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ABSTRACT
We present a new protocol that works in conjunction with in-
formation hiding algorithms to systematically improve their
stealthiness. Our protocol is designed to work with many
digital object types including natural language text, soft-
ware, images, audio, or streaming data. It utilizes a tree-
structured hierarchical view of the cover object and deter-
mines regions where changes to the object for embedding
message data would be easily revealed by an attacker, and
are thus to be avoided by the embedding process.

The protocol requires the existence of a heuristic detectabil-
ity metric which can be calculated over any region of the
cover object and whose value correlates with the likelihood
that a steganalysis algorithm would classify that region as
one with embedded information. By judiciously spreading
the effects of message-embedding over the whole object, the
proposed protocol keeps the detectability of the cover ob-
ject within allowable values at both fine and coarse scales
of granularity. Our protocol provides a way to monitor and
to control the effect of each operation on the object during
message embedding.
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1. INTRODUCTION
The goal of steganography is to embed a message M in

a cover object C in a covert manner such that the presence
of the embedded M in the resulting stego-object S can-
not be discovered by anyone except the intended recipient.
Steganographic applications only require the flexibility to
alter C in order to be able to embed the hidden information.
For this reason any type of digital object can be potentially
used as a cover. For example, images, audio, streaming data,
software or natural language text have been used as cover
objects.

Let Alice and Bob be two parties who exchange digital
objects through a public communication channel. Alice and
Bob would also like to exchange a secret message M, how-
ever, they do not want the existence of this secret communi-
cation to be noticed by others. Alice and Bob do not want
to achieve confidentiality through encryption, because the
exchange of encrypted messages would reveal the existence
of their secret communication. For this reason, they use a
steganographic algorithm to embed M into a C to obtain a
stego-object, S, where S = (M, C) and exchange S through
the public communication channel.

The objective of the attacker Eva, is to construct a method
for distinguishing stego-objects from unmodified objects with
better accuracy than random guessing. Attack methods gen-
erally use statistical analysis to examine a suspicious object
and search it for characteristics which may indicate that
some information has been embedded in the object. For ex-
ample, Eva might simply be looking for an unusual value of
a characteristic that Alice has overlooked while modifying
C. Eva might also be looking for anomalies in the statistics
of S that are different (e.g., finer) than the statistics Alice
paid attention to when inserting the mark. Studies have
shown that such statistical attacks are very successful on
well-known image steganographic systems [17, 18, 5, 16, 8].

One way to defend against Eva’s attacks is to inflict as
little change to the document as possible [1, 21]. To this
end, steganographic systems try to minimize changes in the
cover object C when they are converted to corresponding



message-carrying regions in the stego object S. Due to their
statistical nature, some regions in the cover object will expe-
rience less change in their statistics after embedding. These
message-carrying regions will be harder to identify for the
attacker. Conversely, some regions will easily reveal their
message-carrying characteristics. For example, in the case
of an image steganography algorithm that uses random bit
flipping, message-carrying regions will be easier to identify
when the algorithm is applied to smooth regions compared
to the case when it is applied to regions with high texture.
In this case a region with natural noise is more suitable for
message embedding than a smooth region.

This paper presents a general protocol for improving the
stealthiness of a given steganographic algorithm by provid-
ing an efficient method to determine the most suitable re-
gions to embed information. In our approach, we first parti-
tion the cover object C and impose a hierarchical structure
T on it using this partitioning, where each node in T cor-
responds to a partition in the cover object C. Then we use
T both to monitor and to control the change in the statis-
tics of the stego-object during the process of embedding the
message, and to determine where the message bits are em-
bedded.

Our protocol successfully masks the statistical effects caused
by embedding both at fine and coarse levels from the at-
tacker, since it allows constraints to be enforced on all lev-
els of T . Moreover the hierarchical nature of T allows us
to impose an upper bound on the detectability in an arbi-
trary region even though the shape of this region may not
be aligned with the boundaries that define the hierarchy.

For this paper we have chosen color images as cover ob-
jects. However, our protocol is applicable to other stegano-
graphic application domains, such as software, audio, stream-
ing data, or natural language watermarking.

The paper is organized as follows: In Section 2 a brief
overview of related work in steganography is given. Sec-
tion 3 describes our protocol in detail. Section 4 discusses
the experiments we have performed and presents results.
Our conclusion are in Section 5.

