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Abstract

Software vulnerabilities exist and will continue to do so. Every

week, a new vulnerability gains popular attention, is discussed

at length in mailing lists, and hopefully gets patched by the ven-

dor before exploits and attack tools start appearing. But there is

little evidence that we are learning from our mistakes. Sharing

of vulnerability information through public databases has been

possible for quite sometime now. If it is not lack of informa-

tion, what is it that is preventing us from learning from our past?

Are there any lessons to be learned at all? A good start towards

answering such questions would be to analyze vulnerabilities in

widely deployed, critical but buggy software artifacts. In this

paper, we look at vulnerabilities in five such software artifacts

and examine two of their attributes. Among other statistics, our

analysis suggests that the discovery of a vulnerability in a soft-

ware artifact may influence the discovery of more vulnerabilities

of the same type in that artifact. Thus, there may be some learn-

ing occurring, but it is by the penetration community rather than

the software engineers. This paper argues that measuring vul-

nerability occurrences may have predictive value and that this

concept of retrospective metric is an interesting approach to ex-

pressing assurance.

Keywords: Vulnerability Analysis, Security Metrics, Assur-
ance

1 Introduction

The number of software vulnerabilities reported is increas-

ing every year. The number of new vulnerabilities that

made their way into the ICAT metabase [3] was 859 in

1999, 990 in 2000, 1506 in 2001, and 1307 in 2002. This

brings up some interesting questions — is there a pattern

in the discovery of vulnerabilities? Are certain types of

vulnerabilities more common than the others? If so, what

combination of vulnerability prevention mechanisms would

give the maximum coverage?

A breach or an intrusion process in the context of se-

curity can be considered analogous to a failure in the con-

text of reliability [17]. There have been studies based on

empirical data that suggest that the times between security

breaches might be exponentially distributed [14]. This im-

plies that well-studied and extensively used probabilistic

methods for reliability modeling such as Markov models

could be used on security breaches. While this might lead

us to a useful metric such as the mean time to breach, the

analysis of the underlying vulnerabilities might lend itself

to a similar metric, namely the mean time to next vulner-

ability. This could also give rise to other useful indicators

such as the mean number of vulnerabilities that one could

expect in the installed software products, and the mean

number of patches that would be released for a particular

software product during a certain period. Such projected

estimates could be helpful in allocating resources for the

expected situation. It could also serve as a metric for rat-

ing software vendors. The vendors themselves could use

such metrics for assessing and improving the security of

their software products, thus providing greater assurance

to the users.

Vulnerabilities come in many types: buffer overflows,

race conditions, environmental errors, and design errors

among others. There are different techniques to detect the

presence of different vulnerability types. Because priori-

tizing efforts is often crucial in any resource-constrained

and time-critical task such as the detection and preven-

tion of vulnerabilities, a classification of vulnerabilities in

a software artifact into the different types might assist in

directing the time and resources to the more critical ones.

For example, if 60% of the vulnerabilities in a software ar-

tifact are design errors and only 20% are coding errors, it

would perhaps make more sense to review the design de-

cisions for the software artifact before analyzing its code.

With the aim of gaining insight into such issues, we

examinedfive widely deployed software artifacts that have

been in widespread use for at least five years and that have

had significant vulnerabilities. The vulnerabilities in these
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software artifacts have been listed among the 20 most crit-

ical Internet security vulnerabilities by the SANS institute

[6]. The wide use of the software artifacts and the criti-

cality of their vulnerabilities make them good candidates

for studying trends.

We aggregated information on the vulnerabilities from

publicly available sources such as Bugtraq [1], ICAT, and

CVE [2] and then analyzed their pattern of occurrence

and their characteristics. The analysis provides evidence

for the influencing nature of vulnerability occurrences and

hence warrants further research in the area of predictive

vulnerability analysis whose results can be used as a “ret-

rospective” metric to reflect on past vulnerabilities and di-

rect future efforts in developing software products with

fewer vulnerabilities.

2 Scope

In this section, we describe the scope and limitations of

this study and of the resulting observations. First, the vul-

nerabilities that we analyze are a subset of known soft-

ware vulnerabilities. One could postulate that the set of

known vulnerabilities is not representative of all the vul-

nerabilities present in the system because there might be

many (possibly unique) that have not been detected so far.

