
CERIAS Tech Report 2005-08

AN OPTIMAL CONFLICT RESOLUTION STRATEGY FOR EVENT-DRIVEN ROLE BASED
ACCESS CONTROL POLICIES

by Basit Shaiq, Elisa Bertino, and Arif Ghafoor

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

 1

An Optimal Conflict Resolution Strategy for Event-Driven Role Based
Access Control Policies

Basit Shafiq
1
, Elisa Bertino

2
, and Arif Ghafoor

1

1
 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

{shafiq, ghafoor}@ecn.purdue.edu
2
 CERIAS and Department of Computer Sciences, Purdue University, West Lafayette, IN 47907

bertino@cerias.purdue.edu

Abstract

Role based access control (RBAC) has generated great interest in the security community for its
inherent richness and flexibility in modeling a wide range of access control policies. Any comprehensive
access control model such as RBAC requires verification tools to support consistency analysis and
identify possible policy conflicts. These conflicts, if remain undetected and unresolved, expose the
underlying system to numerous vulnerabilities and security risks. In this paper, we propose a
verification framework for detection and resolution of inconsistencies and conflicts in event-driven
RBAC policies. The framework uses an integer programming based approach for optimal resolution of
policy conflicts. The proposed approach is generic and can be tuned to a variety of optimality measures.

Portions of this work were supported by Grant IIS-0209111 from the National Science Foundation and by sponsors of the

Center for Education and Research in Information Assurance and Security.

 2

1 Introduction
Role based access control (RBAC) has generated great interest in the security community for its inherent

richness and flexibility in modeling a wide range of access control policies [11, 17, 19]. Several beneficial

features such as policy neutrality, support for least privilege, efficient access management, are associated with

RBAC models [19, 13]. The concept of role is associated with the notion of functional roles in an organization

and hence RBAC models provide intuitive support for expressing organizational access control policies [10].

Various extensions to RBAC have been proposed to incorporate the temporal and event-based semantics required

in many business processing and workflow based applications, including: e-commerce, digital government,

supply-chain management, health-care, distance learning, and many others [4, 21, 22, 5, 6]. Most of these

emerging applications require specification and enforcement of access control policies at a very fine granularity

which are difficult to implement even with the extended RBAC models, mainly because of their inefficiency in

modeling permission-centric constraints. The current RBAC approaches attempt to model such constraints at the

role-level which either restrict the semantics of permission-centric constraints or introduce considerable overhead

by creating separate roles for the permissions associated with such constraints [12]. The latter may introduce a

disparity between the abstraction of role in RBAC and the notion of role in an organizational hierarchy. Another

important requirement common to many such application environments is the support for event-based access

control, according to which certain roles or permissions may be automatically enable or disabled depending on the

occurrence of some specified events. In this paper we propose two important extensions to current RBAC models

that address those requirements. In particular, we introduce the concept dynamic permissions in RBAC.

Acquisition of a dynamic permission not only requires assumption of the role to which such permission is

assigned but also the satisfaction of the corresponding permission-centric constraints. In addition we enhance

RBAC with supports for event-based role or permission enabling/disabling by introducing two new types of event

triggers for modeling stricter form of dependencies that often occur in many task-oriented and work-flow based

systems. These triggers can be used to model both role-level and permission-level dependency constraints.

Any comprehensive access control model requires tools to support consistency analysis and identify

possible conflicts. The interplay of various RBAC constraints such as hierarchy, separation of duty (SoD),

dependency and cardinality may introduce inconsistencies and conflicts in the underlying access control policy.

These conflicts, if remain undetected and unresolved, exposes an organization to numerous vulnerabilities and

risks pertaining to security and privacy of organizational data and resources. The problem of conflict detection has

been extensively studied in literature in the context of rule-based systems [15, 16]. Most of the security related

research work uses the reachability and model-checking based techniques developed for analyzing rule-based

systems, to verify the consistency of access control policy specification [1, 2]. However, the crucial issue of

conflict resolution has not been adequately addressed in literature in the context of access control policies.

Typically, resolution of policy conflicts involves manual intervention of policy administrator. Incase there are

multiple policy administrators, a consensus on the resolution needs to be obtained. This is a slow and ad hoc

process and provides no guarantee on the quality of solution in terms of the system behavior after resolution.

There are some dynamic techniques for resolution of access control policy conflicts [14, 7, 6, 13]. However, these

techniques either assume a hierarchical relationship of objects and subjects, or consider authorizations to be

independent. These assumptions may not hold in access control polices derived from RBAC models.

In this paper, we propose an integer programming (IP) based technique for the optimal resolution of conflicts

in an event-driven RBAC policy. The event-driven RBAC model, discussed in Section 2, uses trigger based

mechanism to capture the dependency and event constraints. It is important to note that even though the proposed

conflict resolution technique is discussed in the context of RBAC, our results are also relevant to a large variety of

existing and next generation access control models [18, 23].

The main contributions of this paper are as follows:

1. Two types of event-triggers, strong dependence and weak dependence triggers are introduced. The strong

dependence semantics of the event triggers is a novel addition and has not been considered in existing RBAC

models. These triggers can be used to model a variety of dependence and workflow based constraints. In

addition various separation of duties (SoD) constraints defined in literature can be composed from these

constraints and other basic RBAC SoD constraints. Another novel feature of our model is the introduction of

dynamic permissions that allow specification of access constraints at the permission level.

2. An integer programming (IP) based approach is used to resolve policy conflicts in an optimal manner. Unlike

other conflict resolution strategies, our approach does not assume any object-oriented hierarchy defined over

objects and subjects. Moreover, the structural dependence semantics of RBAC models can be easily captured

 3

in the proposed approach. The authorizations produced by the resulting RBAC policy are always

deterministic. The proposed approach is generic and can be tuned to a variety of optimality measures such as

maximizing accessibility, minimizing set of relaxed constraints, and maximizing prioritized accesses.

The remainder of this paper is organized as follows. In Section 2, we present the event-driven RBAC model.

In Section 3, we describe the proposed IP-based conflict resolution technique. In Section 4, an example is

provided to illustrate the effectiveness of proposed conflict resolution technique, and in Section 5, we

formally prove the correctness of proposed approach. The related work is presented in Section 6. Section 7

concludes the paper and provides some future directions.

2 Event-Dr iven Role Based Access Control
The RBAC model [19], currently being used as the basis for the NIST RBAC model, consists of the

following four basic components: a set U of users, a set R of roles, a set P of permissions, and a set S of sessions.
A user is a human being or a process within a system. A role is a collection of permissions associated with a

certain job function within an organization. Permission defines the access rights that can be exercised on a

particular object in the system. A session relates a user to possibly many roles. When a user logs in the system the

user establishes a session by activating a set of enabled roles that the user is entitled to activate at that time. If the

activation request is satisfied, the user issuing the request obtains all the permissions associated with the requested

roles. One of the most important aspects of RBAC is the use of role hierarchies to simplify management of

authorizations. The original RBAC model supports only inheritance or usage hierarchy, which allows the users of

a senior role to inherit all permissions of junior roles. In order to preserve the principle of least privilege, RBAC

model has been extended to include activation hierarchy which enables a user to activate one or more junior roles

without activating senior roles [20]. From this point onward, we will use the notations I and A, to refer to

inheritance and activation hierarchies respectively. The symbols
* *

and
I A
t t are used to express I, and A hierarchy

relationship between two roles respectively. Accordingly,
*

, where { , }i j
f

r r f I At � , implies that role r i is senior

to r j and the hierarchical relationship between them can be either inheritance only, or activation only. If role r i is

immediately senior to role r j then the superscript * is omitted from the relation symbol
f
t .

2.1 Dependency Constraint
The event dependency relationship semantics is incorporated in the RBAC formalism by introducing event

triggers. We define two types of dependency relations, namely: strong dependency relation represented by the

symbol oo and weak dependency relation denoted by the symbolo. In the following, we first define different

types of event expressions and then introduce event triggers for implementing dependency constraints.

Simple Role Event Expression: A simple role event expression (SREE) is of the form activate(ui, rj), where ui�

U, r j �R, specifying that user ui has activated role r j. All the role-related events can be specified in terms of

activation of a role by some user. In order to represent the event corresponding to enabling (disabling) of a role r j,

a special user uej (udj) is assigned to role rj. Activation of r j by uej (udj) corresponds to the enabling (disabling) of

role r j. To prevent simultaneous activations of r j by uej and udj a user-specific separation of duty constraint

(discussed in Section 2.2) is specified between users uej and udj.

Simple Permission Event Expression: A simple permission event expression (SPEE) is of the form access(ui, pk),

where ui� U, pk �P, specifying that user ui has accessed permission pk. Like role related events, permission

related events can also be expressed by a user access to the permission. A permission can be accessed by a user if

the permission is in the enabled state and the user acquiring the permission has activated the role to which the

permission is assigned, or a senior role. A permission pk assigned to role r j becomes enabled (disabled) if it is

being accessed by the special user uej (udj) of role rj.

Event Triggers: Event triggers are used to model the dependence and ordering relationship between events. There

are two types of triggers distinguishing the strong and weak dependency semantics.

 4

Strong dependence Trigger: A strong dependence trigger is of the form: E1*...*EnssE, where Ei (i = 1,..,n) and

E are simple role event or simple permission event expressions and * represents logical conjunction or

disjunction. Event E occurs only if the body of the trigger (left hand side of the trigger) is true.

Weak dependence Trigger: A weak dependence trigger is of the form: E1*...*EnsE, where Ei (i = 1,..,n) and E are

simple role event or simple permission event expressions and * represents logical conjunction or disjunction. In

case of weak dependence, event E can occur independently of Eis; however, when the body of the trigger becomes

true, event E is triggered.

2.2 Separation of Duty Constraint
Separation of duty (SoD) policies have been found to be crucial for securing many commercial and

business applications. Role-based models provide a convenient way for expressing and enforcing such policies. In

the event-based RBAC formalism presented in this paper, majority of the SoD constraints identified in the

literature [2, 13] can be composed from the following four basic SoD constraints:

i) Role-specific SoD: a role-specific SoD disallows activation of conflicting roles by same user in the same session

or in concurrent sessions.

ii) Permission-specific SoD: a permission-specific SoD prevents same user to access conflicting permissions in

the same session or in concurrent sessions.

iii) Role-level-user-specific SoD: a role-level-user-specific SoD prohibits conflicting users of a role from

assuming that role in concurrent sessions.

iv) Permission-level-user-specific SoD: a permission-level-user-specific SoD prevents conflicting users of a

permission from accessing that permission concurrently.