2. PREVIOUS WORK IN STATISTICAL
ATTACKS AND COUNTERMEASURES

Steganalysis is the study of methods and techniques to
detect and extract hidden data in stego-objects that are
created using steganographic techniques. These techniques
generally introduce some amount of distortion in the stego-
object during message embedding, even though this distor-
tion may not easily be detected by a human observer. Ste-
ganalysis methods aim to exploit this fact by detecting sta-
tistical effects caused by the distortion to distinguish be-
tween cover objects and stego-objects. The challenge of
designing a steganographic technique is to introduce the
distortion in such a way as to minimize its statistical de-
tectability by steganalysis. One approach, which was taken
by early steganographic methods, was to try to minimize the
detectability of data hiding by introducing as little distor-
tion as possible during embedding. However, as pointed out
by Fridrich and Goljan [7], recent advances in steganalysis
have shown that this approach does not guarantee robust-
ness against steganalysis, evidenced by the fact that least
significant bit (LSB) embedding can successfully be attacked
even for very short message lengths. This is due to the fact

that LSB embedding introduces unnatural statistical arti-
facts that can easily be detected.

One of the first practical works on robustness against sta-
tistical attacks was [17], which introduced a statistical attack
on stego-documents. This attack is based on the chi-square
test, where the estimated color histogram distribution is
compared with its observed values. Then the chi-square
value, which shows the deviation from the expected values,
is used to estimate of the probability that a given image has
information embedded in it.

Provos [18] proposed a generalized chi-square attack that
is capable of detecting more subtle changes in stego-documents.
He introduced two methods for decreasing the distortion of
the embedding process and for defending against general-
ized chi-square attack. A pseudo-random number generator
is used to create multiple groups of bit selection for embed-
ding. The selection that causes the fewest changes to the
cover document is used for embedding. Later, error correc-
tion is applied to compensate for detectability caused by the
embedding process. Provos incorporated these ideas in his
steganographic system, Outguess, that embeds bits in the
LSBs of DCT coefficients for JPEG images. He used a two-
pass algorithm, where bits are embedded in the first pass
and changes are made to coefficients in the second pass to
match the histogram of DCT coefficients of the stego-image
with that of the cover image. Since chi-square attacks rely
on the first order statistics of the image, this makes the
Outguess system immune to such attacks.

Westfeld, in his steganographic system F5 [20], decre-
ments the DCT coefficient’s absolute values instead of over-
writing the LSBs, in order to defend against chi-square test
proposed in [17]. F5 also uses matrix encoding to restrict
the necessary changes on the cover object to embed the
message. Matrix encoding helps to improve embedding ef-
ficiency significantly. Embedding efficiency is the ratio of
embedding rate and necessary changes per message bit. Be-
sides these, message bits are distributed over the whole cover
image using permutative straddling.

Recently a number of algorithms that successfully attack
the sophisticated steganographic systems were proposed. Fridrich
et al. discuss a general methodology for developing attacks
on steganographic systems using the JPEG image format,
which is also effective for the Outguess and F5 system [10].
Their approach is based on the assumption that there is
a macroscopic quantity that predictably changes with the
length of the embedded secret message for a given embed-
ding method. Lyu and Farid [16] propose an attack that
universally works for any steganographic system using im-
ages. It is based on higher-order statistical models of natural
images, where use is made of a wavelet-like decomposition
to model images and train a classifier with this model. This
classifier is then used for classifying images as a cover image
or a stego-image.

Another approach that tries to maintain image statistics
after embedding is [6] where the embedding process is mod-
eled as a Markov source and the required distribution of the
embedding over the stego document to make it stealthy is
determined.

Sallee [19] proposed an information-theoretic method for
both steganography and steganalysis. A statistical model of
the cover media is used to estimate P̂Xβ |Xα(Xβ |Xα = xα)
where xβ is the part of the cover object that is used for em-
bedding and xα is the remaining part which is unperturbed.



Then this model is used to select the value x′β that conveys
the intended secret message and is also distributed according
to estimated P̂xβ |xα . This steganoghraphy method works for
any type of cover media. Moreover, if this system is used,
capacity of a cover medium can be measured using the en-
tropy of the conditional distribution P̂xβ|xα for a given xα.

For in-depth discussion of other work on steganalysis and
steganographic techniques we refer the reader to [8] and [13].

