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Abstract

We present a method for a reliable detection of “un-
usual” sets of episodes in the form of many pattern se-
quences, scanned simultaneously for an occurrence as a
subsequence in a large event stream within a window of size
w. We also investigate the important special case of all per-
mutations of the same sequence, which models the situation
where the order of events in an episode does not matter, e.g.,
when events correspond to purchased market basket items.
In order to build a reliable monitoring system we compare
obtained measurements to a reference model which in our
case is a probabilistic model (Bernoulli or Markov). We first
present a precise analysis that leads to a construction of a
threshold. The difficulties of carrying out a probabilistic
analysis for an arbitrary set of patterns, stems from the pos-
sible simultaneous occurrence of many members of the set
as subsequences in the same window, the fact that the dif-
ferent patterns typically do have common symbols or com-
mon subsequences or possibly common prefixes, and that
they may have different lengths. We also report on extensive
experimental results, carried out on the Wal-Mart trans-
actions database, that show a remarkable agreement with
our theoretical analysis. This paper is an extension of our
previous work in [8] where we laid out foundation for the
problem of the reliable detection of an “unusual” episodes,
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but did not consider more than one episode scanned simul-
taneously for an occurrence.

1 Introduction

Detecting subsequence patterns in event sequences is im-
portant in many applications, including intrusion detection,
monitoring for suspicious activities, and molecular biology.
Whether an observed pattern of activity is significant or not
(i.e., whether it should be a cause for alarm) depends on
how likely it is to occur fortuitously. A long enough se-
quence of observed events will almost certainly contain any
subsequence, and setting thresholds for detecting significant
patterns of activity is an important issue in a monitoring sys-
tem.

In order to decide whether a particular sequence of
events in the monitored event sequence is significant one
must compare it to a reference model. In our work the ref-
erence model is a probabilistic model either generated by
a memoryless (Bernoulli) source or a Markov source. The
question is when is a certain number of occurrences of a
particular subsequence in a monitored even sequence un-
likely to be generated by the reference model (i.e., indicative
of suspicious activity or statistically significant event)? A
quantitative analysis of this question allows one to compute
a threshold on-line while monitoring the event sequence in
order to detect significant patterns. By knowing the most
likely number of occurrences and the probability of devi-
ating from it, we can compute a threshold such that the
probability of missing real unusual activities is small. Such
a quantitative analysis can also help to choose the size of
the sliding window of observation. Finally even in a court
case one cannot consider certain observed “bad” activity as
a convincing evidence against somebody if that activity is
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quite likely to occur under the given circumstances. There-
fore it is very important to quantify such probabilities and
present a universal and reliable framework for analyzing a
variety of event sources.

In [10] Mannila et al. introduced the problem of
finding frequent episodes in event sequences, subject to
observation-window constraint, where an episode was de-
fined as a partially ordered collection of events, that can be
represented as a directed acyclic graph. The paper [10] de-
fined the frequency fr(a,s,win) of an episode « as the
fraction of windows of length win in which the episode
occurs in an event sequence s. Given a frequency thresh-
old min_fr, [10] considered an episode to be frequent
if fr(a,s,win) > min_fr. In the framework of [10],
our problem can be stated as follows. Given an episode
o, what window size win and what frequency threshold
man_fr should we choose to ensure that the discovered fre-
quent episode is meaningful? Observe that for an appro-
priately low frequency min_fr and large window size win
the episode will certainly occur in the reference model. Our
problem can also be stated as follows. Given a collection
of frequent episodes C(w), discovered using the algorithm
given in [10], what is the rank of the episodes with respect
to their significance?