2.3 Permission Access Semantics in Event-Dr iven RBAC
In traditional RBAC models, permissions are considered static in a sense that any user assuming a role

acquires all the permissions assigned to that role. A limitation of this permission acquisition semantics is that no

permission-level access constraints can be defined. For instance, permissions may have separation of duty

constraints or constraints regarding the order in which permissions are accessed. Permission centric constraints

can be modeled in RBAC by creating separate roles for all permissions with such constraints and defining these

constraints at the role level. However, creating a separate role for each permission, introduces a disparity between

the abstraction of a role in RBAC and the notion of role in an organization hierarchy. For defining constraints at

the permission level, we distinguish permissions into two types: i) static permission, and ii) dynamic permission.

Static Permission: A static permission does not have any permission level constraint and becomes enabled when

the corresponding role to which it is assigned is enabled. For a user ui to access a static permission ps assigned to

role r j, user ui needs to activate at least one role in the set of roles * + * +} ’*

psR : j j
I

r r r r r? ? ° ‡ .

Dynamic Permission: Permission level constraints can be defined on dynamic permissions. For a user ui to access

the dynamic permission pk assigned to role r j, following conditions must hold:

i) pk is in the enabled state.

ii) ui has activated at least one role in the set of role Rpk. * + * + * +} ’* *

pkR : j j j
I A

r r r r r r r? ? ° ‡ ° ‡

iii) ui has not accessed any permission pl that conflicts with pk in the same session or in concurrent sessions.

iv) pk is not being accessed by any user uc that conflicts with user ui for permission pk (permission-level user-

specific SoD).

Note that unlike static permission, a user can also acquire a dynamic permission pk assigned to role r j by only

activating a role senior to r j in the A-hierarchy semantics.

 5

u

ps

SoD

S
oD r

r

I

A

pdS
oDp

d

S
oD

TE

TE

T
E

TE : E
i
..C

i
µ E

µ Œ {›, ››}

(a) (b)

GM

TM RM

PC

u1 u2

SoD
TM

u1G
M ›› u1T

M

u3RC

P1

P2

SoD

Refund ClerkRC

Approve/disapprove CheckADC

Prepare CheckPC

Refund ManagerRM

Technical ManagerTM

General ManagerGM

Refund ClerkRC

Approve/disapprove CheckADC

Prepare CheckPC

Refund ManagerRM

Technical ManagerTM

General ManagerGM

2.4 Graph-Based Specification Model for Event-Dr iven RBAC
A graph based formalism can be used to specify the RBAC policy and associated event-based constraints.

In the graph based model, user, roles and permissions are represented as nodes and the edges of the graph describe

the association and constraints between different nodes. Nodes in a RBAC graph cannot be connected in an

arbitrary manner. The type graph shown in Fig. 1(a) defines all possible edges that may exist between different

nodes. An edge between a user node u and a role node r indicates that role r is assigned to user u. The hierarchy

relationship between roles are modeled by self-edges labeled with I and A. In the type graph, I-hierarchy and A-
hierarchy are represented by solid and dashed edges respectively. There can be edges between role and

permission nodes. A permission is a pair (object, access mode), which specifies which objects can be accessed

and in which mode (read, write, execute, approve, etc). In order to distinguish between the two permission types,

static permissions are represented as a solid square and dynamic permissions as dashed square. The graph model

also supports specification of various separation of duty (SoD) constraints. A Role-specific or permission specific

SoD constraint between two roles or permissions is represented by a double headed arrow between corresponding

nodes. To represent conflicting users ui and uj for role rk (permission pl), a double headed edge with a label rk (pl)

is drawn between the user nodes ui and uj. The label rk (pl) specifies that the corresponding users are conflicting

for role rk (permission pl) and cannot access rk (pl) simultaneously. An event trigger in the graph-based model is

represented by a bold edge labeled with the trigger expression TE. The trigger edge originates from all role or

permission nodes, listed in the body of the trigger, and terminates at the role or permission node defined in the

head of the trigger. A single trigger may have more than one edge because of the presence of multiple terms in the

body of the trigger; however, all such edges are labeled with the same trigger expression.

Fig. 1(b) shows an instance of the event driven RBAC policy graph consisting of four roles: General

Manager (GM), Technical Manager (TM), Refund Manager (RM), and Refund Clerk (RC). The policy graph has

three users: u1, u2, and u3, and three permissions: P1, P2, and PC (prepare check). Users u1 and u2 are assigned the

role GM and u3 is assigned the role RC. The static permissions P1 and P2 are assigned to role RM and TM

respectively, while the dynamic permission PC is assigned to role RC. The inheritance hierarchy relationship

GM RM RC
I I
‡ ‡ enables user u1 and u2 to acquire the permissions of junior roles RM and RC by assuming the

senior role GM. On the contrary, assumption of role GM does not entitle u1or u2 to inherit all the permissions of

role TM without activating TM. Role TM is junior to GM in the A-hierarchy semantics, GM TM
A
‡ . This A-

hierarchy relationship permits u1 and u2 to activate role TM. A role-specific SoD constraint is defined between

role TM and RM, implying that these roles cannot be accessed by same user simultaneously. The double headed

arrow between the user nodes u1 and u2 defines the user specific SoD constraint between these two users for role

TM, meaning that users u1 and u2 cannot activate role TM concurrently. The strong dependency constraint,

1 1GM TMu u›› , defined between the role nodes GM and TM, implies that user u1 can activate the role TM only

if u1 has activated the role GM.

3 Consistency Analysis and Conflict Resolution
Formal specification of security requirements and access constraints is the first step in designing access

control policy. The next step is to identify and resolve any policy conflicts. Conflicts in an event-driven RBAC

Fig. 1 (a) Type graph for event-driven RBAC. (b) Example of an event-driven RBAC policy

 6

policy may not be explicit and may occur because of the interplay between various constraints embedded in the

policy. For instance, the RBAC policy shown in Fig. 1(b) becomes inconsistent when user u1 assumes the role of

GM. The strong dependency trigger defined between GM and TM constrains u1 to either assume both roles GM

and TM or none at all. By activating the role of GM, u1 also acquires permission over the junior role RM because

of the inheritance hierarchy relationship. This leads to a violation of the role-specific SoD constraint defined

between TM and RM. One of the following solutions resolves this conflict: i) Disallow u1 to activate the role GM.

ii) Drop the strong dependence constraint between GM and TM. iii) Relax the SoD constraint between TM and

RM. iv) Remove the hierarchical relationship between GM and RM. The first one restricts the accessibility of u1

to GM and all other junior roles and may cause deadlock if there is no other user to access these roles. The last

three solutions correspond to conflict resolution by constraint relaxation. However, relaxing a constraint in an

arbitrary manner may produce significant deviations from the original policy and may not yield optimal

resolution.

In the following, we describe a 0-1 integer programming (IP) based approach that resolves policy conflicts in

an optimal manner. The authorizations produced by the resulting policy are always deterministic. The proposed

approach primarily uses constraint relaxation strategy. All the constraints that can be relaxed are assigned a

weight according to their importance and a conflict free policy is generated by selecting all the non-conflicting

constraints that yield an optimal value of the objective function. The proposed approach is generic in the sense

that it can work for a variety of optimality measures such as maximizing accessibility, minimizing the set of

relaxed constraints, and maximizing prioritized accesses and constraints. Changing the optimality measure in our

formulation only requires changing the weight in the objective function.

3.1 IP Formulation of Event-based RBAC Policy
The event-driven RBAC policy can be formulated as the following 0–1 integer programming problem.

1 2 3maximize

subject to []

, 0 or 1, , 0 or 1, , 0 or 1,

, 0 or 1, , 0 or 1

j j j j

j j j j

T T T
r pd

r pd r pd

i i i r r ir ip pd ip

ir r ir ip pd ip

c a c u c u

A a u u pu pu b

a a a u u u u u u

pu pu pu pu pu u

- -

~

$ Œ ? $ Œ ? $ Œ ?

$ Œ ? $ Œ ?

Where, c = [c1 c2 c3] is the cost function defining the optimality criterion. ‘a’ is a constraint vector whose

elements correspond to the policy constraints including role assignment, role-hierarchy, SoD, and event

dependency constraints. ‘ur’ is a vector defining the user-role authorizations and ‘upd’ is a vector defining the

user-permission authorizations. The vectors ‘pur’ and ‘pupd’ define the role and permission authorizations for

proxy users. Proxy users (discussed in next section) are not the actual users specified in the original access control

policy and are included in the IP formulation to create a problem instance in which all the constraints can be

evaluated. In the IP formulation of an RBAC policy, all the constraints are defined using algebraic equations. The

elements of matrix ‘A’ correspond to the coefficients of terms used in the equations/inequalities defining the

constraints. All the variables used in above IP formulation are binary variables, i.e., they can only take a value of

‘0’ or ‘1’.

In the solution to the IP problem, if the value of a constraint variable ‘ai’ equals one then the

corresponding constraint is retained in the final policy; otherwise, it is dropped. The user role authorization

variable ‘
jiru ’ defines the authorization of user ui over role r j. If 0

jiru ? is specified as an IP constraint, then user

ui has no authorization over role r j and cannot access r j by any means. Similarly, the user permission variable

jipu defines the authorization of user ui over the dynamic permission pj. Note that the user-permission

authorization variable is only defined for dynamic permissions. Static permissions are automatically acquired by a

user when the user accesses the role to which such static permissions are assigned. For instance, a user ui by

activating role r j acquires all the static permissions of r j and all the static permissions of roles that are junior to r j

in the I-hierarchy sense.

3.1.1 IP constraint Transformation Rules
The rules for transforming the policy constraints into IP constraints are listed in Tables II – IV. The

predicates and functions used in these transformation rules are described in Table I. The transformation rules are

 7

grouped into following categories: hierarchy and assignment, enabling, SoD and dependency triggers. Rules for

each of these categories are separately defined for actual users specified in the original event-driven RBAC policy

and for proxy users created to evaluate all possible authorizations and constraints in the underlying IP problem.

Table II lists the rules for the users defined in the original policy. Rules 1-4 ensure that in any feasible

solution of the IP, if a user accesses a role or permission then the user should have proper authorization for the

role or permission being accessed. A user u is authorized for a role r if either u is assigned to r or u is assigned to

senior role r’ such that there is an access path from r’ to r. For accessing a dynamic permission, a valid

authorization is required for the role to which such permission is assigned. The enabling rules (5 and 6) imply that

a role or permission can only be accessed in the enabled state. Rules 7 and 8 represent the four basic SoD

constraints in mathematical form using the corresponding user-role and user-permission binary decision variables.

