will
give good information on the topic. For the purpose of
understanding general topics and trends in a corpus, it is
more important to get all topics and a few good articles for
each topic than to get all articles for a topic.

4.1 Comparison with TDT2 Systems

TopCat and the TDT2 participant systems are not directly
comparable, as the TDT2 problem is online detection rather
than TopCat’s retrospective topic identification. The TDT2
systems are required to determine if a document fits in to an
existing cluster or forms a new cluster after seeing 10 files
beyond that document, where a file contains on average
36 stories (roughly corresponding to a news broadcast).
Later work has shown that online detection does not make
the TDT2 problem significantly harder [43]. The two TDT2
systems that were evaluated with both 10 and 100 file
decision deferral verify this—the UIowa1 system showed a
1.5 percent improvement, but the UPenn1 system per-
formed 49 percent worse with the longer deferral.

Table 6 shows the performance of TopCat and the eight
TDT2 systems. TopCat figures are shown for named entities
only, named entities with the addition of a set of keywords,
and addition of the keywords expanded using WordNet
(Section 3.1.2). TopCat is competitive at topic detection and
provides a topic labeling ability not found in the other
systems. This justifies our belief that the topics identified
are comparable to what a person would expect.

4.2 Computational Requirements

Our implementation of TopCat is designed to test the
concepts and was not optimized for performance. However,
the speed of topic categorization is important. TopCat’s use
in the GeoNODE system [44] requires interactive clustering
of user-defined subsets.

We would like to compare TopCat with document
clustering systems. However, few of these systems report
execution time figures. The web query clustering system
Grouper [21] reports around 500 documents per second, but
only for small numbers of documents (up to 800). How this
would extend to large corpora that cannot fit in memory is
unknown. The TDT topic detection reports do not include
execution time. Informal discussions with TDT participants
lead us to believe that TopCat is fast compared to the TDT
systems.

We provide figures for the execution time of TopCat in
clustering the entire TDT2 corpus. The TopCat prototype is
designed for flexibility, not performance. All steps but
named entity tagging and hypergraph clustering are
implemented in SQL on a transaction-oriented commercial
database. These times should be viewed as extreme upper
bounds on the computational requirements. The times
required on a Sun Ultra1/140 are:

1. Named Entity Tagging the entire 144MB TDT2
corpus took under 21 hours using Alembic. The
machine received other use during this time, the

normal rate is 128KB/minute. Alembic is a research
prototype for applying machine learning techniques
to identifying concepts in data. Existing commercial
named entity tagging software is faster.

2. Coreference mapping required six hours 49 minutes.
As others are working on better cross-document
coreferencing, we have not tried to optimize this
process.

3. Frequent itemset computation took 76 minutes. This
can be improved using commercial data mining
tools, as well as association rule algorithms specia-
lized for text [45].

4. Hypergraph clustering of the TDT2 data took just
under 5 minutes.

5. TFIDF-based cluster merging of clusters took 67 min-
utes. This was necessary to get good results on the
TDT2 training data, but is not critical in practice.

Although the total process is computationally expensive,
the most expensive parts are data preparation: named entity
tagging and cross-document coreference computation.
These are only done once per document and, in many
systems (including GeoNODE), are done anyway for
Information Retrieval and other purposes. The actual topic
identification process is run more frequently: It is often
interesting to manually define a subset of the corpus (e.g., a
specific range of dates) and identify topics within that
subset or to identify new topics and changes to existing
topics as new articles are loaded. The most expensive part
of the topic identification, computing frequent itemsets, can
be significantly improved by raising the support threshold.
If the goal is to identify only the 5-10 most important topics
in a corpus, this is effective.

The current proof of concept implementation has proven
adequate for real-world use in GeoNODE. Loading and
tagging data is done as a background process. Topic
identification on the entire corpus is done as a batch process
and has been applied to over 300,000 documents. GeoNODE
also uses TopCat to identify topics in a small subset (e.g.,
several hundred documents in a large topic or the results of a
user query) on demand. While not truly interactive, it is
“asynchronous interactive”—on the order of a minute,
acceptable if a user can perform other tasks while waiting
for topic identification results. A performance-oriented
implementation of the frequent itemset generation and
TFIDF-mapping stages (e.g., using commercially available
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tools) would make such small-scale topic identification truly
interactive.