One could also hypothesize that not all known vulnera-

bilities are reported or made public. But considering that

the recent trend has been one of full disclosure, we can

assume that most vulnerabilities that are exploited or dis-

covered are reported (or made public). If this is not the

case, then the suite of security tools including intrusion

detection systems, integrity checkers, and forensic ana-

lyzers might well detect those exploits and reveal the un-

derlying vulnerabilities. Hence we conclude it is reason-

able to assume that analyzing the reported vulnerabilities

is sufficient.

Second, we look at vulnerabilities in only five soft-

ware artifacts drawn from two system classes (Unix and

Windows). These software artifacts are high profile in na-

ture and have a significant presence in standard computing

systems. They are presumably written with extra care be-

cause of their criticality. And they have also been shown

to have serious vulnerabilities in the past.

3 Candidate Software Artifacts

In this section, we elaborate on the criteria used to nar-

row our focus to the five selected software artifacts. The

characteristics we desired in the software artifacts are:

• The software artifact should not be an operating

system

Operating systems are complex software artifacts

supporting numerous functions. They usually have

a wider developer base than application software

products and are probably debugged more exten-

sively because of their criticality. They have a longer

life cycle also. In effect, they would introduce many

different variables into our analysis. Therefore, we

confined ourselves to applications for the purposes

of this study.

• The software artifact should have been deployed for

at least two years

Two years time should be good enough for a soft-

ware product to draw attention and gain acceptance

in the user community. This would also give suf-

ficient time for vulnerabilities to begin to be found

and reported. These two assumptions depend upon

the type of the software product. If the software

product targets a limited consumer base, it might

not get the exposure that we assume is necessary

for our study.

• The software artifact should be widely deployed

The software product to be considered must have

enough scope and market penetration to make it an

attractive target for users to examine to find vulner-

abilities. This is what we refer to as the “sufficient-

eyeballs phenomenon” much like the “many-eyeballs

phenomenon” associated with open source software

[20].

• The software artifact should have had significant

vulnerabilities

Here we use the term “significant” in terms of both

the number of vulnerabilities as well as the nature of

vulnerabilities. A software product that has a cou-

ple of vulnerabilities that are exploitable only by

local users (and not remotely) is not “significant”

for our purposes. It would not be a good candidate

to predict trends.

In October of 2001, the SANS Institute published a

list of 20 “most critical” vulnerability types organized into

three categories: vulnerabilities that affect all systems,

those that affect Windows systems, and those that affect

Unix systems. Attack tools are widely available for these

vulnerabilities, making them accountable for a significant

number of successful attacks. This SANS/FBI top 20 list

was also put together by a team of security experts drawn

from places including federal agencies, security software
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vendors, consulting firms, academia, CERT/CC, and the

SANS institute. These attributes of the list make it a pri-

mary source for choosing software artifacts for our re-

search. The candidate software artifacts that were reduced

from this list are given below with a brief description of

their functions:

1. Microsoft Internet Information Server (IIS)

IIS is the web server software product from Mi-

crosoft. According to the Netcraft web server sur-

vey [5], it had about 25% market share among the

web servers in August, 2002. It has had a variety

of vulnerabilities ranging from buffer overflows to

configuration errors.

2. Berkeley Internet Name Domain (BIND)

BIND is the most widely used implementation of

the Domain Name System (DNS) protocols whose

components include a DNS server (named), a DNS

resolver library, and some support tools. Because

of its importance in the functioning of the Inter-

net (it translates between domain names and IP ad-

dresses), it has been a common target for attack.

The SANS list refers to a mid-1999 survey that showed

that as many as 50% of all the DNS servers on the

Internet were running vulnerable versions of BIND.

3. Line Printer Daemon (Lpd)

Lpd is the line printer daemon found in most Unix

systems. It provides services to allow users to inter-

act with the local printer.

4. Sendmail

Sendmail is the most widely used mail-transfer soft-

ware on the Internet. It has seen several vulnerabil-

ities since the one exploited by the infamous Morris

worm [19].

5. Remote Procedure Call (RPC)

RPC services enable programs on one computer to

execute code on another computer across a network.

The very nature of their functionality makes them

an attractive attack target.