Rules 9 and 10 defines the event trigger dependency implying that whenever the body of the event trigger

becomes true, the event listed in the head of the corresponding dependency constraint is triggered. For a strong

dependency constraint the dependent event cannot occur if the body of the corresponding trigger is false.

r 1

r 2 r 3

r 4

u1 u2

u3

a 3
: u

1r
1
s
s

u 3r
2

a
4 :

u
2r1 s
s

u
3r3

a5 : SoD

u4

a2:SoD
r 1

a1:SoD
r 1

pu1a pu2a

pu3b

pu3b

a6:SoD
r 1

r 1

r 2 r 3

r 4

u1 u2

u3

a 3
: u

1r
1
s
s

u 3r
2

a
4 :

u
2r1 s
s

u
3r3

a5 : SoD

u4

a2:SoD
r 1

a1:SoD
r 1

r 1

r 2 r 3

r 4

u1 u2

u3

a 3
: u

1r
1
s
s

u 3r
2

a
4 :

u
2r1 s
s

u
3r3

a5 : SoD

u4

a2:SoD
r 1

a1:SoD
r 1

pu1a pu2a

pu3b

pu3b

pu1a: proxy for u1
pu2a: proxy for u2
pu3b: proxy for u3

(a) (b) (c)

Returns the passive proxy-user of user u for role r. passive-proxy(u,r)

Returns the active proxy-user of user u for role r. active-proxy(u,r)

Returns True if permission p is assigned to role r.passign(p,r)

Returns True if user u is assigned to role r.uassign(u,r)

Returns True if the role or permission node x in the RBAC

graph can be reached from the user node u. This reachability

implies that user u can access the role or permission x.

reachable(u,x)

Descr iptionFunction/predicate

Returns the passive proxy-user of user u for role r. passive-proxy(u,r)

Returns the active proxy-user of user u for role r. active-proxy(u,r)

Returns True if permission p is assigned to role r.passign(p,r)

Returns True if user u is assigned to role r.uassign(u,r)

Returns True if the role or permission node x in the RBAC

graph can be reached from the user node u. This reachability

implies that user u can access the role or permission x.

reachable(u,x)

Descr iptionFunction/predicate

The solution to the IP problem with original user-role/permission and constraint variables may yield an

instance in which not all policy constraints are evaluated. Omission of these constraints from IP evaluation can be

attributed to SoD constraints and event triggers that derive the policy to a single instance out of many other legal

policy instances. Because of this omission, it is quite possible that some conflicting constraints may remain

undetected and unresolved in the final policy derived from the IP solution. For example in the RBAC policy graph

shown in Fig. 2(a), the dependency constraints a3:u1r1oo u3r2 and a4:u2r1oo u3r3 jointly conflict with the SoD

constraint a5 defined between roles r2 and r3. An IP problem derived from the rules given in Table II for the

RBAC graph of Fig. 2(a) may yield a solution in which this conflict may remain unresolved. For instance, the

assignment
11 2 3 4 5 4 1

r
a a a a a u , and

1 11 2 0
r r

u u is a feasible solution to the IP problem

corresponding Fig. 2(a). In this solution, the policy is evaluated without considering the activation of role r1 by u1

and u2, and so the conflicting constraints a3, a4, and a5 remain undetected.

Fig 2. (a) RBAC graph without proxy assignment leading to undetected conflicts. (b) RBAC graph with proxy assignment to

evaluate all possible policy conflicts. (c) RBAC graph with SoD constraint a6 preventing any conflicting authorizations due

to the conflicting constraints a3, a4, and a5

Table I. Description of functions and predicates used in IP transformation rules

 8

Category I

D
Rule Meaning

1 ¬reachable(ui, rj/pk) µ / 0
j ki r pu ? If there is no access path from a user

node ui to role or permission node r j/pk

then ui is not authorized to access r j/pk .

2 For an I-hierarchy constraint :m j k
I

a r r‡ ,

0
j km ir ira u u/ ~

Any user ui assuming role r j also

assumes rk if the constraint

:m j k
I

a r r‡ is retained in the final

policy.

3 Let } ’*
| (,) ()Ik k k

A
U u uassign u r r r r r? ¬ ® ? ° ‡ and

} ’| :Ik j j j k
I

R r a r r? ‡ . , 0
j k

j IK

IK j r r
r R

u U a u u
Œ

$ Œ / ‡Â

Any user u not assigned to rk or any of

its senior roles in the A-hierarchy

sense, can access rk only if u is able to

access at least one role in the set RIk.

Hierarchy

and

assignment

4 Let } ’*
| () () and (,)Ak j j k j

A
R r r r r r passign p r? ? ° ‡ .

0
k

Ak

ir ip
r R

u u
Œ

/ ‡Â

A user ui can acquire a dynamic

permission pk assigned to role r j by

accessing at least one role in the set RAk

5 $ uŒU, $ rŒR and all dynamic permissions pk assigned to r j,

0, and 0
j j k kr ejr p ejpu u u u/ ~ / ~ .

Any role or permission can only be

accessed in enable state. For defining

the event corresponding to a enabling

of role r j, a special user uej is assigned

to r j. 1
jejru ? implies that r j is in

enable state. Any dynamic permission

pk assigned to r j becomes enable

if 1
kejpu ? .

Enabling

6 Let { | (, /)}u j kA u reachable u r p? . / / 0
j k j k

u

r p ejr p
u A

u u
Œ

/ ‡Â .

Where, pk is a dynamic permission assigned to r j.

If a role or permission is enabled, then

at least one of the authorized users

must access that role or permission in

any feasible solution of IP.

7 For a role (permission specific) SoD constraint am between r j

and rk (pj and pk), / /() 1
j j k km r p r pa u u- ~

Conflicting roles or permissions cannot

be accessed by same user concurrently.

SoD

8 Let Uc be the set of conflicting users for role rk (dynamic

permission pk) and am be the corresponding SoD constraint.

/ 1
k k

c

m r p
u U

a u
Œ

~Â

Conflicting users cannot access same

role/permission concurrently.

9 For a strong dependency trigger, * +:
i x i

m x y
C u C

a u u
Œ

° ® ›› ,

, 0, and 0,
ix i x i

i m x y m x y
C Cu C u C

C a u u a u u
ŒŒ Œ

$ / ~ / ‡Âß ß where, C=̌Ci .

User u accesses the dependent

role/permission y if and only if the

body of the trigger is true.

Dependenc

y triggers

1

0
For a weak dependency trigger, * +:

i x i
m x y

C u C
a u u

Œ
° ® › ,

, 0
x i

i m x y
u C

C a u u
Œ

$ / ~ß , where, C = ̌Ci .

Whenever the body of the trigger

becomes true, user u is forced to access

the dependent role/permission y.

In order to include all the legal authorizations and constraints, we expand the IP problem to include proxy

user-role and proxy-permission role variables. Additional constraints are defined between the actual users and

proxy users in such a way that all access rules and constraints are evaluated in the policy instance generated by the

expanded IP problem. There are two types of proxy users: active proxy and passive proxy. An active proxy user
upon activation of a role or acquisition of a dynamic permission triggers the activation of another role or

permission for a passive proxy user, provided an event trigger is defined for such activation. Table III lists the

rules for defining IP constraints involving proxy users.

Table II. IP Transformation rules for actual users specified in the original policy

 9

Category ID Rule Meaning

11 For a dependency constraint ix jyu uµ , where { , }µŒ › ›› , assign an active proxy user puia to

role x. Incase x is dynamic permission, assign the active proxy user puia to the role to which

permission x is assigned. Similarly, if y is a role assign a passive user puib to role y and if y is a

dynamic permission assign the passive proxy puib to the role containing permission y.
12 If a user ui is assigned to role r j then assign an active proxy user puia to role r j.

Proxy User

assignment

13 Let user ui be assigned to role r j or any role rk such that * *
and j k j k

A I
r r r r‡ ‡1 , assign an active proxy user

puia to role rk.
14 ¬reachable(pui, rj/pk) µ p / 0

j ki r pu ? If there is no access path from a user node

pui to role/permission node r j/pk then pui is

not authorized to access r j/pk .
15 Consider a user ui with an active proxy puia. If both ui

and puia are authorized to access role r j and all the

dynamic permissions pk, then

1
j jir iaru pu- ? and 1

k kip iapu pu- ?

Either an authorized user ui or its active

proxy (but not both) must access r j / pk in any

feasible solution of the underlying IP problem

16 Consider a user ui with a passive proxy puib. If both ui

and puib are authorized to access role r j and all the

dynamic permissions pk, then

1
j jir ibru pu- ~ and 1

k kip ibpu pu- ~

Either an authorized user ui or its passive

proxy (but not both) may or may not access r j /

pk in a feasible solution of the underlying IP

problem

17 For an I-hierarchy constraint :m j k
I

a r r‡ ,

0
j km ir i ra pu pu/ ~

Any proxy user pui assuming role r j also

assumes rk if the constraint :m j k
I

a r r‡ is

retained in the final policy.
18

Let } ’*
| (,) ()Ik k k

A
PU pu uassign pu r r r r r? ¬ ® ? ° ‡ a

nd } ’| :Ik j j j k
I

R r a r r? ‡ .

, 0
j k

j IK

IK j r r
r R

pu PU a pu pu
Œ

$ Œ / ‡Â

Any proxy user pu not assigned to rk or any

of its senior roles in the A-hierarchy sense,

can access rk only if pu is able to access at

least one role in the set RIk.

Hierarchy

and

assignment

19 Let } ’*
| () () and (,)Ak j j k j

A
R r r r r r passign p r? ? ° ‡ .

0
k

Ak

ir ip
r R

pu pu
Œ

/ ‡Â

A proxy user pui can acquire a dynamic

permission pk assigned to role r j by

accessing at least one role in the set RAk

20a For a generic dependency constraint, : ()
i x i

m x y
C u C

a u u
Œ

° ® µ ,

where "µŒ {››,›},

1

1 1 1

1

\

_ () 1

 _ () 0

x i i x i i j z j

j ii

x x z
u C C u C C C u C

C CC

y

active proxy u u u

passive proxy u
h

Œ Ø Œ Œ
””

Ã Ô
/ /Ä ÕÄ Õ

Å Ö
~

ß ß ß ß

This IP constraint implies that in case the

body of the dependency trigger am is false,

the passive proxy of u for role/permission y

is able to access y. This ensures that all

authorizations related to dependency

constraints are checked in the final solution

of IP.