In our paper [8] the problem of the reliable detection of
unusual episodes was investigated, where we considered an
episode in the form of a single sequence occurring as an or-
dered subsequence of a large event stream within a window
of a given fixed size. This kind of episode is called a “se-
rial episode” in the terminology of [10], and we henceforth
adopt this terminology. In [8] we proposed a method for
reliable detection of significant episodes, where as a mea-
sure of significance we used 27 (n,w,m) the number of
windows of length w which contain at least one occurrence
of serial episode S of length m as a subsequence in event
sequence 1" after n shifts of the window. We proved that
appropriately normalized 7 (n,w,m) has the Gaussian
distribution, where the expected value E[Q7(n,w, m)] =
nP3(w,m) and P?(w,m) is the probability that a serial
episode S of length m occurs at least once in a window
of length w in an event sequence 7' over an alphabet A.
We also showed that the variance Var[Q7(n,w,m)] <
cen [PF(w, m) — (P (w,m))?] for ¢ > 0. Given a refer-
ence model (Bernoulli or Markov), and for a given probabil-
ity 8(b), we presented the upper threshold for detecting sig-

nificant episodes 7, (w) = P3(w,m) + by Varl@ (n.w,m))

where P3(w,m) and Var[Q7(n,w,m)] depe;lld on the
probabilistic model and episode type. For a given proba-
bility 3(b) of the cumulative normal probability distribution

function, we select b such that P (M > Ty (w)) <

n
B(b). That is, if one observes more than 7,(w) - n oc-
currences of windows with certain episodes, it is highly

unlikely that such a number is generated by the reference

source (i.e., its probability is smaller than 5(b)). The quan-
Q7 (n,w,m)

tity ! corresponds to the frequency fr(S,T,w)
[10] and is an estimator of P7(w, m) denoted P2 (w, m).

While developing the formula for P?(w, m) we found
a formula for the set of all distinct windows W3 (w,m)
of length w containing a serial episode S' of length m at
least once as a subsequence. The importance of W3 (w, m)
stems from the fact that P2 (w,m) = 3=, c\y3 (. m) P()
for the Markov model of an arbitrary order including 0-th
order (Bernoulli), where P(z) is the probability of z as a
string of symbols of length w in a given model. The advan-
tage of the Bernoulli model versus the first order Markov
or higher is that for the Bernoulli model P3(w,m) can be
computed efficiently exploiting the structure of W3 (w, m)
and the fact that the model requires only |.A| probabilities
of symbols of the alphabet .A. Therefore in [8] we focused
on the Bernoulli model for which we gave an efficient dy-
namic programming method for computing P (w, m). Us-
ing generating functions and complex asymptotics we pre-
sented an asymptotic approximation of P¥(w,m), which
is of the form P3(w,m) = 1 — O(p®) for large w and
0 < p < 1. In experiments, we chose two apparently non-
memoryless sources (the English alphabet and the web ac-
cess data) and showed that, even for these cases, P- (w,m)
closely approximated the actual PZ(w,m), which proved
that the memoryless assumption did not limit the practical
usefulness of the formula. We tested 7,,(w) by artificially
injecting “bad” episodes into the monitored event sequence
and observed that 7, (w) did indeed provide a sharp detec-
tion of intentional (bad) episodes. Our paper [8] laid out
foundations, but did not consider the case of detecting more
than one serial episode simultaneously.

This paper builds on [8] by extending it to the case of
an arbitrary number of serial episodes, monitored simulta-
neously for an occurrence, including the important special
case of all permutations of the same serial episode, called
a “parallel episode” in the terminology of [10]. The paral-
lel episode case captures situations where the ordering of
the events within the window of observation does not mat-
ter, e.g., the events correspond to basket items scanned by
cashier. More formally, we analyze episodes in one of the
following forms:

1. An arbitrary set of episodes S = {S1,5,...,S|g/}
where every S; of length m; is a serial episode for 1 <
1 < |S| and by an occurrence of the set S we mean a
logical OR of occurrences of members of S within a
window of size w.