The above software artifacts are available in different

versions for different operating systems and sometimes in

different forms (RPCs). For every software artifact, we

consider vulnerabilities across all these boundaries. This

implies that the vulnerabilities considered for a particular

software artifact might not necessarily be in the source

code for each platform (though code sharing is common

across Unix-like operating systems).

4 Vulnerability Information Sources

The foundation of this study rests on accurate vulnera-

bility information. Hence we refer to three popular and

widely used sources of vulnerability information namely

CVE, Bugtraq, and ICAT. Below, we give their brief de-

scriptions:

• Common Vulnerabilities and Exposures (CVE) is a

list of standardized names for publicly known vul-

nerabilities and other security exposures. It facili-

tates sharing of information across different vulner-

ability databases. In our study, CVE names have

been used to compare vulnerability information be-

tween ICAT and Bugtraq.

• Bugtraq is a full disclosure, moderated mailing list

for the detailed discussion and announcement of com-

puter security vulnerabilities. Started in 1993, it

has grown into a widely used mailing list with over

thirty thousand subscribers. However, the submit-

ted information is neither verified nor validated.

• ICAT is a searchable index of computer security

vulnerability information. It enables searching for

vulnerability information at a fine granularity based

on different attributes such as vendor, product, prod-

uct version, exploit range, vulnerability consequence,

vulnerability type, and exposed component type. Be-

sides providing a summary of the vulnerability and

describing its attributes, it references other vulner-

ability databases and vendor sites that provide re-

lated information, thus serving as a metabase.

5 Vulnerability Attributes

A vulnerability has certain characteristics based on the na-

ture of the vulnerability and the impact that it has on a

system. The time of its discovery (or reporting) is a fea-

ture external to the vulnerability itself, although useful for

our study. In this section, we describe the methodology

employed in obtaining the published date and type of a

vulnerability from the two sources (ICAT and Bugtraq).

For vulnerabilities present in both the databases, we em-

ploy a simple heuristic to obtain what we believe to be the

more correct data. And for vulnerabilities present in only

one database, there is no choice but to use the available

information.

5.1 Date Published

As previously mentioned, the trend in the appearance of

vulnerabilities is of interest to us. Though a vulnerabil-
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ity might have been discovered well before its presence is

disclosed to (discussed by, shared with, or detected by) a

public audience such as Bugtraq, it is the best approxima-

tion that one can hope to achieve while using real-world

data. It is because of this uncertainty that we restrict our-

selves to only the month and year of publishing without

considering the exact day when the vulnerability was sup-

posed to have been reported.

The ICAT documentation mentions that the “published

before” attribute for older vulnerabilities listed on ICAT is

the earliest dating among publicly available sources. But

for vulnerabilities reported in the year 2001 and beyond,

they use the date that the vulnerability was added to their

list. Bugtraq has a longer history than ICAT, and also

has “published before” information for the vulnerabilities

listed in it. So as a general rule, the earlier of the two

dates from ICAT and Bugtraq is used for the purposes of

the study.

5.2 Vulnerability Type

Multiple classification schemes exist for vulnerabilities as

described by Aslam, Krsul, and Spafford [8, 16]. Both

ICAT and Bugtraq have their own taxonomies for vulner-

abilities and provide the type information for every vul-

nerability. We chose ICAT’s classification scheme over

Bugtraq’s for two reasons. ICAT has documentation ex-

plaining its classification and Bugtraq does not. Second,

ICAT is from the National Institute of Standards and Tech-

nology (NIST) [4], which can be viewed as a more consid-

ered and reputable source. We use Bugtraq’s vulnerability

type information only in cases where the vulnerability was

not listed in ICAT, or when ICAT classified the vulnerabil-

ity type as unknown while Bugtraq specified a particular

type.

According to ICAT’s classification scheme, a vulnera-

bility can be of the following types: input validation error,
access validation error, exceptional condition handling
error, environmental error, configuration error, race con-
dition error, design error,or other (unknown). An input

validation error can be a boundary condition error, buffer
overflow error, or of some other type. This is not a true

classification scheme because occasionally a vulnerability

that exhibits multiple characteristics is assigned more than

one type. The ICAT documentation contains the working

definitions of these different vulnerability types.