Dependency

trigger

20b For a strong dependency constraint, : ()
i x i

m x y
C u C

a u u
Œ

° ® ›› ,

_ () _ () 0
x i

x y
u C

active proxy u passive proxy u
Œ

/ ‡Â
I

For strong dependency, 20a and 20b imply

that u can access role/permission y if an

only if the body of am is false and at least

one active proxy for user-role or user-

permission listed in the body of am accesses

the corresponding role/permission.

Fig. 2(b) shows the policy instance of Fig. 2(a) with proxy user assignment according to Rules 11 - 13 of

Table III. With this proxy assignment, Rules 9, 15, and 20 ensure that the dependency triggers a4 and a5 always

get evaluated, implying that roles r2 and r3 are activated by either u3 or its passive proxy user pu3b. By applying

Rule 21 on the policy graph of Fig. 2(b), an SoD constraint is defined between r2 and r3 for the proxy user pu3b.

This ensures that the conflict among the constraints a3, a4, and a5 is detected and resolved in any feasible solution

of the extended IP problem. However, in presence of dependency constraints, specification of role/permission-

specific SoD constraints for proxy users becomes very tricky. For example, consider the RBAC policy graph of

Fig. 2(c) which is similar to Fig. 2(b) except that it contains an additional user-specific SoD constraint a6 defined

between u1 and u2 for role r1. Because of this additional constraint, users u1 and u2 cannot activate role r1

simultaneously, and therefore the dependency triggers a3 and a4 cannot become active at the same time. This

means that user u3 is not able to assume the conflicting roles r2 and r3 concurrently, implying that the SoD

Table III. IP transformation rules for proxy users

 10

constraint a5 will never be violated. Therefore, the RBAC policy of Fig. 2(c) is consistent and conflict free.

However, if a SoD constraint of the form of Rule 7 is defined between r2 and r3 for the proxy user pu3b then one of

the following constraints a3, a4, or a5 will be removed from a consistent policy. Suppose

that * +
2 36 3 3 1br bra pu pu- ~ , is specified as a constraint in the integer program generated for the RBAC policy of

Fig. 2(c). If in the solution none of the users (u1 and u2) activate role r1, then by Rule 15 their proxies do. Because

of the dependency constraint defined for the proxy users (Rule 20), the constraints a3, a4, and a5 become

conflicting and one of them is removed to get a feasible solution of the extended IP problem.

CSP(r 1, r 2, u1, u2, G)
INPUT: u1–r1, u2–r2, and policy graph G

OUTPUT: Set A of conflicting constraints

OUTPUT: cyclic-inher itance if G contains cyclic hierarchy

OUTPUT: infeasible if u1 cannot access r1 and u2 cannot access r2 concurrently in G

OUTPUT: feasible otherwise

1. G’ « G

2. Modify G’ by removing all the role-specific or permission-specific SoD constraints

except between rx and ry (rx Œ ry)that have following properties:

a. There is an immediate or series of dependency constraints from rx to r1 and

from ry to r2. That is, the graph G’ contains event triggers of the form

1

*

1xxr ru uµ
2

*

2yy r ru uµ , where { , }µŒ › ›› , ux = uy.

b. There is no event dependency trigger that activates rx for ux and ry for uy. Note

that ux = uy. If such a trigger exists and condition (a) holds, then insert the

corresponding dependency constraint variable in the set A.

3. Modify G’ by removing all the user-specific SoD constraint ‘ai’ between any two

users ux and uy (ux Œ uy) over a role or permission r such that the conditions (a), (b),

and (c) listed below hold:

a. Activation of r by ux causes u1 to access r1, i.e.,
1

*

1xr ru uµ

b. Activation of r by uy causes u2 to access r1, i.e.,
2

*

2yr ru uµ

c. There exists at least one dependency constraint that causes either ux or uy to

access r.

d. If all the three conditions (a), (b), and (c) hold for ‘ai’ and there does not exist

any role or permission r’ with conflicting users ux’ and uy’ such that

1

* *

' ' 1 xr x r ru u uµ µ or
2

* *

' ' 2yr y r ru u uµ µ , then let * +1 1 i kxc a a? / ß and

* +2 1 i kyc a a? / ß , where, each akx (aky) is a dependency constraint that

appear in the sequence of dependency constraints
1

*

1xr ru u››

(
2

*

2yr ru u››). Insert c1 and c2 in the set A.

4. Modify G’ by removing all user-specific SoD constraints between any two users ux

and uy (ux Œ uy) over a role or permission r’ such that there does not exist any

dependence from uxr’ to u1r1 or from uyr’ to u2r2.

5. Write the IP constraint equations for the modified graph G’ using the IP

transformation rules 1 – 9.

6. For each constraint ai appearing in the modified graph G’, add ai = 1 as an IP

constraint.

7. if no binary feasible solution to the constraints formulated in above steps exists then

A = ̋ and return cyclic-inher itance and A.

8. Add
1 21 21 and 1r ru u? ? as IP constraint.

9. if no binary feasible solution to the constraints formulated in above steps exists then

return infeasible.

10. return feasible and A.

Fig. 3. Constraint satisfiability algorithm that checks the possibility of SoD violations due to

dependency constraints

 11

Role/permission Specific SoD, an

Condition: Let an represents a role/permission-specific SoD between r i and r j and let uk be a user such that there exists a

passive dependency constraint for uk over both r i and r j (passive dependency constraint means that the variables ukri and ukrj

appear in the head of their respective event triggers, e.g. ur µ ukrj , where µ Œ {››, ›}. If CSP(r i, r j, uk, uk, G) = cyclic-
inher itance or feasible then the following IP constraints need to be added
ID Rule Meaning
21a $ai Œ A (if A = h, then ai = 1)

 () 1
i ji n kbr kbra a pu pu- ~ , () 1

i ji n kr kbra a u pu- ~ ,

 () 1
i ji n kbr kra a pu u- ~

In any feasible solution of the underlying IP problem, the

conflicting roles/permissions r i and r j cannot be accessed by

uk and/or its passive proxy pukb simultaneously.

21b $ai Œ A (if A = h, then ai = 1)
If (,)ka iuassign pu r then () 1

i ji n kar kbra a pu pu- ~

If (,)ka juassign pu r then () 1
i ji n kar kara a pu pu- ~

In any feasible solution of the underlying IP problem, the

conflicting roles/permissions r i and r j cannot be

simultaneously accessed by active and/or passive proxies of

user uk. Where, puka and pukb, respectively, denote the active

and passive proxies of uk.

User Specific SoD

Condition: Let am represents a user-specific SoD between users ui and uj for role rk.

* +* +*
if (,) (,)i n j n n k n kI

uassign u r uassign u r r r r r° ® ‡ ® ” then the IP constraints defined in Rule 22 needs to be added.

ID Rule Meaning

22 () 1
k km iar iara pu pu- ~ , if the active proxy puia of

user ui and active proxy puja of user uj are

authorized for rk

() 1
k km iar j ra pu u- ~ , if the active proxy puia of user

ui is authorized for rk

() 1
k km ir jara u pu- ~ , if the active proxy puja of user

uj is authorized for rk

This constraint prevents violation of user-specific SoD

because of role inheritance. Two conflicting users ui and uj

and/or their corresponding active proxies, puia and pujb,

cannot access role rk (for which the users conflict), if one of

the users ui or uj is assigned to a role senior to rk in the I-
hierarchy semantics.

Condition: Let an represents a role/permission-level-user-specific SoD between ui and uj for role/permission rk. Also, there

exist passive dependency constraints for ui and uj over rk (passive dependency constraint means that the variables uirk and

ujrk appear in the head of their respective event triggers, e.g. ur µ uirk , where µ Œ {››, ›}. If CSP(rk, rk, ui, uj, G) =

cyclic-inher itance or feasible then the following IP constraints need to be added

ID Rule Meaning

23a $ai Œ A (if A = h, then ai = 1)

() 1
k ki n ibr jbra a pu pu- ~ , () 1

k ki n ir jbra a u pu- ~ ,

() 1
k ki n ibr jra a pu u- ~

In any feasible solution of the underlying IP problem,

conflicting users ui and uj and/or their respective passive

proxies puib and pujb cannot simultaneously access rk (for

which ui and uj conflict).

23b $ai Œ A (if A = h, then ai = 1)
() 1

k ki n iar jbra a pu pu- ~ , if the active proxy puia of

user ui is authorized for rk

 () 1
k ki n ibr jara a pu pu- ~ , if the active proxy puja of

user uj is authorized for rk

In any feasible solution of the underlying IP problem,

role/permission rk cannot be accessed simultaneously by the

active and/or passive proxies of conflicting user ui and uj

respectively. Where, puia and puib (puja and pujb),

respectively, denote the active and passive proxies of ui (uj).

In order to avoid the above discrepancy, an SoD constraint involving proxy users is only defined after

ensuring that no other valid constraint prevents the violation of such SoD constraint. The constraint satisfiability
problem (CSP) algorithm shown in Fig. 3 is used to determine the possibility of violation of role/permission-

specific or user-specific SoD constraint due to the event dependency constraints. CSP takes the conflicting user-

role/permission pairs (u1-r1, u2-r2) and the policy graph G as input and finds a configuration of the policy that

allows u1 to access r1 and u2 to access r2 simultaneously. Note that for role/permission-specific SoD u1 = u2, and r1

and r2 are conflicting roles/permissions. For a user-specific SoD, u1 and u2 are conflicting users for r1 = r2. Lines 2

– 5 of the algorithm create a modified policy graph G’ by removing all the SoD constraints that do not prevent

violation of the queried SoD constraint. In case the modified graph G’ is not conflict-free because of cyclic

hierarchy (cf. Section 3.1.2) or other inconsistencies, CSP returns cyclic-inheritance (line 8) and therefore the

SoD under consideration needs to be defined for the corresponding proxy variables to avoid any discrepancy in

the final policy. CSP returns infeasible if it is not possible for u1 to access r1 and u2 to access r2 simultaneously in

any valid configuration of the modified graph G’. This implies that the queried SoD constraint in the original

policy graph G can never be violated, so this SoD constraint should not be defined for corresponding proxy users.