2. Set of all distinct permutations of an episode S =
S[1]S[2],...S[m] of length m (parallel episode),
where by an occurrence we mean a logical OR of oc-
currences of permutations of .S.
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The reason we distinguish the parallel episode case is
because we will take advantage of the structure of per-
mutations of S to design an efficient algorithm instead
of representing the parallel episode as a set of serial
episodes. Thus, the goal of the current paper is to quantify
O3 (n,w, my,ma, ... ,mg|) the number of windows con-
taining at least one occurrence of S = {51, 5s,...,S|g/}
as a subsequence within a window of size w in a event
sequence T' over an alphabet 4. This analysis leads to a
formula for the threshold for detecting significant sets of
episodes. In the full version of this paper [3] we prove that
O3 (n,w,my,ma, ... ,myg|) is Gaussian. In order to com-
pute P3(w,my, ma, ... ,m g|) the probability that a win-
dow of length w contains an occurrence of S we need a for-
mula for W3 (w, my, ma, ..., myg)) the set of all windows
of length w containing an occurrence of S as a subsequence.
However a considerable source of difficulty is the fact that
W3 (w,my,ma, ..., myg)) for [S| > 1 is not equal to the
enumeration of sets of W= (w, m;) for each S; € S because
in general W3(w, m;) N W3(w,m;) # 0 for i # j where
i,7 < |S| and considering W3(w,m;) and W3(w, m;) in-
dependently would lead to a failure of the probabilistic anal-
ysis of P?(w, my,ma, ... ,myg|) due to double counting
of respective probabilistic events. To appreciate the diffi-
culty of this extension, consider the much-simplified case
when there are only two pattern sequences ( S = {57, 52}
) and no symbol is common to S7 and Ss. Even in this case
the set of windows of length w containing 57 as a subse-
quence and the set of windows of length w containing S
as a subsequence do have some elements in common, i.e.,
W3 (w, my) N W3 (w, ms) # () for appropriately large w.
Add to this the fact that the different patterns typically do
have common symbols or common subsequences or possi-
bly common prefixes, that they may have different lengths,
and the problem becomes fraught with nasty interactions
that prevent any straightforward analytical solution to the
case |S| > 1.

The main contribution of the current paper is a compu-
tational formula for P7(w, my, ma, . .., mg)) for and arbi-
trary set of episodes including the special case of the par-
allel episode. We provide a recurrence system for con-
structing W3(w, my, ma, . .. ,mys|). Because the recur-
rence contains conditional statements representing inter-
actions of symbols of members of S we cannot find a
practical analytical solution to the recurrence. Therefore
we propose an efficient algorithmic method for enumer-
ating W3(w, m1,ma, ..., mg|) using recursion graphs,
which leads to a formula for P (w,my, mo, ..., mg)) for
an arbitrary order of Markov model. However, we fo-
cus on Bernoulli model in this paper because of its com-
pactness and efficiency. Our current work builds on [8]
and provides the first probabilistic analysis that quanti-
fies Q7 (n,w, my,ma,... ,m|g|) the number of windows

of length w containing at least one occurrence of S =
{51, 82,...,5|g|} as a subsequence. This analysis allows
to compute the threshold for detecting significant sets of
episodes scanned simultaneously for an occurrence. We
also proposed a new O(nlog(m)) tree based algorithm for
discovering parallel episodes, presented in the full version
of the paper [3]. We applied our theoretical results by run-
ning an extensive series of experiments on real data. We
used a part of Wal-Mart sales data for the years 1999 and
2000. We first show that our formulas for the probabil-
ity closely approximate the experimental data. Then we
demonstrate an application of the upper threshold by keep-
ing inserting a given episode into random positions in the
event sequence, until the episode gets detected as signifi-
cant through our threshold mechanism (cf. Fig. 9).

The paper is organized as follows. In section 2 we
present our main results containing theoretical foundation.
Section 3 contains experimental results demonstrating ap-
plicability of the derived formulas. Proofs were omitted be-
cause of space limitations and are included in the full ver-
sion of the paper in [3]. Interested readers can visit our
on-line threshold calculator at http://www-cgi.cs.
purdue.edu/cgi-bin/gwadera/demo.cgi for a
demonstration of the reliable threshold computation.

2 Main Results

Given an alphabet A = {ai,as,...,a4} and a
set of patterns S = {S5,5,...5g/} where S; =
Si[1]85[2] . .. Si[m;] and S;[j] € Afor1 < i < |S|, we are
interested in occurrences of members of S as a subsequence
within a window of size w in another sequence known as the
event sequence T = T[1]T[2] .. ..