In this study, Aslam et al.’s classification scheme [8] is

used to visualize a higher level classification of the vulner-

ability types1. The input validation, access validation, and

exceptional condition handling errors are grouped under

1See Table 1

the conditional validationcategory. Race condition er-

rors (atomicity or synchronization errors) and the rest map

onto themselves. The next level of classification com-

bines condition validation and synchronization errors into

coding errors. Configuration and environment errors are

grouped under emergent errors. We deviate from this clas-

sification scheme in that we retain design error in the high-

est level without grouping it under coding errors. This

stems from the fact that a design error need not be a coding

error. An example of a design error that is not a coding er-

ror is the use of a weak encryption algorithm in a software

product that creates a window of opportunity for someone

to break in. In this case, it was the design decision to use

a weak algorithm that created the vulnerability.

6 Analysis

This section deals with numbers and graphs. We present

and analyze the yearly distribution of vulnerabilities, the

differential time intervals between successive vulnerabili-

ties, the type groups into which they fall, and their statis-

tical dependency. Vulnerability information was collected

in June of 2002.

6.1 Trend

The yearly trend in the appearance of vulnerabilities is

represented in figures 1-5. In the absence of any striking

patterns, we make a few observations:

1. Among the five software artifacts, the highest num-

ber of vulnerabilities reported in a year is 28 for

Microsoft IIS in 1999.

2. With the exception of Lpd, the year 1999 seems

to have had the maximum reports of vulnerabilities

for the software artifacts we studied. One possible

explanation for this high incidence of vulnerability

reports in 1999 could be the heightened interest in

Y2K related software errors in that year.

6.2 Differential Time

The differential time 2 between successive vulnerability

reports for a software artifact gives a notion of their inter-

arrival time (See figures 6-10). A general observation

across all the five software artifacts is that the differential

2The differential time for vulnerability n is the number of months be-

tween the discoveries (reports) of vulnerabilities n-1 and n. We ignored

the first vulnerability for differential analysis (used a value of zero) be-

cause the initial release dates for the software artifacts were not deter-

mined.
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times generally tend to be longer in the first few years after

the release of the software. One possible explanation for

this trend can be that a certain period of time is needed for

a “critical-mass” of users to start using the software prod-

uct and find bugs in it (what we refer to as the “sufficient-

eyeballs” phenomenon). From then on, vulnerabilities are

uncovered at a fairly constant rate. This reasoning ignores

the facts that the accounted vulnerabilities are for software

artifacts across different operating systems, and that the

different versions and patches might modify the software

code considerably. Some other observations that might be

of interest are as follows:
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Figure 1: Yearly Trend of IIS Vulnerabilities
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Figure 2: Yearly Trend of BIND Vulnerabilities

1. The longest gap between successive reports of vul-

nerabilities is 49 months (just over four years) be-

tween the third and fourth vulnerabilities in Send-

mail.

2. The differential times for all the software artifacts
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Figure 3: Yearly Trend of Lpd Vulnerabilities
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Figure 4: Yearly Trend of Sendmail Vulnerabilities

has peaked at or before the seventh vulnerability re-

port.

3. The maximum number of vulnerabilities reported

in a single month (longest streak of zero differential

times) is 13 for Microsoft IIS, which is almost one

every other day.

6.3 Type

Figures 11-15 present the percentages of the eight vul-

nerability categories for the five software artifacts. These

charts give a better indication of the extent to which the

different vulnerability types have appeared in these soft-

ware artifacts. We make the following observations:

1. Input validation errors clearly dominate in all the

software artifacts, ranging from 43% to 70% ap-

proximately.
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Figure 5: Yearly Trend of RPC Vulnerabilities
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Figure 6: Differential Times for IIS Vulnerabilities

2. Design errors and access validation errors come sec-

ond in a majority of the software artifacts.

3. Among RPC vulnerabilities, almost 22% of the vul-

nerabilities are of unknown type. This might be at-

tributed to one of the two reasons. The vulnerabili-

ties might not clearly fall into the categories chosen,

in which case, it might be an indication that a bet-

ter vulnerability classification scheme is necessary

(as suggested in the ICAT documentation). Or else,

given the resource constraints, it might have been

difficult for the ICAT team to determine the right

category, leading them to classify it as unknown for

the time being.