If there exists a configuration in the modified graph G’ in which u1 accesses r1 and u2 accesses r2 concurrently,

then CSP returns feasible. However, before returning CSP finds a set of constraints A that conflicts with the given

Table IV. Transformation rules for SoD constraints involving proxy users

 12

SoD (line 3d). If any of the constraint ai � A is retained in the final policy then the corresponding SoD needs to

be defined for proxy users. The rules for defining the SoD constraints for proxy users are listed in Table IV.

3.1.2 Cyclic Hierarchy
Cyclic hierarchy is a form of inconsistency that arises because of the presence of one or more hierarchy

paths consisting of I-hierarchy and/or A-hierarchy edges from a role to itself. In order to resolve this

inconsistency, one of the hierarchical edges from all cyclic paths needs to be removed. Cyclic hierarchy conflicts

can be specified in the IP problem using a special user variable. For any role r j that has a cyclic inheritance path to

itself, a special user ucj is assigned to r j and the following IP constraints are defined:

a. 1
jcjru

b. If there is no inheritance path from role r j to any role rm then 0
mcjru

c. For a hierarchy constraint :m k j
f

a r rt , where { , }f I A� , the special user ucj, assigned to r j, cannot access the

senior role rk if the hierarchy constraint ‘am’ is retained in the final policy, i.e., 0
km cjra u .

d. For any hierarchy constraint :n p q
f

a r rt , if
*

 and j p p q
f

r r r rt z , then 0
p qn cjr cjra u u� d

e. For a role rp such that
*

j p
f

r rt and j pr rz , let ^ `: pf f
r r rR t . For any role rs belonging to the set Rf, let ‘as’

be the corresponding hierarchy constraint. For the special user ucj, assigned to role r j, the following constraint

is added to the IP:

 0
s p

s f

s cjr cjr
r R

a u u
�

� t¦

3.2 Optimal Resolution
The IP transformation rules described in the above section are used to represent the constraints embedded

in the underlying access control policy. Once the policy constraints are transformed into IP constraints, an optimal

resolution can be achieved by solving the IP problem described in the beginning of Section 3.1. The optimality

measure is embedded in the objective function of the corresponding IP problem. Each decision variable in the

objective function is assigned a weight and an optimal solution maximizes the over all weight of the objective

function. These weights are assigned based on the priority of the underlying constraints and accesses. There are

several other factors that need to be considered for weight assignment and a detailed discussion on this issue is

beyond the scope of this paper.
ConfRes(Gi)
INPUT: Policy graph Gi.

OUTPUT: A consistent and conflict free policy graph.

1. G m Gi

2. Add all the special and proxy users in the policy graph G according to the IP

transformation rules.

3. Using the constraint transformation rules, write the constraints for policy graph G in

algebraic form.

4. For each constraint variable ai, add ai = 1 as an IP constraint.

5. If a binary feasible solution to the constraints formulated in the above steps exists then

Gi is consistent. In this case return Gi.

6. Reformulate the integer programming (IP) problem by removing all the assignment

constraints added in step 4.

7. Define the objective function.

8. Find an optimal feasible solution for the IP problem.

9. Remove all the constraints from the policy graph Gi for which the corresponding

constraint variable a = 0 in the optimal feasible solution.

10. Return the modified policy graph Gi.

Fig. 4 shows the algorithm ConfRes for optimal resolution of conflicts in the event-based RBAC policy.

The algorithm takes input an event-driven policy graph Gi and returns a consistent and conflict-free policy graph.

Fig. 4. Conflict resolution algorithm

 13

If the input graph policy Gi is consistent then the same policy graph is returned. ConfRes first generates proxy

user to role and special user to role assignment as discussed in the IP transformation rules. It then transforms the

updated set of policy constraints into IP constraints using the transformation rules described in the above section.

The consistency of the given policy graph is determined in steps 4 – 5. In step 4 all the variables ais corresponding

to original policy constraints are assigned a value of one implying that all constraints are assumed to be valid. If

there exists an assignment that satisfies all the IP constraints formulated in steps 2 – 5, then the given policy graph

is consistent. In this case, the algorithm returns with the original policy graph. Otherwise, the IP problem is

reformulated by removing all the IP constraints added in step 4. Next the objective function is defined based on

the desired optimality criterion and the IP problem is solved for an optimal solution. Finally, all the constraints for

which the corresponding constraint variable ai equals zero in the optimal solution are removed from given policy

graph.

A single optimality measure may not be suitable for resolving all types of policy conflicts. For instance,

resolution of conflicts pertaining to cycles in role hierarchy may require a different optimality criterion than the

resolution of SoD and dependence conflicts. A resolution strategy that tends to maximize accessibility of roles

and permissions may work well for resolution of SoD and dependence conflicts but may resolve cyclic hierarchy

conflicts in an undesirable manner. Such a resolution strategy would produce an acyclic role hierarchy with more

users assigned to senior roles than to junior roles. Generally, in any organization’s hierarchy, the number of users

authorized for senior roles is lesser than the number of users authorized for junior roles. A better strategy for

resolving cyclic hierarchy conflicts would be to remove the hierarchy edges with least priority or weights,

assuming that the priorities/weights of the hierarchical edges reflect the responsibilities and authority of

corresponding roles. However, a different optimality measure might be considered for resolving policy conflicts

other than cyclic hierarchy. In this case, policy conflicts need to be resolved in two steps, with cyclic hierarchy

conflicts resolved first followed by resolution of conflicts of other types.

4 Illustrative Example
 In this section, we illustrate the proposed conflict resolution technique by considering an event-based

RBAC policy that models a workflow and the associated policy constraints. An important aspect highlighted in

this example is the resolution of policy conflicts that may arise because of the interplay between workflow

execution constraints and the organizational constraints restricting the accessibility of users over certain roles and

permissions.

(a) (b)

Prepare Check
(Clerk)

Approve/Disapprove
Check

(Manager)

Approve/Disapprove
Check

(Manager)

Summarize Decision
(Manager)

Issue/Void Check
(Clerk)

So
D

SoD

SoD

GM

TM RM

RC

ADC1ADC2SD

PC IVC

a7: SoD

a1
0:

u5
P

C
 o

o
en

ab
le

 A
D

C
1

1 2
 () ()

i M i M
i iu U u U
ADC ADCenable SD u u

� �
mm � � � a

11 : enable ADC
2 �mm

u
5PC

13
:

i M
iu U

a u SD enable IVC
�
� oo

UM = {u1, u2, u3, u4}

u1 u2

a2: SoD
GM

u1G
M oo u1T

M u
2GM oo u

2RM

u3 u4

a4: SoD

RM

a2: SoD

TM

u5

TM

a1: SoD

a5: a6:

a8: SoD

a9: SoD

a12:

a12:

Summarize DecisionSD

Approve/disapprove CheckADC

Issue/Void CheckIVC

Prepare CheckPC

Refund ClerkRC

Refund OfficerRO

Refund ManagerRM

Technical ManagerTM

General ManagerGM

Summarize DecisionSD

Approve/disapprove CheckADC

Issue/Void CheckIVC

Prepare CheckPC

Refund ClerkRC

Refund OfficerRO

Refund ManagerRM

Technical ManagerTM

General ManagerGM

Fig. 5. (a) Event-driven RBAC policy graph modeling access control policy related to tax refund process. (b) Tax

refund process workflow

 14

Fig. 5(a) shows a graphical representation of an event-driven RBAC policy modeling the workflow of the

tax refund process of Fig. 5(b). The RBAC graph in Fig. 5(a) consists of four roles: General Manager (GM),

Technical Manager (TM), Refund Manager (RM), and Refund Clerk (RC), and five users: u1, u2, u3, u4, and u5.

Users u1 and u2 are conflicting users for role GM (constraint a2), u1, u2, and u3 are conflicting for TM (constraint

a1), and u2 and u4 are conflicting for RM (constraint a4). The strong dependency constraint a5:u1GM oo u3TM

implies that use u1 can activate role TM only if u1 has activated the role of GM. Similarly the event trigger a6:u2GM

oo u2RM prevents u2 to activate the role RM without assuming the role GM. The tax refund workflow shown in

Fig. 5(b) is represented in the policy graph using the dynamic permissions and event dependency triggers. The

workflow includes the following tasks: prepare check, approve or disapprove check, summarize decision and

issue or void check. The dynamic permissions PC, ADC1 and ADC2, SD, and IVC correspond to these workflow

tasks. Since a check needs to be approved by two separate managers, this task is represented as two separate

dynamic permissions ADC1 and ADC2. The event triggers defined on dynamic permissions define the execution

semantics of the workflow. First a refund clerk (RC) prepares a check which needs to be approved by two

separate managers for further processing. These constraints are represented in the graph by the triggers a10:u5PC

oo enable ADC1 and a11:u5PC oo enable ADC2. Enabling of the permissions ADC1 and ADC2 imply that the

users authorized for the manager roles can now approve or disapprove the refund check. The condition that the

check must be approved by two different users assuming the manager role is enforced by defining a permission

level SoD a7 between ADC1 and ADC2. After the checks are approved or disapproved, a summary of the decision

is prepared. The decision summary is prepared by accessing the permission SD, which can only be accessed by a

user authorized for some Manager role who has not approved or disapproved the check. The event trigger

a12:
1 2

() ()
i M i M

i ADC i ADCu U u U
u u enable SD

� �
� � � oo , where UM = {u1, u2, u3, u4}, implements this workflow

dependency by enabling the permission SD. The permission-specific SoD constraints (a7, a8, a9) among SD,

ADC1, and ADC2 prevent a single user assuming manager role(s) to perform more than one operation on a given

check. Once any user assuming Manager role prepares decision summary by accessing SD, the refund check

needs to be issued or void. This workflow dependency is represented by the event

trigger
i M

i
u U

u SD enable IVC
�
� oo . Enabling of the permission IVC implies that any authorized user can issue

or void the refund check depending on the decision summary.

In order to ensure successful completion of any workflow instance, it is required that in any configuration

of the policy shown in Fig 5(a), there exist a set of authorized users who can take the workflow instance to

completion by executing the corresponding dynamic permissions. The workflow completion constraints,

although not discussed in this paper because of space limitations, are included in this example to illustrate the

applicability of the proposed framework in capturing a wide variety of policy constraints. The workflow

completion requirement, stated above, and the permission specific SoD constraints among ADC1, ADC2 and SD

make the given policy inconsistent as there exist some policy instances of Fig. 5(a) in which the workflow

completion requirement cannot be satisfied. For example, consider a scenario in which u1 assumes the role GM.