3. GENERAL FRAMEWORK
We define a protocol that can be used in conjunction with

any embedding algorithm to control and improve the algo-
rithm’s stealthiness. We only require that a partitioning of
the document is possible and that for any region a quan-
tifiable measure, d(), that we denote as the detectability of
the region, is defined to measure the likelihood that any ste-
ganalysis algorithm would classify that region as one with
embedded information. However, this measure is hard to
derive in practice. Therefore, we use a metric based on the
degree the statistics of the region deviate from aggregate
behavior of similar regions in a collection. For example, the
detectability of an image block may be defined as the dis-
tance of the statistics of the block from the estimated statis-
tics obtained for that block using an image model trained
on the image or on a collection of related training images.

In the following subsections we discuss the properties of
the hierarchical representation. We describe the details of
the hierarchical representation in Section 3.1, and its ad-
vantages in Section 3.2. We conclude in Section 3.4 with a
proof on the upper bound of detectability caused when the
hierarchical representation is used during embedding.

3.1 Hierarchical Representation of the
Cover-Document

In our approach the cover document is partitioned into
blocks and a hierarchical structure is imposed on the doc-
ument using this partitioning. This hierarchical structure
is used to update the statistical properties of the document
during embedding. Once this information is available, it
can as well be used to efficiently manage the computational
complexity of the process of choosing the suitable regions to
embed information. More significantly, if the detectability
caused by embedding is kept below a threshold at each node
in the hierarchical representation, then we are guaranteed an
upper bound on the detectability of any arbitrary region of
interest in the object.

Let T be a tree used to represent the cover document C.
Each node Ni in this tree corresponds to a block in the par-
tition of C, denoted by R(Ni), as illustrated in Figure 1. We
use T(Ni) to refer to the vector of values that contain statis-
tical information about block R(Ni). The height of the sub-
tree rooted at Ni is h(Ni). The parent and the set of child
nodes of Ni are denoted by parent(Ni) and children(Ni).

The nodes for which h(Ni) = 0 in T are called leaf nodes.
If Ni is a leaf node, then we refer to R(Ni) as an elemen-
tary block. n is the number of elementary blocks, which is
equal to the number of leaf nodes in T . The elementary
blocks may correspond to paragraphs in natural language
text, where we can perform either syntactic or semantic
analysis of sentences [2] as well as text formatting analy-
sis [3]. In software watermarking these elementary blocks
might correspond to control flow blocks, whereas in images
they could be blocks of pixels or regions of interest.

Figure 1: Hierarchical representation in the form of
a quad-tree for a two-dimensional stego-document.
Lower levels of the tree correspond to finer parti-
tioning of the cover object.

For a given message M and a cover object C, the embed-
ding algorithm f(M, C) produces the stego-object, S. We
assume that f embeds each bit of the message, Mj , by per-
forming one or more transformations on a block of C. For
example, the transformation could be the flipping of least
significant bits in an image or the changing of active sen-
tences into passive sentences in text. This transformation is
called an embedding operation. More precisely, the embed-
ding operation G(Mj , R(Ni)) takes the jth bit ofM, embeds
it into the region R(Ni) of C and produces R′(Ni) of S.

Depending on the structure of C, T can be implemented as
a binary tree, a quad-tree, or some other tree structure that
need not have a fixed branching factor. T is formed such
that T(Ni) may be obtained from

P
v∈children(Ni)

T(v).

We can reflect the statistical effects of G(Mj , R(Ni)) on C at
leaf-level, upward, to all ancestor nodes of Ni inO(height(T ),
which is O(log n) time.

3.2 Advantages of the Hierarchical
Representation

Using the hierarchical representation in conjunction with
an embedding algorithm provides the following advantages:

• A structured view of the statistical properties of the
document is obtained for different resolutions, which
will point out the hot-spots, which are the regions where
the local statistics have anomalies compared to the
global statistics of the document.

• It is possible to efficiently keep track of the changes
in the statistics of the cover object after each embed-
ding step. This is provided by reflecting the updates
in statistics to higher levels in the hierarchical repre-
sentation, which requires only O(log n) updates. n is
the number of elementary blocks.

• Our protocol can set an upper bound on the detectabil-
ity of arbitrary regions in the cover object if we pre-
serve a threshold on detectability values at each level
of the hierarchy. Section 3.4 contains a derivation of
this upper bound.