6.4 Aggregate Analysis

In this section, we analyze vulnerabilities across all the

five software artifacts and make observations about the

vulnerability distribution. Table 1 shows the distribution
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Figure 7: Differential Times for BIND Vulnerabilities
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Figure 8: Differential Times for Lpd Vulnerabilities

of vulnerability categories across all the software artifacts3.

We make the following observations:

1. Similar to the observations made in section 6.3, in-

put validation errors dominate the vulnerabilities fol-

lowed by design and access validation errors.

2. Buffer Overflows constitute nearly 20% (one-fifth)

of all the vulnerabilities.

3. Condition validation errors account for nearly 70%

of all the vulnerabilities.

4. Coding errors account for almost 72% of all the vul-

nerabilities.

5. Approximately, about 95% of all vulnerabilities orig-

inate during software development. (Only the envi-

ronment errors are attributed to the user. From the

3Percentages add up to more than 100% because some vulnerabilities

fall in more than one category.
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Figure 9: Differential Times for Sendmail Vulnerabilities
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Figure 10: Differential Times for RPC Vulnerabilities

definition of configuration errors, these arise when

the developer ships software products with weak

configuration and therefore are attributed to the de-

veloper)

ICAT has similar statistics showing the percentages

of different vulnerability categories across all CVE and

CVE candidate entries published in ICAT on a yearly ba-

sis (from 1999 to 2002). In Table 2, we compare the per-

centages for our five software artifacts against those from

ICAT statistics (averaged over the four years). We see that

the percentages are comparable for most categories except

input validation, design, and unknown categories. While

the design errors being comparatively lesser in our case

may be a positive sign, this reinforces our observation that

the five software artifacts with critical vulnerabilities are

overly susceptible to input validation errors. It also sug-

gests that critical software products have a greater per-

centage of vulnerabilities in the unknown category (7.4%

compared to 0.5%).

If we analyze the 216 aggregate vulnerabilities, we

find that the number of times two consecutively reported

vulnerabilities are of the same type is 68 4 (calculated sep-

arately for each software and summed up). This means

that almost one-third (31.5%) of the times when two suc-

cessive vulnerabilities are considered in a software arti-

fact, they are of the same type. On a per software prod-

uct basis, the numbers are 12 (30.8%) for Sendmail, 30

(29.1%) for IIS, 11 (47.8%) for BIND, 5 (35.7%) for Lpd,

and 10 (27%) for RPC. So on an individual basis, the

fraction of successive vulnerabilities being the same type

varies roughly from one-fourth (for RPC) to one-half (for

BIND). These numbers indicate that the mean for the five

software artifacts of almost one-third is reasonably influ-

enced by all the software items in the absence of any sig-

nificant outliers.

Consider the following situation. A user detects a vul-

nerability in a software product. The user may be any

person not associated with the software vendor such as

a casual user, a hacker, or a cracker (one with malicious

intent). Depending on the category to which the user be-

longs, the details of the discovered vulnerability propa-

gate to a certain population at a certain speed. A nat-

ural outcome of learning is to apply the lessons learned

to a similar domain. In this case, it could mean trying

to find similar vulnerabilities in other parts of the same

software product. From the users’ perspective, this be-

havior could result because of the available experience

(either their own or of others) in discovering vulnerabil-

ities of that particular kind. From the vendors’ perspec-

tive, the people and processes responsible for the vul-

nerable software product could be particularly incompe-

tent in avoiding this type of vulnerabilities (buffer over-

flows for example) thus contributing to the existence of

this phenomenon. This reasoning can be further extended

to systems harboring the vulnerabilities, where the poli-

cies and mechanisms in place are particularly incapable of

detecting and resolving vulnerabilities of this kind. This

phenomenon is of interest while considering the indepen-

dence of vulnerability reports because this observation tends

to suggest that the report of a particular vulnerability might

influence the discovery of similar vulnerabilities. If the

vulnerability reports are not independent then the times

between such reports are not exponentially distributed.