We analyze the number of windows of length w con-

taining at least one occurrence of S when sliding the
window along n consecutive events in the event se-
quence 7', where by an occurrence of S we mean a
logical OR of occurrences of S1,S52,...,5s]. We use
Q3 (n,w,m1,ma,...,mg,S, A) to denote this number,
that can range from O to n.
Notation: Throughout the paper, whenever A, S or
m1,ma2, ..., mg| are implied and we do not reference them
in our notations, we simplify our notations by dropping
them accordingly using Q7 (n, w), W3(w) and P?(w) in-
stead. We also occasionally use index m; —k to mean “drop-
ping the last k symbols of S;”, e.g., P7(w, m; — k, ms) im-
plies a pattern that is the prefix of S; of length m; — k and
that the second pattern is all of Ss.

Given a probabilistic model of the reference source
(in this paper we use Bernoulli model with probabil-
ities P(a;) for a; € Ayi = 1,2,...,|A]), a fre-
quent episode S, Q7(n,w) and a probability 3(b) (e.g.,
B(b) = 1075) we compute the upper threshold 7, (w) for
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P (W > Tu(w)) < B3(b), using the equation system

as follows
ru(w) = PA(w) + WYL
_2
By = = [Le dt

which follows from the fact that Q7 (n,w) is Gaussian as
we proved in [3]. Also, P?(w) and Var[Q?(n,w)] depend
on the episode type and the probabilistic model (Bernoulli
or Markov). Once the threshold 7, (w) is computed if
M > 7, (w) then the probability that the episode S
is not significant is less than 3(b), i.e., the probability of an
false alarm is less than 3(b). Given a collection of frequent
episodes C(w) we can rank their significance using 3(b).

For the sake of the presentation we focus throughout the
paper on the case where either S = {S1,.52}, or S is the
set corresponding to a parallel episode S but our deriva-
tions will easily be seen to generalize to an arbitrary set of
episodes S.

2.1 Analysis of P?(w)

Let W¥(w, m1,m2) be the set of all possible dis-
tinct windows of length w containing S; or Sy at
least once as a subsequence then P7(w,mi,ms) =
Z.TGWH(w,ml,mg) P(IL‘)

Because in the memoryless model P(z) is a product of
individual probabilities of symbols, to any recursive for-
mula for W3 (w, my, ms) there corresponds a similar for-
mula for P3(w, m1,ms) (and vice-versa). We now show
that P3(w, my, my) for the set A = {1, Sy} satisfies the
following recurrence

if Sl [ml] 7& SQ [mg] then

P3(w,my,ms) =

P(S1[m1))P3(w — 1,mq — 1,ma)+
P(SQ[TTLQDPE(U) — 1, mi, Mo — 1)+

(1 — P(Sl[ml]) — P(SQ[WLQ]))PH(’LU — 1,m1, mg)
for w > 0,mi,mg >0

if 51 [ml] = SQ [mg] then
P3(w,my,ms) =

P(Sl[ml])PE(w — 1,m1 — 1,m2 - 1)+
(1 — P(S1[m1]))P?(w — 1,mq,ms)

for w > 0,mi,mg >0

P3(w,0,0) = for w>0
H(O ml,mg) 0 for mi, Mg > 0
H(l,ml, 0)=1 for my >0
(1Om2)—1 for meo > 0
P3(0,0,0) =1

Indeed, consider a window of size w containing S7 or Ss as
a subsequence. Then depending on whether the last sym-
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bols of S; and Sy are equal or not there are two cases.
If Si[m1] # Sa[mq] then there are three cases: either
S1[m4] is the last symbol in the window giving the term
P(Sl[ml])PH(w —1,m; — 1,m2), or SQ[mQ] is the last
symbol in the window giving the term P(Ss[mz]) P> (w —
1,mq,ma — 1), or none of the above which leads to the
term (1 — P(S1[ma]) — P(Sa[ma]))P3 (w — 1,m1, ms). If
S1[mq] = Sa[ms] then there are two cases depending on
whether the last symbol of the window is equal to S1[m1]
or not. From the above discussion it is clear that the shape
of the “recursion graph” is determined by interactions be-
tween symbols in S and Sy, i.e., whether their symbols at
pairs of positions are equal or not. Therefore in order to
find a solution to P7(w, my, my) we have to enumerate all
pairs of indices (i, j) such that P?(k,,7) appears in the
recursion tree (not all such pairs of indices qualify). This
recursion graph is now described more formally (as stated
earlier, in addition to depicting the recurrence, the graph
also describes all elements of W3 (w, m1, ms)).