By activating GM, u1 also acquire the junior role TM because of the dependency constraint a5. In this case TM

cannot be acquired by any other user because of the SoD constraint a1. Similarly, the user specific SoD constraint

a6 for role RM allows either u1 and u2 or u1 and u4 to access RM. This means that only two users can assume the

Manager roles; whereas, the completion of the underlying workflow requires that three different Managers must

perform the tasks associated with ADC1, ADC2 and SD.

Apart from the workflow completion inconsistency, the policy graph shown in Fig. 5(a) may also lead to

conflicting authorizations. For instance, the dependency constraint a5 and user-specific SoD constraint a1 becomes

conflicting by activation of role GM by u1 and assumption of TM by u2 or u3. Conflicts in the event-driven RBAC

policy shown in Fig. 5(a) are resolved by applying the conflict resolution algorithm ConfRes. The IP constraint

transformation process produces almost 750 constraints with 130 variables for the event-driven RBAC policy of

Fig. 5(a). Fig. 6 shows the IP formulation of the event-driven RBAC graph of Fig. 5(a) generated by the conflict

resolution tool that we have developed. Due to space limitations, only the IP constraints corresponding to user u1

are shown in Fig. 6. The optimality criterion of the IP shown in Fig. 6 is to retain a maximum number of

constraints specified in the original policy. This is evident from the objective function that consists of only

constraint variables with uniform weight assignment. One of the optimal solution with this optimality criterion as

found by our conflict resolution tool is to remove the user-specific SoD constraints a1 and a4 from the final policy

graph. a1 prevents users u1, u2, and u3 from assuming the role TM in concurrent sessions; similarly, a4 prevents

 15

users u2 and u4 from activating the role RM concurrently. This solution yields an objective function value of

sixteen implying that sixteen out of a total of eighteen constraints are retained in this resolution.

5 Correctness of proposed approach

In order to show the correctness of the proposed conflict resolution approach, we need to prove that i) a

consistent policy is not modified by the proposed conflict resolution algorithm, ii) the authorizations derived from

the resulting policy are conflict free.

The following theorem states that a consistent event-driven RBAC policy remains unchanged during the

process of conflict resolution.

Theorem 1: Let Gi be an input RBAC policy graph and G be the graph obtained after applying the proposed

conflict resolution algorithm ConfRes. If Gi is consistent then G = Gi.

Proof: The proof of this theorem is given in the appendix

Conflicting authorizations in an event-driven RBAC policy occur because of cyclic hierarchy or SoD

violations. The event driven RBAC policy obtained after applying the conflict resolution algorithm does not

include any conflicts related to cyclic hierarchy and SoD constraints. This is formally stated in the following

theorem.

Theorem 2: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes.
The policy graph G satisfies the following properties:

a. There are no cyclic hierarchies in G (cf. Section 3.1.2).

b. No hierarchy or event-dependency constraint exists in G that violates any role-specific SoD constraint, or

permission specific SoD constraint, or role-level user-specific SoD constraint, or permission level user-

specific SoD constraint.

Proof: The proof of this theorem directly follows from the Propositions 1- 3 given in the appendix.

6 Related Work
Several research efforts have been devoted to the topic of conflict detection and resolution in access

control policies [14, 7, 6, 1, 9]. The resolution techniques proposed in literature can be classified into three

classes: resolution by priority [14, 7, 8], resolution by constraint/rule relaxation [7], and resolution by restriction

[9]. In the priority-based techniques each authorization is assigned a priority and a high priority authorization

prevails over a conflicting low priority authorization. Priorities can either be explicitly assigned to each individual

authorization or can be derived based on the administrative scope of the grantor, the specificity and the modality

of the authorization [14]. For the latter case, an administrative hierarchy is considered to determine the

authorization privileges of the grantors. The authorization of a grantor higher in the privilege hierarchy overrides

any conflicting authorization granted by a grantor lower in the hierarchy. In case the grantors are incomparable or

conflicting authorizations are specified by same grantor, object and subject hierarchies are used to resolve policy

conflicts and a more specific authorization is allowed to supersede a less specific authorization. In some cases, it

may not be possible to compare conflicting authorizations based on their specificity. Then, conflicts may be

resolved in favor of negative authorizations. The resolution strategy that relies on the authorization privileges of

grantors is more suitable for systems that are managed by multiple administrators who may specify contradictory

rules for access to a particular resource. Conflict resolution based on the specificity of authorization assumes the

existence of an object oriented hierarchy relating the targeting objects and also the subjects. However, such a

hierarchy may not exist for objects and/or subjects. For instance, in RBAC models there is no assumption as to

how the underlying objects are related to each other? And for all practical purposes the target objects can be

considered as atomic entities. Therefore, conflict resolution based on specificity is not applicable in RBAC. The

rule that negative authorization takes precedence although resolve policy conflicts but decreases flexibility [14]

and may produce deadlocks in case there are other authorizations dependent on the denied authorization For

instance in RBAC model, if a user assuming role ‘r’ is denied access to an object ‘o’ assigned to a role junior to

‘r’, then none of the users assigned to role ‘r’ or its senior roles can access the object ‘o’ via the role ‘r’. Other

priority-based resolution techniques [8, 13] resolve policy constraints at runtime and do not consider a global

optimality measure for conflict resolution.

 16

Restriction-based resolution strategy prevents any conflicting access at the expense of restricting

accessibility. Some of the conflict resolution techniques that belong to this group include the event-action

constraint cancellation technique proposed by Chomicki et. al. [9], the well-formed model authorization set, and

the stable model authorization set with pessimistic reasoning [7]. The restricted access semantics in these

approaches may significantly reduce accessibility which may drive the system to a deadlock.

A constraint or rule relaxation strategy avoid deadlock at the expense of dropping some constraints or

policy rules. Bertino et. al. in [7] have proposed a conflict resolution technique based on optimistic stable model

authorization. This technique uses constraint relaxation and yields maximum accessibility. The authorizations in

this technique are derived by evaluating the current system state and all the stable models which may correspond

to different relaxation of constraints. The multiplicity of stable models and the differences in the relaxation rules

deriving these stable models make this approach non-deterministic, i.e., same access request with same system

state evaluated at different times may result in different authorization. This kind of non-determinism cannot be

accepted in systems that require well-defined and consistent authorization semantics at all times.

1

1 1 2

18

1

1 1 1 1 1 2 1 1 1 1 2 3 1 1 1 1

4 1 5 1

Maximize

Subject to:

Constraints derived from Rule 4
: 0, : 0, : 0

Constraints derived from Rule 5
: 0, :

i
i

GM TM RM ADC GM TM RM ADC GM TM RM SD

ADC eADC ADC

a

c u u u u c u u u u c u u u u

c u u c u

� � � t � � � t � � � t

� d �

¦

� � � � � �
1 2 2 1

2 6 1

7 1 2

8 7 1 1 9 8 1 1 10 9 1 1

11

0, : 0,

Constraints derived from Rule 6
: 1

Constraints derived from Rule 7

: 1, : 1, : 1

Constraints derived from Rule 8

eADC SD eSD

GM GM

ADC ADC ADC SD ADC SD

u c u u

c u u

c a u u c a u u c a u u

c

d � d

� t

� d � d � d

� � � �
� �

� � � �

1

1 2 1 2

1 2

2 1 2 12 1 1 2 3

13 5 1 1

1 2 3 4

14 12 1 12 1

15

: 1, : 1

Constraints derived from Rule 9

: 0

{ , , , },

: 0 and 0

: 0

Cons
x y

GM GM TM TM TM

GM TM

x

ADC xADC eSD xADC ADC eSD

xADC yADC eSD
u U u U

a u u c a u u u

c a u u
u U u u u u

c a u u u a u u u

c u u u
� �

� d � � d

�
� �

� d � d
� t¦ �

16 1 17 1 18 1 19 1 20 1

21 1 1 22 1 1

traints derived from Rule 14
: 0, : 0, : 0, : 0, : 0

Constraints derived from Rule 15
: 1, : 1

Constraints derived

b b b a a

a a

TM GM TM RM TM RC RM GM RM TM

GM GM GM RM RM RM

c pu c pu c pu c pu c pu

c u pu c u pu

� �

� �
23 1 1

24 5 1 1

1 1 1 1 1 2

25 26

 from Rule 16
: 1

Constraints derived from Rule 20(a)

: 0

Constraints derived from Rule 18
{ , , } and { , , }

: 0, :

b

a b

a b a

TM TM TM

GM GM TM TM

GM TM RM x

GM px

c u pu

c a pu pu

pu PU pu pu pu p ADC ADC SD
c pu pu c pu

� d

�

� � � �
� t

1 1 1 1 2 2 2 2

27

34 1 1 1 1 1 1 1 1

1 1 1 1

0, : 0

Constraints derived from Rule 7 and 16
:

1
a a b a a b

a a b

TM px RM px

ADC GM ADC RM ADC TM ADC ADC GM ADC RM ADC TM ADC

SD GM SD RM SD TM SD

pu c pu pu

c u pu pu pu u pu pu pu
u pu pu pu

� t � t

� � � � � � �
� � � � d

7 Conclusion

In this paper, we have presented methodology for detection and resolution of inconsistencies and conflicts

in event-driven RBAC policies. This methodology uses a binary integer programming (IP) based technique for

optimal resolution of policy conflicts. The proposed approach is generic and can be tuned to a variety of

optimality measures such as maximizing accessibility, minimizing set of relaxed constraints and maximizing

prioritized accesses. We have developed a conflict resolution tool that first transforms an RBAC policy

Fig. 6. Integer program corresponding to event-driven RBAC policy of Fig. 5(a)

 17

specification into IP problem and then solves the corresponding IP problem for optimal resolution of policy

conflicts. In addition, we have proposed two important extensions to current RBAC models for supporting

specification and enforcement of access control policies at a very fine granularity. First, we introduce the concept

of dynamic permissions which would allow specification of permission centric constraints. We also define two

new types of event triggers for modeling stricter form of dependencies that often occur in many workflow

applications.

 As a future work, we plan to extend the proposed framework to resolve inconsistencies in dynamic

workflow-based applications. An important aspect of these applications which is not considered in this paper is

the strict temporal inter-dependency between the workflow tasks. These temporal dependencies make the problem

of conflict resolution extremely challenging.

8 References

[1] T. Ahmed and A.R. Tripathi, “Static Verification of Security Requirements in Role Based CSCW Systems," in

Proceedings of ACM SACMAT, June, 2003, pages 196-203.