This would rule out the application of Markovian mod-

els and probabilistic metrics based on it. And if it can be

argued that every vulnerability can be mapped to a reason-

ably disclosed attack tool and that a certain constant time

would be sufficient to develop an attack tool after the vul-

4In cases where a vulnerability fell into more than one category, we

considered both types for this calculation.
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nerability is known, then the times to breach (attack) also

would not be exponentially distributed. This would poten-

tially affect some of the research in the area of intrusion

process modeling and quantitative security metrics, and

might warrant revisiting some of the assumptions made in

those studies.
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Figure 11: Distribution for IIS Vulnerabilities
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Figure 12: Distribution for BIND Vulnerabilities

However, the percentages calculated could be skewed

because of the fact that nearly 50% of the aggregated vul-

nerabilities belong to the input validation category. Intu-

itively, consecutive pairs of this type would appear nearly

25% of the time in a random draw. When we randomized

the sequence of vulnerabilities in the individual softwares

and performed a similar calculation, the numbers we get

are 7 (17.9%) for Sendmail, 32.4 (31.5%) for IIS, 10.2

(44.3%) for BIND, 5.4 (38.6%) for Lpd, 8.2 (22.2%) for

RPC, and 63.2 (29.3%) for the aggregate (all numbers av-

eraged over five runs). Besides Sendmail, the difference

between the actual numbers and the corresponding num-

bers for the randomized sequences is not too large. This
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Figure 14: Distribution for Sendmail Vulnerabilities

prompted us to further investigate this phenomenon using

statistically accepted procedures, the details of which are

presented in the next subsection.

6.5 Test for Statistical Independence

A statistical procedure generally used for evaluating the

statistical independence of a sequence of observations is

the run test [9]. Table 3 summarizes the results of the

run test analysis (performed at a confidence level of 95%)

of the different vulnerabilities categories for the five soft-

ware artifacts. Software items that did not have any vul-

nerabilities in a particular category have a “-” entry in the

table. We make the following observations:

1. Out of the 32 non-null entries in the table, vulner-

ability reports in 24 categories are statistically de-

pendent. This supports our conjecture that vulnera-

bility reports may influence the discovery of similar
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Figure 15: Distribution for RPC Vulnerabilities

vulnerabilities in a majority of the categories for the

five software artifacts.

2. All vulnerability categories of Sendmail are depen-

dent. We speculate that this could be attributed to

the fact that Sendmail was mostly written by one

person. Therefore, the errors could be highly repet-

itive in nature.

3. Except for Sendmail, the input validation category

of vulnerabilities is independent for the other four

software artifacts. One possible explanation for this

is the fact that input validation category is a broad

category that includes vulnerabilities such as buffer

overflows, boundary condition errors, and format

string vulnerabilities.

4. The access validation error, failure to handle excep-

tional conditions, and atomicity error categories are

dependent for all the software artifacts.

7 A Retrospective Metric

“If you can measure that of which you speak and

express it in numbers, you know something about

your subject; but if you cannot measure it, your

knowledge is of a very meager and unsatisfactory

kind”

Lord Kelvin

If Lord Kelvin is correct, then our knowledge of issues

such as the security of a system, effectiveness of a secu-

rity product, and susceptibility of a software product to

vulnerabilities (among other things) is of a meager kind.

There has certainly been a reasonable amount of interest

in the area of security metrics [7, 10, 13, 14, 15, 17, 18,

21]. But, it is still an immature discipline. While we do

not attempt to measure any snapshot of the security state

of a system or product, the observations made about vul-

nerabilities and types might serve as a metric to prioritize

security objectives and also aid other research on security

metrics.

An observation we made was that coding errors con-

stitute nearly 72% of the analyzed vulnerabilities. An in-

teresting aspect to study would be to determine a com-

bination of coding and testing practices that would have

prevented the maximum number of such vulnerabilities.

Along similar lines, it would be worthwhile to compare

the effectiveness of the various buffer overflow preven-

tion mechanisms (such as non-executable stacks and in-

troduction of “canaries” [12]) in thwarting the buffer over-

flows that constitute nearly 20% of the analyzed vulnera-

bilities. These are examples of what we call the retro-

spective metric. This would be a metric in the true sense

because it would for example, measure the extent of ef-

fectiveness of the vulnerability prevention mechanisms,

albeit for known vulnerabilities. If the preventive mea-

sures offer protection against certain genres of vulnerabil-

ities and if we can extrapolate the generic (category-wise)

distribution of vulnerabilities, then the retrospective met-

ric could be extended to unseen vulnerabilities also. Such

a metric could be used to quantify a class of vulnerabil-

ities that constitutes a certain percentage of all vulnera-

bilities reported for that software product. An example

would be a metric stating that the use of a combination

of techniques A, B, and C during the software develop-

ment lifecycle can increase the assurance in the resulting

software product by 10% (by avoiding a class of vulnera-

bilities that constitutes 10% of all vulnerabilities reported

for that software product).