Let G(S) = (V, E) be an edge-labeled directed graph
defined as follows. The vertex set V' is a subset of all the
pairs (4,7), 0 < i < mq, 0 < j < mo. That subset, as well
as E, are defined inductively as follows.

e (0,0)isinV.

o If (4,7) isin V, i < mq, and S1[i+1] # S2[j+1] then
(1 +1,j) is also in V, and an edge from from (4, j) to
(i +1,7) labeled S1[i + 1] exists in E.

o If (4,j) isin V, j < mag, and S1[i + 1] # Sa[j + 1]
then (4,7 + 1) is also in V, and an edge from (3, j) to
(4, + 1) labeled Sa[j + 1] exists in E.

o If (4,7)isin V,i < my and j < mg, and S1[i + 1] =
Sa[j + 1] then (i + 1,5 + 1) is also in V, and an edge
from (4, j) to (i+1, j+1) labeled Sy [i+1] (= S2[j+1])
exists in E.

e A self-loop from vertex (¢, j) to itself exists and has
label equal to (i) A if i = my or j = meo, (ii) A —
{S1[i + 1]} = {Sa[j + 1]} if i < mq and j < mea.

The following observations, in which we do not count self-
loops towards the in-degree and out-degree of a vertex, fol-
low from the above definition of G(S).

e The in-degree of vertex (0,0) (start vertex) equals
zero, the out-degree of vertices (ma,j), (i, ms) for
i < my,j < mo (end-vertices) equals zero.

e The in-degree and out-degree of every vertex (¢, 7) is
at most three; if S consisted of |S| > 2 serial episodes
then the in-degree and out-degree of any vertex would
be at most |S| + 1.

e |V|=0O(mimz) and |[E| = O(|S|mim).
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Let Edges(path) and Vertices(path) denote the sequence
of consecutive edges and (respectively) vertices in any
path, except that Vertices(path) does not include the last
vertex on path (why this is so will become apparent below).
In what follows, if vertex (i, j) is in Vertices(path), then
we use n; j(path) to denote the number of times the self-
loop at (7, j) is used; if path is understood and there is no
ambiguity, then we simply use n; ; rather than n; ;(path).
Let R be the set of all distinct simple paths (i.e., without
self-loops) from the start-vertex to any end-vertex. Now let
L., be the set of all distinct paths of length w, including
self-loops, from the start-vertex to all end-vertices (that is,
self-loops do count towards path length). Then we have

W3 (w,m1,ma) = {FEdges(path) : path € Ly}

Examples of G(S) are shown in Figure 1 and in Figure 2.

Figure 1. G(S) for S = {ab, cd}

A"2,1

(A—b— )11 A
, )
A™1,2

(A —a)"0.0

Figure 2. G(S) for S = {ab, ac}

Theorem 1 Consider a memoryless source with P(S;[k])
being the probability of generating the k-th symbol of S; €
S = {51, Sa2}. Let also

P(Edges(path)) = H

edgec Edges(path)

P(label(edge)).

Then for m1, ms and w > m; we have

In our experiments, we implemented an efficient dynamic
programming algorithm based on Theorem 1. In section
3.1.2 we present evidence how Theorem 1 works well on
real data by comparing it to the estimate P2 (w) = M
given the actual Q7(n,w). We also solved P?(w) for an
important special case when S consist of all permutations
of one pattern S, which is the case of a parallel episode.
Using Theorem 1 directly to design an algorithm in such
an unordered case would be inefficient because we would
then need to consider a graph having a disastrous |V| =
o(m™).