[2] G. Ahn and R. Sandhu, “Role-based Authorization Constraint Specification,” ACM TISSEC, Vol. 3(4), Nov. 2000.

[3] V. Atluri and W-K. Huang, “A Petri Net Based Safety Analysis of Workflow Authorization Models,” Journal of
Computer Security, Volume 8, Issue 2/3, 2000.

[4] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn, “Role Based Access Control for the World Wide Web,”

in Proceedings of 20th National Information System Security Conference, NIST/NSA, 1997.

[5] J. Bacon, K. Moody, W. Yao, “A Model of OASIS Role-Based Access Control and its Support for Active Security,”

ACM TISSEC, Vol. 5(4), Nov. 2002, pages 492- 540.

[6] E. Bertino, E. Ferrari, V. Atluri, “The Specification and Enforcement of Authorization Constraints in Workflow

Management Systems,” ACM TISSEC, 2(1), February 1999, pages 65-104.

[7] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo, “A Logical Framework for Reasoning on Data Access Control

Policies,” in Proceedings of the 12th IEEE Computer Security Foundations Workshop, 1999, pages 175-189

[8] E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A Temporal Role-based Access Control Model,” ACM TISSEC, 4(3),

August 2001, pages 191-233.

[9] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict Resolution Using Logic Programming,” IEEE TKDE, Vol. 15(1), Jan.

2003.

[10] D. F. Ferraiolo, D. M. Gilbert, N. Lynch, “An Examination of Federal and Commercial Access Control Policy Needs,”

In Proceedings of NISTNCSC National Computer Security Conference, Baltimore, MD, September 20-23, 1993, pages

107-116.

[11] D, F. Ferraiolo , R. Sandhu , S. Gavrila, D. Richard Kuhn, R. Chandramouli, “Proposed NIST Standard for Role-Based

Access Control,” ACM TISSEC, 4(3), August 2001, pages 224 - 274.

[12] V. C. Hu and D. A. Frincke and D. F. Ferraiolo, “The Policy Machine for Security Policy Management,” LCNS, Vol.

2074, pages 494-506.

[13] J. Joshi, E. Bertino, U. Latif, and A Ghafoor, “Generalized Temporal Role Based Access Control Model (GTRBAC)

(Part I) - Specification and Modeling,” Accepted for publication IEEE TKDE.

[14] E. Lupu and M. Sloman, "Conflicts in Policy-based Distributed Systems Management," IEEE TSE, Vol 25(6) Nov. 1999,

pages. 852-869.

[15] D. L. Nazerath, “Investigating the Applicability of Petri Nets for Rule-Based Systems,” IEEE TKDE, Vol. 4(3), June

1993, pages pp. 402 – 415.

[16] T. A. Nguyen, W. A. Perkins, T. J. Laffey, and D. pecora, “Knowledge Base Verification,” AI Magazine, No. 49, 1987,

pages 69 – 75.

[17] S. Osborn editor. Proc. of the Fifth ACM Workshop on Role-Based Access Control, Berlin, Germany, July 2000.

[18] J. park and R. Sandhu, “The UCONABC Usage Control Model,” ACM TISSEC, Vol. 7(1), Feb. 2004, pages 128-174.

[19] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-Based Access Control Models,” IEEE Computer 29(2),

IEEE Press, 1996, pages 38-47.

[20] R. Sandhu, “Role Activation Hierarchies,” in Proceedings of the third ACM workshop on Role-based Access Control,

pp.33-40, October 22-23, 1998.

[21] Z. Tari, S. Chan, “A Role-Based Access Control for Intranet Security,” IEEE Internet Computing, Sept-Oct, 1997, pages

24-34.

[22] A. Tripathi, T. Ahmed, R. Kumar, and S. Jaman, “Design of a Policy-Driven Middleware for Secure Distributed

Collaboration," in Proceedings ICDCS-2002, pages. 393 – 400.

[23] XACML 1.0 Specification http://xml.coverpages.org/ni2003-02-11-a.html.

 18

9 Appendix

9.1 Proof of Theorems 1 and 2

Proof of Theorem 1: The conflict resolution algorithm, ConfRes, before relaxing any constraint checks the

consistency of the input policy graph. If the input policy graph is inconsistent then no constraint relaxation takes

place. Steps 2 – 4 of ConfRes generate IP problem constraints for consistency checking. In this IP problem all the

constraint variables ai are assigned a value of one implying that all constraints are assumed to be valid. If a binary

feasible solution to this IP problem exists, then the corresponding input policy graph Gi is consistent. Now we

need to show that if the input policy is consistent then there exists a binary feasible solution to the IP problem

formulated in steps 2 – 4 of the algorithm ConfRes.
It can be proved that the only source of infeasibility that might occur in a IP problem derived from a

consistent policy graph is because of the addition of SoD constraints that involve proxy users. A proof of this

statement is omitted because of space limitation. SoD constraints involving proxy users are added in the IP

problem only if there is a non-zero element in the set A returned by the algorithm CSP (Rules 21 and 23). Since

all the constraint variables ai are assigned a value of one, therefore all the elements of set A have a value of zero

(see line 3d of the CSP algorithm). This implies that in the IP problem generated in steps 2 -4, no SoD constraint

is defined for proxy users if the corresponding input policy graph is consistent. Therefore, if the policy graph is

consistent a binary feasible solution would exist to the IP problem generated in step 2-4 of the algorithm ConfRes.

Proposition 1: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes.
The graph G does not contain any cyclic hierarchy.

Proof: Suppose the graph G contains cyclic hierarchy. In particular, consider two roles r i and r j with the hierarchy

constraint, :m i j
f

a r rt and
*

j i
f

r rt , where f � {I, A}. Let Pij be the set of all hierarchy paths from r i to r j. Since r i and

r j are included in the cyclic hierarchy path, therefore am Œ 0 and the set Pij is not empty. Because of the hierarchy

constraint :m i j
f

a r rt , 0
im cjra u is added as a constraint to the IP problem, where, ucj is a special user assigned to

role r j to detect cycle in role hierarchy (Section 3.1.2). Since am Œ 0 therefore 0
icjru , i.e., ucj cannot access role

r i.

According to condition a of Section 3.1.2, 1
jcjru . If Pij is not empty then condition d leads to the

deduction that 1
icjru , which contradicts the assumption that am Œ 0. Therefore, either am = 0 in any feasible

solution or Pij is an empty set, implying that there is no cyclic hierarchy path to r i via r j.

In the event-driven RBAC semantics, users’ access to roles/permissions can be classified as direct access
or indirect access. Access to a role is considered as a direct access if a user gains access to the role by activating

that role. An indirect access to a role r can be made by either activating a senior role r’ that is related to r in the I-
hierarchy sense, or by the occurrence of an event that triggers activation of r by some user. In the event-driven

RBAC policies, all the constraints related to direct accesses are explicitly stated and all the direct accesses by

users to roles/permissions for which some SoD is defined can be easily checked based on the explicit policy

statements. In presence of hierarchy and dependency constraints, indirect accesses may lead to conflicting

authorizations that result in SoD violations. The proposed conflict resolution strategy ensures that no indirect or

derived access will cause violation of any SoD constraint retained in the final policy. We prove this for role-

specific and user-specific (role-level) SoD constraints only. The case for permission specific and user-specific

(permission-level) SoD constraints can be proved in a similar manner.

Proposition 2: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes.
For a role-specific SoD constraint ac in G, No hierarchy or event-dependency constraint exists in G that violates

ac.

 19

Proof: Any indirect access that may lead to the violation of role-specific SoD constraint will fall into one of the

four cases shown in Fig. 7.

r z

r x r y

ac : SoD

ui r s

r z

r x r y

ac : SoD

a1

amIn
du

ce
d

So
D

a n
=a

c
a i

a
d :

(
u

x)
u

irx

ui r s

r z

r x r y

ac : SoD

a1

amIn
du

ce
d

So
D

a n
=a

c
a i

a
d :

(
u

x)
u

irx

ui

r z

r x r y

ac : SoD

a
d :

(
u

r/p)
u

irx

ui

r z

r x r y

ac : SoD
a

d
1 :

(
u

r/p)
u

irx

a
d
2 :

(
u

x)
u

iry

(a) (b) (c) (d)

Case 1: In this case a user accesses two conflicting roles by activating a senior role that is related to both

conflicting roles through an I-hierarchy. This is depicted in Fig. 7(a) in which roles rx and ry have a SoD

constraint ac and role rz is a senior role linked to ry through an I-hierarchy. Assume that the policy graph G after

conflict resolution contains a sub-graph isomorphic to the graph shown in Fig. 7(a). This implies that in the final

solution to the IP ac = 1 and all the variables ai, corresponding to I-hierarchy edges that link rz to rx and ry, are

assigned a value of one. As a result of the inheritance path from rz to rx and ry, any authorized user by activating rz

accesses rx and ry (Rules 2 and 3). Rules 6 and 15 ensure that at least one regular user or proxy user accesses role

rz. Without Loss of generality, assume that ui is such user. Therefore, in any feasible solution 1 and 1
x yir iru u .

However, the IP constraint () 1
x yc ir i ra u u� d , derived from Rules 7 and 21 , imply that either ac = 0 or there is no

inheritance from rz to rx or from rz to ry. Hence G does not contain a role that is linked to two conflicting roles

through an I-hierarchy.

Case 2: This case captures the role-specific SoD violations because of the existence of inheritance path

and dependency constraint. The inheritance path from rz to ry enables a user assuming the role rz to access ry

(Rules 2 and 3). An induced SoD constraint an (see Section 9.2) is defined between rz and rx because of the role

specific constraint ac and the inheritance path from rz to ry. n c ia a a � , where ai corresponds to an I-edge in the

path from rz to ry. Similar to case 1, Rules 6 and 15 ensure that at least one regular user or proxy user accesses role

rz in any feasible solution to the underlying IP problem Let ui be such user. The dependency constraint ad causes

ui to access role rx, whenever the body of the dependency trigger becomes true. Rules 9, 10 and 20 imply that in

any feasible solution either ui or its passive proxy accesses rx.

In the underlying IP problem, SoD constraint involving proxy variables is defined between rz and rx if

there is a possibility that such constraint may be violated (Rule 21). If such a possibility does not exist

(CSP(rx,ry,ui,ui,G) = infeasible) then in the graph G, the inheritance path from rz to ry and the role specific SoD

constraint ac are non-conflicting. Proposition 4 implies that if the procedure CSP returns infeasible for the given

role-specific SoD then the corresponding SOD will never be violated in the policy graph G.