• We can efficiently query document statistics. Dur-
ing the embedding process, some steganographic algo-
rithms try to find the most suitable regions to embed
information, as well as regions that require compen-
sation for damage to the detectability incurred during



information embedding. In the hierarchical represen-
tation only the statistics on the path to the root are
relevant. Whenever we detect an anomaly in statistics
of regions on this path, we will be able to focus on one
subtree for corrections, whose root stands out with an
abnormal value. Siblings will cooperate in “fixing” the
abnormality in their parent’s statistics in this process
of correction.

One drawback of using a pre-computed detectability met-
ric or model of the cover medium, is that it does not keep
track of the document statistics that change during embed-
ding, which may affect the detectability. This may cause the
algorithm to incur detectability that is larger than what was
initially quantified by the cost metric. Another drawback is
that there is no mechanism for backtracking from a change
made in the document in favor of a better embedding option
that appears later during embedding, which may cause sub-
optimal embedding performance. Our protocol, on the other
hand, dynamically updates document statistics by monitor-
ing statistical properties of candidate embedding regions us-
ing the hierarchical structure on-the-fly during embedding.
Stealthiness is achieved through an efficient representation
of the embedding costs, and it allows the embedding system
to avoid regions whose use might result in poor embedding
performance.

If our protocol is used in conjunction with error correc-
tion, then making only one pass through the stego-document
is enough. Contrast this with steganographic methods like
Outguess [18], that try to preserve the statistics of the cover
image through a two-pass approach. In the first pass, mes-
sage data is embedded into regions which are found to be
suitable using a static detectability metric. In the second
pass additional non-embedding changes are made to com-
pensate for the changes in the statistical properties of the
object introduced in the first pass.

3.3 The Protocol
In this section we will describe the protocol that ensures

that the detectability measure for a region, d(R(Ni)) after
applying G(Mj , R(Ni)) stays below a threshold τ . This will
allow our protocol to limit the increase in detectability in-
troduced by the embedding algorithm, thereby increasing its
stealthiness. An upper-bound on the detectability is derived
in the next section.

For each node we define a binary-valued function S(Ni)
which we will refer to as the suitability function. S(Ni) = 1 if
embedding any bit fromM in Ni will not increase d(R(Ni))
beyond τ , i.e. d(G(Mj , R(Ni))) < τ . We also keep track of
whether a message bit was embedded in R(Ni), in indicator
Z(Ni). At each step during the embeddingN∗ is the suitable
node selected for the embedding operation.

Let D(T(Ni)) be a function that returns the detectability
value for node Ni given the statistics, T(Ni). d(G(b, R(Ni)))
is the detectability measure after applying the embedding
operation over the region R(Ni), where b is the part of the
message that can be embedded in R(Ni).

Initialization Phase
for each Ni in T in a bottom-up manner

do Z(Ni)← 0
S(Ni)← 1
if Ni is a leaf node

perform analysis on R(Ni) to obtain T(Ni)

else
T(Ni)← Σ

v∈children(Ni)
T(v)

d(R(Ni))← D(T(Ni))
for each Ni in T in a top-down manner

do if d(G(b, R(Ni))) > τ
then S(Ni)← 0

for each Nj in the subtree with root Ni
do S(Nj)← 0

Embedding & Dynamic Update Phase
for each Mj in M

do repeat obtain N∗ from embedding algorithm
until S(N∗) = 1
R′(N∗)← G(Mj , R(N∗))
perform analysis on R(N∗) to obtain T(N∗)
Np ← parent(N∗)
while Np is not root

T(Np)← Σ
v∈children(Np)

T(v)

d(R(Np))← D(T(Np))
if d(G(b, R(Np))) > τ
then S(Np)← 0

for each Nj in the subtree with root Np
do S(Nj)← 0

Np ← parent(Np)

In addition to the embedding protocol described above we
also need to specify an extraction protocol. The extraction
has to be modified to handle identification of the regions
that were avoided during embedding. This can be done in a
number of ways, of which we discuss two. One is by provid-
ing the extraction algorithm with the fixed threshold that
was used to identify these avoided regions. This threshold
information should be secret and known only to the extrac-
tor and the embedder. It may as well be embedded in the
stego object in a way that the extractor can recover it be-
fore starting to extractM. This has a couple of drawbacks.
First, it imposes a constraint on embedding, namely, that
the modifications done for the purpose of embedding do not
cause an increase above that threshold. Second, as pointed
out to us by an anonymous reviewer, it makes possible a
“try-all-thresholds” attack whereby the attacker exploits the
fact that there exists a threshold below which nothing was
avoided at embedding time. These problems are mitigated
by the fact that even though the attacker can successfully
find the fixed threshold and restrict the region of attack to
a smaller area, it will be harder to apply statistical attacks
on that area since this region was picked for embedding for
the reason that it was considered to be less vulnerable to
statistical attacks.