In order to simplify the graph G(S) that would result
from all permutations, and bring its number of vertices
down to a manageable size (quantified below), we exploit
the structure of a set of all permutations to design a differ-
ent graph. Notice that, for a parallel episode, every path in
‘R is a permutation of symbols in S. In addition, the out-
degree of a vertex is at most m if all symbols of S are dif-
ferent. Furthermore a transition from from P3(k,i,j,...)
to P7(k+1,4,5’,...) takes place for any symbol of S not
seen so far since the order of symbols does not matter. This
observations allow us to introduce a variant of G(S) called
Gy ().

Let G||(S) = (V, E) be a directed edge-labeled graph
defined as follows. The vertex set V' consist of submulti-
sets of size ¢ = 0,1,...,m of the multiset of sorted sym-
bols in S denoted as {S[1], S[2],...,S[m]}. We represent
the submultisets equivalently as binary vectors of the form
(41,42, ..,%m), where i; = 1 if the vertex contains symbol
Sli;] in its submultiset or i; = 0 otherwise. V and E can
be defined inductively as follows.

e (0,0,...,0)and (1,1,...,1)arein V.

o If (i1,d2,...,9m) is V and 3770 i; < m then
(A )isinVifZ’ilz';:ZT:lijJrland
an edge with label equal to {]i’l-S[l],i’Q-S[Z],...,i;n-
Sm]} -

{i1 - S[1],42 - S[2],...,im - S[m]} existsin E.

o A self-loop from vertex (i1, 42, . . ., i) to itself exists
and has label equal to (i) A for (1,1,...,1), (i) A —
Ui, —o{Sli;]} otherwise.

The following observations, in which we do not count self-
loops towards the in-degree and out-degree of a vertex, fol-
low from the above definition of G||(.5).

e The in-degree of the start-vertex (0,0, ...,0) equals
zero, the out-degree of the end-vertex (1,1,...,1)

P3(w, m1,ms) = EpathER P(Edges(path)) Ew—\Edges(path)l ~ equals zero. The in-degree and out-degree of every

g=0
EZ nq,j(path)=g H(i,j)EVertices(path)
(1= P({S1[i + 1]} U {Salj + 1]}))resPeeh.

vertex is at most m.

o |V|=0(2™)and |[E| = O(|V|m).
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Examples of G (S) are shown in Figure 3 and in Figure 4.
The next theorem is an adoption of Theorem 1 to the case
of a parallel episode.

(A—b— C)’"1,0,0 (A — c)”1.1,0

Figure 3. G (S) for S = abcand A = {a, b, c,d}

(_A_c)nl,(),o (_A_c)’ﬂl,l,o

Figure 4. G (S) for S = accand A = {a,b,c,d}

Theorem 2 Consider a memoryless source with P(S[k])
being the probability of generating the k-th symbol of S
where S is a parallel episode with

P($) = ][ P(si)

then for all m and w > m we have

Piw) =3 mer P(S) 300"
ZZ Ny ig,...,im (Path)=g H(il,ig,...,im)GVertices(path) ’

(1 -P (Uijzo{s[ij]}))nil’iQ"-»im (path)

In our experiments we implemented an efficient dynamic
programming algorithm based on Theorem 2 for comput-
ing P7(w). In section 3.1.1 we presented how Theorem 2
works well on real data where the formula for P (w) agrees
with P2 (w) on the Wal-Mart transactions.

3 Experiments

The purpose of our experiments was to test applicabil-
ity of the analytical results for real sources. Therefore we

selected Wal-Mart data available on the departmental Or-
acle server in the Department of Computer Sciences, Pur-
due University. The database contains part of Wal-Mart
sales data for the years 1999 and 2000 in 135 stores. We
selected one of the stores, one category of items of cardi-
nality 35 (JA| = 35) and extracted 9.66 million records
from table Item_Scan, sorted by scan time. We divided
our sources into training sets and testing sets. Training sets
are data sets, which we consider to constitute the reference
source. We used the first 9.56 million records as a train-
ing set to compute P(a;) fora; € A,i =1,2,...,|A| for
the Bernoulli reference source. Once the probability model
of the reference source has been built, we can start moni-
toring unknown data called testing data. In section 3.1 we
tested how well the formulas for P=(w) worked on the Wal-
Mart data by comparing P2 (w) = W to the computed
P3(w) for different values of w. We used the following

3 (s )— P2 (w0,
error metric d = |1 37, W 100% where

wy < wg < ...w, are the tested window sizes. In sec-
tion 3.2 we tested the detection properties of the threshold
7. (w) as a function of the window length w. All our algo-
rithms have been implemented in C++ and run under Linux
operating system.