For a retrospective metric to be useful in the future

against unknown vulnerabilities, we should be able to fore-

cast the future by looking at the past vulnerabilities. From

the observations we have made regarding the statistical

independence of vulnerabilities, it appears that any such

forecasting or modeling would have to be done on an in-

dividual basis (category-wise). If the vulnerability reports

in a category are dependent then we can use time-series

analysis. If they are independent then we can use Marko-

vian models to represent them. In either case, we might be

able to get a probabilistic estimate of the number and the

times of arrival of future vulnerabilities. A desirable goal

would be to predict trends in the discovery of vulnerabili-

ties similar to the work of Browne et al. [11], which looks

at statistical trends in reported intrusion incidents involv-

ing exploited vulnerabilities. However, in this paper, we

do not attempt such predictions because of one main

9



Vulnerability Category Vulnerability Sub-Category Vulnerability Type Percentage

Coding Condition Validation Input Validation Error 49.07

(Buffer Overflow) (20.37)

(Boundary Condition) (6.02)

Coding Condition Validation Access Validation Error 11.57

Coding Condition Validation Failure to Handle Exceptional Conditions 9.72

Coding Synchronization Atomicity Error 1.39

Design Design Design Error 18.06

Emergent Configuration Configuration Error 5.56

Emergent Environment Environment Error 1.39

Unknown 7.41

Table 1: Distribution of Vulnerability Categories across the Five Software Artifacts.

Vulnerability Type Our Statistics ICAT Statistics

(percentage) (percentage)

Input Validation Error 49.07 41

(Buffer Overflow) (20.37) (19.5)

(Boundary Condition) (6.02) (4.25)

Access Validation Error 11.57 11.75

Failure to Handle Exceptional Conditions 9.72 9

Atomicity Error 1.39 2.25

Design Error 18.06 24

Configuration Error 5.56 7.25

Environment Error 1.39 2

Unknown 7.41 0.5

Table 2: Comparison of Vulnerability Category Distribution between the Aggregate for our Five Software Artifacts

and the ICAT Statistics for all of its CVE Entries.

Vulnerability Type IIS BIND Lpd Sendmail RPC

Input Validation Error Independent Independent Independent Dependent Independent

(Buffer Overflow) Dependent Independent Independent Dependent Dependent

Access Validation Error Dependent Dependent Dependent Dependent Dependent

Failure to Handle Exceptional Conditions Dependent Dependent - Dependent Dependent

Atomicity Error Dependent - Dependent Dependent -

Design Error Dependent Dependent Dependent Dependent Independent

Configuration Error Dependent - Independent Dependent Dependent

Environmental Error Dependent - - - -

Table 3: Run Test Analysis of the Statistical Independence of Different Vulnerability Categories for the Five Software

Artifacts.
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reason — the data gleaned from the public databases may

not yet be sufficient and accurate enough to make such

claims with reasonable confidence.

8 Conclusions

We have analyzed software vulnerabilities in five critical

software artifacts using information from public databases.

The goal was to observe trends in the data and determine

if they suggest something new or support something that

we suspect. The trends noted in the temporal and spatial

distributions of vulnerabilities might mean more (or less)

than what we have inferred. We cannot claim that the re-

sults of this study will be applicable to every other soft-

ware artifact or even a majority of them. But we can con-

jecture that for software products of similar nature and in

similar environments (such as absence of laws prohibiting

disclosure of vulnerabilities and lack of liability on ven-

dors for vulnerabilities discovered in their software prod-

ucts) there will be a tendency to behave like the others in

their group.

Our speculation that a vulnerability report might in-

fluence future discovery of similar vulnerabilities seems

to be supported by the statistical dependency tests. The

proof of existence of this phenomenon can have signifi-

cant ramifications. This along with the other observations

suggest that the concept of a retrospective metric war-

rants further study. A more populated, focussed, detailed,

and accurate vulnerability information repository might

generate more trustworthy observations and enable one to

make predictions with a reasonable degree of confidence.
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