In case there is no other valid constraint in the policy graph G that prevents the violation of induced SoD

between rz and rx, then SoD constraint with the corresponding proxy variables are added in the underlying IP

problem (Rule 21). In addition the IP constraints derived from Rule 7 for the induced SoD constraint an, imply

that in any feasible solution, if an = 1, then the conflicting roles rz and rx cannot be accessed by ui and/or its

proxies concurrently. This contradicts with the authorizations for ui derived from Rules 2 and 3 in conjunction

with Rules 6 and 15 as explained above. Therefore, in any feasible solution either ad = 0 or � ai = 0 or ac = 0.

Hence, G does not contain a role-specific SoD constraint that conflicts with a dependency constraint because of I-
hierarchy, as shown in Fig. 7(b).

Case 3: Fig. 7(c) depicts a generic scenario in which a role-specific SoD conflicts with a dependency

constraint. The nature of conflict between the role-specific SoD constraint ac and the dependency constraint ad in

this case is similar to the conflict between the induced SoD an and the dependency constraint ad in Case 2. Using a

Fig. 7. Case of role-specific SoD violations

 20

reasoning similar to Case 2, we can show that either the SoD constraint ac never gets violated because of some

preventive constraint in G, or one of the constraint ac or ad is not present in the policy graph G.

Case 4: In this case two dependency constraints jointly conflict with a role-specific SoD constraint as

shown in Fig. 7(d). If we assume that the graph G contains the graph shown in Fig. 7(d) as a sub-graph then in

any feasible solution of the underlying IP problem, either ui or its passive proxy activate the conflicting roles rx
and ry simultaneously (Rules 9, 10, 15 and 16).

The dependency constraints of Fig. 7(d) do not conflict with the SoD constraint ac if some other

constraint prevents simultaneous activation of dependency triggers ad1 and ad2. In this case, no indirect access

through the dependency constraints ad1 and ad2 violates the roles specific SoD ac.

If CSP(rx,ry,ui,ui,G) Œ infeasible, implying that no other constraint prevents the violation of the SoD

constraint ac, then SoD constraints involving ui and its proxies are added in the underlying IP problem (Rule 21).

In addition, the IP constraints derived from Rule 7 for the SoD constraint ac, imply that in any feasible solution, if

ac = 1, then the conflicting roles rx and ry cannot be accessed by ui and/or its proxies concurrently. This contradicts

with the authorizations for ui derived from Rules 9, 10, 15, and 16 as explained above. Therefore, in any feasible

solution either ac = 0 or ad1 = ad2 =0. Hence, G does not contain a role-specific SoD constraint that conflicts with

dependency constraints, as shown in Fig. 7(d).

Proposition 3: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes.
For a role-level user-specific SoD constraint ac in G, no hierarchy or event-dependency constraint exists in G that

violates ac.

Proof: Any indirect access that may lead to the violation of a role-level-user-specific SoD constraint can be

classified into one of the following two cases.

rw

r z

r y

r x r v

ui u j

ac : SoD

r z

rw

r z

r y

r x r v

ui u j

ac : SoD

r z

r z

r x r y

u i u j

ac : SoD

r z

a
d1 :�

(�
u

x) �
u

irz

a
d

2 :�
(�

u
y) �

u
jrzc

r z

r x r y

u i u j

ac : SoD

r z

a
d1 :�

(�
u

x) �
u

irz

a
d

2 :�
(�

u
y) �

u
jrzc

(a) (b)

Case1: This case covers all the scenarios in which the existence of inheritance path(s) leads to the

violation of role-level-user-specific SoD as shown in Fig. 8(a). In Fig. 8(a), users ui and uj have a user-specific

SoD ac for role rz. For a generic case, the relationship between the roles shown in Fig 8(a) is given by:

* * * *

() () () ()x y x y y z v w v w w z w z
A I A I

r r r r r r r r r r r r r rt � � t � t � � t �

In any feasible solution of the IP problem formulated for the policy graph of Fig. 8(a), either ui or its

proxy (uj or its proxy) activates role ry (rw), which causes the corresponding users to access role rz because of the

inheritance paths from ry to rz and from rw to rz. The constraint ac implies that the role rz cannot be simultaneously

accessed by ui and uj. In case some valid constraint in G prevents simultaneous activation of ry by ui and rw by uj,

the inheritance paths and the SoD constraint ac becomes non-conflicting and no violation of SoD constraint ac can

occur through the inheritance paths:
* *

 and y z w z
I I

r r r rt t .

If CSP(rx,rx,ui,uj,G) Œ infeasible, implying that no other constraint prevents the simultaneous activation of

ry by ui and rw by uj, then in the underlying IP problem, SoD constraints involving the corresponding proxy

variables are defined for ac (Rule 23). In addition, the IP constraints derived from Rule 8 for the user specific SoD

constraint ac, imply that in any feasible solution, if ac = 1, then both ui and uj and/or their respective proxies

cannot access role rz concurrently. This contradicts with the authorizations for ui and uj derived from Rules 2 and

Fig. 8. Role-level user-specific SoD violation cases

 21

3 in conjunction with Rules 6 and 15. Therefore in any feasible solution of the underlying IP problem either ac =

0, or there is no inheritance from ry to rz and from rw to rz. Hence, G does not contain a user specific SoD

constraint that conflicts with any inheritance path.

Case2: In this case two dependency constraints jointly conflict with a role-level-user-specific SoD as

shown in Fig. 8(b). In this figure, users ui and uj have a user-specific SoD ac for role rz. For a generic case, the

relationship between the roles shown in Fig. 8(b) is given by:
* *

() ()x z x z y z y z
A A

r r r r r r r rt � � t � .

Because of the dependency constraint ad1 (ad2) depicted in Fig. 8(b), either ui or its proxy (uj or its proxy)

activates role rz. The constraint ac implies that the role rz cannot be simultaneously accessed by ui and uj. In case

some valid constraint in G prevents simultaneous activation of rz by ui and uj, the dependency constraints and the

SoD constraint ac becomes non-conflicting and no violation of SoD constraint ac can occur through the

dependency constraints ad1 and ad2.

If CSP(rx,rx,ui,uj,G) Œ infeasible, implying that no other constraint prevents the simultaneous activation of

rz by ui and uj, then SoD constraints involving the corresponding proxy variables are defined for ac (Rule 23). In

addition, the IP constraints derived from Rule 8 for the user specific SoD constraint ac, imply that in any feasible

solution, if ac = 1, then both ui and uj and or their respective proxies cannot access role rz concurrently. This

contradicts with the authorizations for ui and uj derived from transformation rules for dependency constraints

(Rules 9, 10, and 20) in conjunction with Rule 15. Therefore in any feasible solution of the underlying IP problem

either ac = 0, or ad1 = ad2 = 0. Hence, G does not contain a user specific SoD constraint that conflicts with any

dependency constraint.

Proposition 4: If CSP(r1,r2,u1,u2,G) returns infeasible then no state in which u1 accesses r1 and u2 accesses r2

simultaneously, can be derived from the event-driven policy graph G.

Proof: The algorithm CSP constructs a modified graph G’ from the original policy graph G by removing some of

the edges corresponding to SoD constraints. All Other edges associated with hierarchy and dependence

constraints in G are included in G’. CSP(r1,r2,u1,u2,G) returns infeasible if it is not possible in the modified graph

G’ to reach a state in which u1 accesses r1 and u2 accesses r2 simultaneously. Since G’ is a less restricted version of

G (because of the removal of SoD constraints) and if such a state cannot be derived from G’, it cannot be derived

from G.

9.2 Induced Constraints

Induced Constraints are added in the event-driven RBAC policy because of incomplete specification and

without their addition the policy becomes inconsistent. There are two types of induced constraints: i) induced SoD
and ii) induced dependence.

i) Induced SoD: The I-hierarchy semantics of RBAC requires that conflicting role-set of a senior role

includes the conflicting role-set of all its junior roles that are related to the senior role by I-hierarchy. Conflicting

role-set of a role r is the set of all roles that have a role-specific SoD constraint with r. Induced SoD constraints

are recursively defined from junior roles to senior roles in the following manner.

Consider a role-specific SoD constraint ‘a1’ between two roles ra and rb as shown in Fig. 9(a). Let roles rc

and rd be related to ra and rb with I-hierarchy constraints 2 : c a
I

a r rt and 3 : d b
I

a r rt . Induced SoD constraints a4 =

a1a2 is added between rc and rb, a5 = a1a3 is added between rd and ra, and a6 = a4a5 is added between rc and rd.

Similarly, the induced SoD constraint a5 propagates upward in the hierarchy. Note that an induced SoD constraint

is defined between two roles only if such roles do not have a previous role-specific SoD constraint. The product

of constraints in the definition of induced SoD constraint implies that if the original SoD constraint between

junior roles is removed, the induced SoD constraint becomes invalid.

ii) Induced dependence: The strong dependence semantics in an event trigger requires that the triggered

event cannot occur without the occurrence of triggering event. An incomplete constraint specification may violate

this dependence. For instance, in the event-driven RBAC policy shown in Fig. 9(b), it is possible that user u2

accesses role r3 by activating the senior role r2 without the activation of role r1 by u1. This is a violation of the

 22

dependence constraint
1 31 1 2: r ra u uoo . In order to preserve the strong dependency implied by a1, a strong

dependency constraint of the form
1 21 2r ru uoo need to be defined. Like Induced SoDs, induced dependence

constraints are recursively defined from junior roles to senior roles. The recursive definition of induced
dependence is given below.

For a strong dependency constraint � �1 :
j

i x i
x irC u C

a u u
�

� � oo , if there exists a role rk such that 2 : k j
I

a r rt and

user ui is authorized for rk, then a dependency � �3 :
k

i x i
x ir

C u C
a u u

�
� � oo is induced by a1 and a2. The induced

dependency a3 is related to a1 and a2 by the equation a3 = a1a2, implying that the a3 becomes ineffective if any of

the constraints a1 or a2 is dropped.

(a) (b)

r 1

r 3

r 2 u2

a
1 : u

1r1 s
s

u
2r3

u1

a2

Induced dependence
a3: u1r1ssu2r2

a3 = a1.a2

r b

r d

a4 = a1.a3 ,

r a

r c

a3

SoD

So
DSoD

SoD

a 5 a
2

a
1

a
4

a
6

a5 = a2.a3 , a6= a4.a5

Induced SoD

 Fig. 9. (a) Induced SoD constraint. (b)) Induced dependence constraint