3.1 Estimation of P3(w)

In all experiments in this section we used the same test-
ing source of length n = 10° events.

3.1.1 The case of a parallel episode S

We set S = {itg,ity, its,its, itg, it10,9t17} and then ran
the tree based detection algorithm [3] for finding (105, w)
for w € [10,180] and compared P.(w) to the analytically
computed P (w) using our algorithm based on Theorem 2.
The results are shown in Figure 5, which indicate an ex-
ceptionally close fit between P>(w) and PZ(w) with the
difference d of order 2%. The results confirm our expecta-
tions that the Bernoulli model and parallel episode models
well sources as the Wal-Mart item scans where the source
seems to generate events independently.

3.1.2 The case of a set of two serial episodes

We set S1 = {ito,it4,it5,it6,it9,it10,it17} and S; =
{ito, ite, its, its, it10, itg, it17 } where Sy is a permuted ver-
sion of S;. This case reflects a situation when a pattern of
interest is only partially restricted and the serial case is too
restrictive but the parallel case too relaxed. We ran an algo-
rithm for finding Q(10°, w) for S for w € [10, 180]. Then
compared P, (w) to the analytically computed P7(w) using
our algorithm based on Theorem 1. The results are shown
in Figure 6, which indicate a very close fit between P (w)
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P*(w) for a parallel episode S
T T S

1 T 56500 T

—o- P_(w) (estimated)
o~ P7(w) (computed) 1

3
Figure 5. P2 (w) = £%) and P3(w) for a par-
allel episode S, using Wal-Mart data

and P2(w) with d of order 13% but not so close as in the
parallel case (d = 2%). The reason may be the fact that this
set of episodes is too restricted comparing to the parallel
episode given the unordered nature of the item scans.

P (w) for a set of two serial episodes S, s,

o P.w) (estimated)

o~ P(w) (computed)

Figure 6. P7(w) = W and P?(w) for a set
S = {51, S, } of serial episodes, using Wal-Mart
data

3.1.3 Comparison of the three cases: parallel, two se-
rial and one serial

In this experiment we investigate the relationship between
the formulas for P(w) and the experimental P, (w) for the
episode S in the three cases: parallel, partially ordered
(S is a permutation of S7) and serial (investigated in [8]).
For the first two cases we use the results obtained in the
previous experiments. For the third case we ran an algo-
rithm for discovering a serial episode in the event sequence
for w € [10,180] as in the previous experiment to cre-
ate 2(10°,w) at the same points. The results for P3(w)
are shown in Figures 7 and the corresponding estimates are
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shown in Figure 8. The figures clearly indicate that the se-
rial and parallel cases of an episode S establish the lower
and upper bound on the probability of existence of .S in win-
dow of size w.

P(w) for three cases: S parallel, S,, S, serial, § serial

Figure 7. P3(w) for three cases: S parallel,
{S1,52} serial and S serial, using Wal-Mart
data

P2(w) for three cases: S parallel S,, S, serial, § serial

o P.(w) (S paraliel)
s - PaW) (S, S, serial) ]
. Pow) (8 serial)

estimate probabil

L L L L L L L
0 20 40 60 80 100 120 140 160 180
window size: w

Figure 8. P7(w) = W for three cases:
S parallel, {5, 5>} serial and S serial, using
Wal-Mart data