5 CONCLUSIONS AND FUTURE WORK

We find the identified topics reasonable not only in terms of
the TDT2-defined accuracy, but also understandable identi-
fiers for the topic. For example, the most important three
topics (based on the support of the frequent itemsets used in
generating the topics) are shown in Table 7. The first (Iraqi
arms inspections) is recognizable and gives information on
the key players, although knowing that Richard Butler was
head of the arms inspection team, Bill Richardsonwas theUS
Ambassador to the UN, and SaddamHussein was the leader
of Iraq may require viewing the documents; this shows the
need to access documents based on the topic identifier. The
third is also reasonably understandable: Events in and
around Yugoslavia (note that this is a year before the NATO
attacks on Serbia). The second topic is an amusing demon-
stration of the first half of the adage “Everybody talks about
the weather, but nobody does anything about it.” (Most
television broadcasts included a weather segment.)

TopCat has since been applied to a variety of other
corpuses as part of MITRE’s GeoNODE project [44]. This
includes non-English sources, Web-harvested data, broad-
cast news, newsgroups, and e-mail digests. The scope of the
data has ranged from general (e.g., CNN broadcasts) to
highly specialized (e.g., ProMed medical abstracts). The
results are encouraging. While named entity extraction is
sensitive to the type of corpus, TopCat is relatively
insensitive to errors in named entity tagging. More critical
to TopCat is the segmentation of stories—if many docu-
ments contains multiple unrelated stories, the TopCat
results are unreliable. While segmentation of broadcast
news has received considerable interest [46], [47], segmen-
tation of other types of data (e.g., web pages, text) may also
be a useful research topic. In spite of these difficulties,
TopCat has proven useful in practice—GeoNODE has been
(subjectively) evaluated and judged useful in real-world
analytical environments [48].

Some of the components of TopCat have proven useful
in ways beyond the original goals. The relationships
described in Section 3.5 were developed to further coalesce
the generated topics. We have also used them to construct
hierarchies. Although their have been efforts to classify
documents into hierarchies [49], construction of hierarchies
has been a manual process.

Fig. 7 shows display of Parent/Child relationships from
the GeoNODE project. This is taken from a collection of
broadcast news, covering a longer period than the TDT
data. Moving the mouse over a node shows the mnemonic
for that topic, allowing a user to browse the relationships.
The node size reflects the number of documents in the topic.

We have also tried another form of hierarchical cluster-
ing using TopCat. Given a large topic, we run TopCat
against only documents in that topic. The high support
threshold ignores the named entities that define the
topic—the resulting topic identifiers are somewhat obscure
as they are missing the most important named entities in
the topics. However, within the context of a hierarchy, they
are understandable and provide a useful drill-down
capability.

The clustering methods of TopCat are not limited to
topics in text; any market basket style problem is amenable
to the same approach. For example, we could use the
hypergraph clustering and relationship clustering on mail-
order purchase data. This extends association rules to
higher-level related purchase groups. Association rules
provide a few highly specific actionable items, but are not
as useful for high-level understanding of general patterns.
The methods presented here can be used to give an
overview of patterns and trends of related purchases, to
use (for example) in assembling a targeted specialty catalog.

5.1 Future Work

One key problem we face is the continuity of topics over
time. This raises two issues:

. Performance: Can we incrementally update the
topics without looking at all the old data? The data
mining community is addressing this for association
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rules (for two examples, see [50] and [51]); this
should apply directly to TopCat.

. New knowledge: How do we alert the user when
something interesting has changed, either new
topics or new information added to a topic?

We find the latter issue to be the greater challenge. For
frequent itemsets,we can trackwhen anewdocument results
in a new (or modified) itemset. However, carrying this
through the hypergraph partitioning and clustering is a
difficult problem.

Another issue is using additional types of information.
For example, the Alembic project is working on extracting
events. How to best use this information is an open
question. Grouping events into types (as we tried with
keywords) may or may not be appropriate.

We have mapped documents into the market basket
model using named entities. However, named entity
processing really gives us a typed market basket (e.g.,
LOCATION or PERSON as types). We have used types only
to distinguish between different entities with the same
name (e.g., Clifton the person versus Clifton the city.) There
may be additional ways to utilize this information. Another
possibility is to use other generalizations (e.g., a geographic
thesaurus equating Prague and Brno with the Czech
Republic) in the mining process [52]. Further work on
expanded models for data mining would have significant
benefit for data mining of text.
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