An alternative mechanism to identify the avoided regions,
one that avoids both drawbacks (but that sacrifices some
capacity), would consist of augmenting the original message
M with markers that identify the avoided regions. One way
to do this is by embedding information about each forbid-
den region immediately prior (or after) that region – e.g.,
through a special marker symbol followed by avoided-region
size. The tree structure should then be used to keep track
of the boundaries of avoided regions in order to decrease
the amount of bandwidth used up for such marking. At
extraction time, the extractor will use this marker informa-
tion to ignore the avoided regions. Note that, in this second
scheme, we no longer impose the constraint that the embed-
ding does not cause a used region to exceed the threshold
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Figure 2: Example of how the hierarchical represen-
tation efficiently keeps track of the changes done in
the cover document for the one-dimensional case.

τ used to identify avoided regions (although of course we
would impose a constraint to not exceed some other thresh-
old τ ′ > τ ); in this manner there is no threshold below
which all was used and none avoided. Having more than
one threshold can be achieved by increasing the threshold
after the initialization phase. This way if embedding causes
a region’s statistics to exceed initial threshold, τ , but keeps
them below τ ′, the embedding will still be allowed. If em-
bedding causes a higher increase in statistics that exceeds
τ ′, the algorithm should restore the original values of the
region and mark the region as avoided.

3.4 The Upper Bound on detectability
If a message embedding algorithm, is used in conjunction

with the proposed protocol to monitor the statistical prop-
erties of a cover object, we are able to prove an upper bound
on the detectability of the statistical features of a region of
arbitrary shape in the stego-object. This upper bound prov-
ably provides robustness against attacks based on statistical
analysis of the anomalies in a region of the object such as
the sliding window in the generalized chi-square attack [11].
The proof we give relies on the fact that any such region can
be decomposed into one or more blocks corresponding to the
internal and leaf nodes of the tree structure. In the specific
case of watermarking, Merhav et.al. [15] have shown that
if a maximum distortion constraint can be imposed on the
embedding, it is possible to quantify the capacity of the wa-
termarking system in an information theoretic model with
a non-malicious adversary.

Using the threshold of the detectability for each node as
τ and an additive detectability model, where d(R(Ni)) =P

d(R(children(Ni)), we show that for any region R(Ni) in
the document the detectability, d(R(Ni)), will be

• O(τ log2 n) for one dimensional data with a binary tree
representation (e.g., audio, natural language text, soft-
ware, streaming data)

• O(τ
√
n) for two-dimensional data with a quad-tree

representation(e.g., images).

Suppose that we are interested in obtaining the statistical
properties, T(R), of an arbitrary region R of the one di-
mensional cover object shown in Figure 2. The region R is
bounded by the elementary blocks R(Ni) and R(Nj). The

Type 1

Type 2

Type 3

Figure 3: Three basic types of regions at a fixed
height h of a quad-tree T that are used to decompose
any arbitrary region at this height.

Type 1 region

Type 2 regions

Figure 4: Decomposition of a type R1 region

smallest set of nodes selected to represent R are called rep-
resentative nodes and are shown in black in the figure. T(R)
may then be obtained using only these representative nodes.
The number of these nodes can be shown to be O(log2 n) us-
ing the following argument: First, we search for nodes Ni
and Nj starting from the root node. Let Na be the common
ancestor of nodes Ni and Nj with smallest height. We find
the paths from Na to the node Ni and pick all the right
children of the nodes on the path and similarly pick the left
children while searching for Nj from Na as representative
nodes. The shaded nodes in the figure are the nodes visited
during this search. By this argument, since the length of
the paths from Na to Ni and Nj will be at most log2 n the
number of representative nodes will also be O(log2 n). If we
then sum up the detectability values for these nodes, we get
a worst case upper bound of O(τ log2 n) on d(R).