3.2 Threshold 7, (w)

This experiment demonstrates an application of the up-
per threshold 7, (w) for detecting a significant number of
occurrences of a parallel episodes S. It also shows the
relationship between 7, (w) and w in detecting unusual
episodes. We set S = {itg, it12,tt14, it15, 1t19, 1t20, itgs}
and consider the parallel case of S. We selected a part of
the scans of length n = 50000 as the test source. We com-

pute the threshold 7, (w) = P3(w) + biv\’ar[?j(n,w)] for
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B(b) = 1076 for which we obtained b = 4.26 using an al-
gorithm for computing the inverse of 3(b). We repeated the
threshold computation for three values of w = 40, 30, 25
for the same episode S. We simulated an attack by keeping
inserting the episode S' as a string into the testing source un-
til we exceeded the threshold. We normalized the number
of insertion by n. Figure 9 presents results. We conclude
that the if w increases then the number of attacks caus-
. Q7 (n,w) . . .

ing =— == to rise above the 7, (w) increases exponentially
which is caused by the exponential growth of P?(w) in the
formula for 7, (w).

Simulated attacks by a parallel episode S for thresholds (40), 7(30), t(25)
0025 T T T T T T T

7(40)

0015 : g5

a° —o- P,(40)
~e” Pi(e0)
. Pl(e5)

P,= (50000, w)/50000
°
2
o

2(30)
0.005

%(25)

° ° ‘ S(number :l lnsensd‘ Zplsodes;i 1/5000(‘}4 b b *
Figure 9. The upper threshold 7, (w) as a func-

tion of w for a parallel episode S, using the
Wal-Mart database

4 Conclusions

We presented the exact formulas for the probability of
existence P7(w), for an arbitrary set of serial episodes S
including the case of a parallel episode S. Using the formu-
las we showed how to compute the upper threshold 7, (w)
to measure significance of S. Since we adopted a computa-
tional probability approach it is valid for the Markov model
of any order. The choice of the 0-the order (Bernoulli)
was dictated only by its compactness and suitability to im-
plementation through efficient dynamic programming al-
gorithms. However in experiments on Wal-Mart transac-
tions we showed that formulas for the Bernoulli model
very closely approximated the real life data. Realization of
Markov model of order higher then 0 would require com-
putation of P7(w) using conditional probabilities of the re-
spective order.

Acknowledgment

The authors are very grateful to Prof. Chris Clifton for
many valuable remarks and encouragements.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

A. Aho and M. Corasick (1975), Efficient String
Matching: An Aid to Bibliographic Search Program-
ming Techniques.

A. Apostolico and M. Atallah (2002), Compact Rec-
ognizers of Episode Sequences, Information and
Computation, 174, 180-192.

M. Atallah, R. Gwadera and W. Szpankowski.
Detection of significant sets of episodes in event
sequences. http://www.cs.purdue.edu/
homes/gwadera/icdm2full .ps.

P. Billingsley (1986), Probability and measure, John
Wiley, New York.

L. Boasson, P. Sequels, I. Guessarian, and Y. Matiya-
sevich (1999), Window-Accumulated Subsequence
Matching Problem is Linear, Proc. PODS, 327-336.

G. Das, R. Fleischer, L. G asieniec, D. Gunopulos, and
J. Kérkkéinen (1997), Episode Matching, In Combina-
torial Pattern Matching, 8th Annual Symposium, Lec-
ture Notes in Computer Science vol. 1264, 12-27.

P. Flajolet, Y. Guivarc’h, W. Szpankowski, and B.
Vallée (2001), Hidden Pattern Statistics, ICALP 2001,
Crete, Greece, LNCS 2076, 152-165.

R. Gwadera, M. Atallah, and W. Szpankowski. Re-
liable detection of episodes in event sequences. In
Third IEEE International Conference on Data Mining,
pages 67-74, Melbourne, Florida.

J. Han, J. Pei, Y. Yin, R. Mao, Mining Frequent
Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach, Data Mining and Knowledge
Discovery, 8, 53-87, 2004

H. Mannila, H. Toivonen, and A. Verkamo (1997),
Discovery of frequent episodes in event sequences
Data Mining and Knowledge Discovery, 1(3), 241-
258.

M. Régnier and W. Szpankowski (1998), On pattern
frequency occurrences in a Markovian sequence Al-
gorithmica, 22, 631-649.

W. Szpankowski (2001), Average Case Analysis of Al-
gorithms on Sequence, John Wiley, New York.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04)
0-7695-2142-8/04 $ 20.00 IEEE