A similar approach can be used to derive an upper-bound
in the quad-tree case. We define three basic types of regions,
R1, R2, and R3. We use the notation R1(h) to refer to
a type R1 region at height h. An R1(h) region does not
cover any block in full at height h. An R2(h) fully covers
a block in one corner and partially covers three neighboring
blocks at height h. An R3(h) totally covers two blocks at
one side, and partially covers two neighboring blocks height
h. Any arbitrary region at height h may be decomposed
into a combination of R1(h), R2(h), and R3(h). Refer to
Figure 3 which illustrates these regions.

The detectability for R1(h) is given by d(R1(h)), which we
will refer to simply as d1(h). Similar definitions apply for
regions of types R2 and R3. We can write the detectability
values for regions at height h in terms of detectability values



for regions at lower levels of the tree as

d1(h) ≤ 4d2(h− 1) (1)

d2(h) ≤ τ + d2(h− 1) + 2d3(h− 1) (2)

d3(h) ≤ 2τ + 2d3(h− 1) (3)

By using the recursion on d3(h), we obtain

d3(h) ≤ τ (2h3− 2) (4)

= O(τ2h) (5)

= O(τ
√
n) (6)

where we have used the fact that h = log4 n. We can use
this result to solve for f2(h) as

d2(h) = τ + d2(h− 1) + 2O(τ
√
n) (7)

= τ log4 n+ τ + 2O(τ
√
n) (8)

= O(τ
√
n) (9)

which shows that f1(h) = O(τ
√
n).

4. EXPERIMENTAL RESULTS
We have performed experiments to illustrate the effec-

tiveness of our protocol in increasing the stealthiness of a
steganographic algorithm. For our experiments we have cho-
sen a simple least significant bit (LSB) embedding stegano-
graphic algorithm for color TIFF images, however any other
embedding scheme may be employed. A quad-tree structure
is used for T .

The embedding algorithm first padsM with random bits
to produce a message M′ with a size in bits equal to the
number of pixels in C. M is located at a random place
within M′. A small part of M′ is used to for storing the
starting point ofM withinM′ and the size ofM. Both red
and green planes of C are used for embedding. Each pixel of
C carries only one bit of M′. Bits of M′ are XOR’ed with
a random bit, which is generated by a pseudo random bit
generator that takes the stego key as a seed. This random-
izes the bits of M′. The embedding length is equal to the
number of pixels in C. The message length, length of M, is
smaller than the number of pixels in C.

The elementary blocks in C were chosen to be 8× 8 pixel
blocks. For the experiments reported in this paper we chose
the pixel variance of the elementary blocks as the statisti-
cal information at the leaf nodes, or T (Ni) = Var(R(Ni)).
For internal nodes, we have

P
v∈children(Ni)

T(v). The de-

tectability measure for Ni was simply selected to be equal
to −T (Ni), in other words, we have

d(R(Ni)) =


−Var(R(Ni)), for leaf nodesP
d(R(children(Ni))), for internal nodes

This choice is motivated by the following observation. Usu-
ally the message M that is embedded is an encrypted ver-
sion of the secret message to be sent, in which case, the
sequence of bits in M will have noise-like characteristics,
which will cause an increase in the variance of C. Let the
variance of a region of the cover image be σ2

c and suppose
that after message embedding the variance of that region
increases to σ2

s = σ2
c + ε. For regions with small σ2

c , the
contribution ε may make the region visible to steganalysis.
Therefore, regions with high variance should have low de-
tectability values and are suitable for embedding. A sample

Figure 5: A sample cover image.

image and the corresponding 8×8 block variances are shown
in Figure 5 and Figure 6, respectively.

A quad-tree structure T is initialized using the initializa-
tion phase of the algorithm given in Section 3.3. Let Vh be
the set of nodes at height h of T . For each height, h, we
calculate the threshold on detectability values, τh, as

τh = c

0
@ 1

|Vh|
X

Ni∈Vh

d(R(Ni))− min
Ni∈Vh

d(R(Ni))

1
A (10)

where c is a parameter that controls the number of suitable
regions selected. In our experiments we have chosen c = 0.5.

The suitability of the node Ni is set using

S(Ni) =

8
<
:

1 if d(R(Ni)) < τh(Ni)

d(R(parent(Ni))) < τh(Ni)+1

0 otherwise

Note that the detectability values of both Ni and parent(Ni)
are taken into consideration in deciding if R(Ni) is a suit-
able region. This is a relaxation on the algorithm described
in Section 3.3 in order to avoid setting large blocks of C as
unsuitable for embedding and also taking into account the
detectability measures of the siblings of Ni, which are re-
flected in d(parent(Ni)). This relaxation can be tuned to
take into account ancestors of Ni that are further up in T
than parent(Ni) for achieving better stealthiness.

During the embedding, our protocol restricts the embed-
ding system to use only the suitable regions. The unsuitable
regions after the initialization phase of the algorithm for the
image in Figure 5 are shown in white in Figure 7. After
the final phase of the algorithm the number of unsuitable
regions increase for this image, as you can see in Figure 8.

Figure 11 and Figure 12, show the difference images be-
tween the cover image shown in Figure 5 and stego-images
produced using two different approaches. The gray regions
in Figure 12 represent the regions that are the same in both
the cover and stego images. From these images it can be
seen that our protocol guided the embedding algorithm to
avoid regions with high variance.

We tested the performance of our system using the ste-
ganalysis attack proposed in [16]. Since the feature extrac-
tion of this system was designed for grayscale images, we
processed the red, green and blue channels independently.
In our experiments we used 141 TIFF images of size 512×512



Figure 6: Variances of elementary blocks of the sam-
ple image. Higher values are represented by lighter
regions. Note that variance values are inversely pro-
portional to detectability.

Figure 7: Initial suitability map for sample image.
The regions shown in white are the ones that are
labeled as unsuitable for embedding.

Figure 8: Final suitability map for sample image.
The regions shown in white are the ones that are
labeled as unsuitable for embedding.

classification plain embedding embedding with
method hierarchical protocol
SVM %49.65 %42.65
FLD %76.92 %69.23

Table 1: Classification results.

pixels obtained from the Watermark Evaluation Testbed
(WET) [14].

In order to perform the classification between cover and
stego images we have used both support vector machine
(SVM) and the Fisher linear discriminant (FLD) classifiers.
LIBSVM tools [4] were used for SVM classification. Given
the embedding algorithm itself randomizes the message, we
inserted a text message, the first chapter of the Tale of Two
Cities by Charles Dickens [12]. Although, actual message
length is 18%, embedding length is 100% for plain embed-
ding, and it varies for each image when embedding is com-
bined with the protocol. While we force the system to stay
out of avoided regions, we decrease the size of random part
of M′. The average embedding length was 42% for the em-
bedding with the protocol.

The accuracy of classification for the images in our test
set are given in Table 1. Although both classifiers are not
very accurate at detecting LSB embedding, from this table
it can be seen that our protocol was still able to decrease
the detectability of the steganographic method.

We have also performed tests using RS steganalysis [9]
over the green and red color planes which were used as
the embedding channel. Our aim was not to evaluate RS
steganalysis per se but rather to evaluate the impact of
our technique on increasing the stealthiness against statis-
tical steganalysis. This attack is specifically designed to
detect LSB embedding. However, as it is also stated in [9]
and [8], RS steganalysis is more successful with grayscale im-
ages and for messages that are randomly scattered over the
stego-image. This is not the case for our embedding algo-
rithm. Even with the plain embedding the error rates were
high, because the LSB algorithm perturbs LSBs of all pix-
els. Therefore, estimated embedding lengths are sometimes
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Figure 9: Error of RS-Analysis for the green channel
using LSB embedding only and using LSB embed-
ding with hierarchical protocol
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Figure 10: Error of RS-Analysis for the red channel
using LSB embedding only and using LSB embed-
ding with hierarchical protocol

higher than 100%. Still, detection errors increase when our
protocol is used, as you can see in Figure 9 for green color
plane and in Figure 10 for red color plane.

5. CONCLUSIONS
We described, implemented, and tested a protocol for im-

proving the stealthiness of information-hiding schemes. Al-
though our protocol does not completely eliminate the sta-
tistical anomalies caused by embedding that are a major
threat to the embedding algorithm’s stealthiness, it effec-
tively controls their severity and decreases their total num-
ber.

Guided by a continuously updated detectability represen-
tation of the cover object, our protocol provides a mecha-
nism for controlling statistical anomalies at both fine and
coarse scales of granularity. We use a hierarchical repre-
sentation to manage the complexity of dynamically keeping
track of the detectability of the cover object during embed-
ding.

We also quantify how bounds on the detectability of re-
gions from the hierarchy translate into detectability bounds
for arbitrary regions.

Figure 11: Difference of cover image and stego image
generated using LSB embedding only

Figure 12: Difference of cover image and stego image
generated using LSB embedding with hierarchical
protocol
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