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Abstract 
 

Role based access control (RBAC) has generated great interest in the security community for its 
inherent richness and flexibility in modeling a wide range of access control policies. Any comprehensive 
access control model such as RBAC requires verification tools to support consistency analysis and 
identify possible policy conflicts. These conflicts, if remain undetected and unresolved, expose the 
underlying system to numerous vulnerabilities and security risks. In this paper, we propose a 
verification framework for detection and resolution of inconsistencies and conflicts in event-driven 
RBAC policies. The framework uses an integer programming based approach for optimal resolution of 
policy conflicts. The proposed approach is generic and can be tuned to a variety of optimality measures.  
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1 Introduction 
Role based access control (RBAC) has generated great interest in the security community for its inherent 

richness and flexibility in modeling a wide range of access control policies [11, 17, 19]. Several beneficial 

features such as policy neutrality, support for least privilege, efficient access management, are associated with 

RBAC models [19, 13]. The concept of role is associated with the notion of functional roles in an organization 

and hence RBAC models provide intuitive support for expressing organizational access control policies [10]. 

Various extensions to RBAC have been proposed to incorporate the temporal and event-based semantics required 

in many business processing and workflow based applications, including: e-commerce, digital government, 

supply-chain management, health-care, distance learning, and many others [4, 21, 22, 5, 6]. Most of these 

emerging applications require specification and enforcement of access control policies at a very fine granularity 

which are difficult to implement even with the extended RBAC models, mainly because of their inefficiency in 

modeling permission-centric constraints. The current RBAC approaches attempt to model such constraints at the 

role-level which either restrict the semantics of permission-centric constraints or introduce considerable overhead 

by creating separate roles for the permissions associated with such constraints [12]. The latter may introduce a 

disparity between the abstraction of role in RBAC and the notion of role in an organizational hierarchy. Another 

important requirement common to many such application environments is the support for event-based access 

control, according to which certain roles or permissions may be automatically enable or disabled depending on the 

occurrence of some specified events. In this paper we propose two important extensions to current RBAC models 

that address those requirements. In particular, we introduce the concept dynamic permissions in RBAC. 

Acquisition of a dynamic permission not only requires assumption of the role to which such permission is 

assigned but also the satisfaction of the corresponding permission-centric constraints. In addition we enhance 

RBAC with supports for event-based role or permission enabling/disabling by introducing two new types of event 

triggers for modeling stricter form of dependencies that often occur in many task-oriented and work-flow based 

systems. These triggers can be used to model both role-level and permission-level dependency constraints.   

Any comprehensive access control model requires tools to support consistency analysis and identify 

possible conflicts. The interplay of various RBAC constraints such as hierarchy, separation of duty (SoD), 

dependency and cardinality may introduce inconsistencies and conflicts in the underlying access control policy. 

These conflicts, if remain undetected and unresolved, exposes an organization to numerous vulnerabilities and 

risks pertaining to security and privacy of organizational data and resources. The problem of conflict detection has 

been extensively studied in literature in the context of rule-based systems [15, 16]. Most of the security related 

research work uses the reachability and model-checking based techniques developed for analyzing rule-based 

systems, to verify the consistency of access control policy specification [1, 2].   However, the crucial issue of 

conflict resolution has not been adequately addressed in literature in the context of access control policies. 

Typically, resolution of policy conflicts involves manual intervention of policy administrator. Incase there are 

multiple policy administrators, a consensus on the resolution needs to be obtained. This is a slow and ad hoc 

process and provides no guarantee on the quality of solution in terms of the system behavior after resolution.  

There are some dynamic techniques for resolution of access control policy conflicts [14, 7, 6, 13]. However, these 

techniques either assume a hierarchical relationship of objects and subjects, or consider authorizations to be 

independent. These assumptions may not hold in access control polices derived from RBAC models.  

In this paper, we propose an integer programming (IP) based technique for the optimal resolution of conflicts 

in an event-driven RBAC policy. The event-driven RBAC model, discussed in Section 2, uses trigger based 

mechanism to capture the dependency and event constraints. It is important to note that even though the proposed 

conflict resolution technique is discussed in the context of RBAC, our results are also relevant to a large variety of 

existing and next generation access control models [18, 23]. 

The main contributions of this paper are as follows: 

1. Two types of event-triggers, strong dependence and weak dependence triggers are introduced. The strong 

dependence semantics of the event triggers is a novel addition and has not been considered in existing RBAC 

models. These triggers can be used to model a variety of dependence and workflow based constraints. In 

addition various separation of duties (SoD) constraints defined in literature can be composed from these 

constraints and other basic RBAC SoD constraints. Another novel feature of our model is the introduction of 

dynamic permissions that allow specification of access constraints at the permission level. 

2.  An integer programming (IP) based approach is used to resolve policy conflicts in an optimal manner. Unlike 

other conflict resolution strategies, our approach does not assume any object-oriented hierarchy defined over 

objects and subjects. Moreover, the structural dependence semantics of RBAC models can be easily captured 
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in the proposed approach. The authorizations produced by the resulting RBAC policy are always 

deterministic. The proposed approach is generic and can be tuned to a variety of optimality measures such as 

maximizing accessibility, minimizing set of relaxed constraints, and maximizing prioritized accesses. 

 

The remainder of this paper is organized as follows. In Section 2, we present the event-driven RBAC model. 

In Section 3, we describe the proposed IP-based conflict resolution technique. In Section 4, an example is 

provided to illustrate the effectiveness of proposed conflict resolution technique, and in Section 5, we 

formally prove the correctness of proposed approach. The related work is presented in Section 6. Section 7 

concludes the paper and provides some future directions. 

 

2 Event-Dr iven Role Based Access Control  
The RBAC model [19], currently being used as the basis for the NIST RBAC model, consists of the 

following four basic components: a set U of users, a set R of roles, a set P of permissions, and a set S of sessions. 
A user is a human being or a process within a system. A role is a collection of permissions associated with a 

certain job function within an organization. Permission defines the access rights that can be exercised on a 

particular object in the system. A session relates a user to possibly many roles. When a user logs in the system the 

user establishes a session by activating a set of enabled roles that the user is entitled to activate at that time. If the 

activation request is satisfied, the user issuing the request obtains all the permissions associated with the requested 

roles. One of the most important aspects of RBAC is the use of role hierarchies to simplify management of 

authorizations. The original RBAC model supports only inheritance or usage hierarchy, which allows the users of 

a senior role to inherit all permissions of junior roles. In order to preserve the principle of least privilege, RBAC 

model has been extended to include activation hierarchy which enables a user to activate one or more junior roles 

without activating senior roles [20]. From this point onward, we will use the notations I and A, to refer to 

inheritance and activation hierarchies respectively. The symbols 
* *

and 
I A
t t  are used to express I, and A hierarchy 

relationship between two roles respectively. Accordingly,
*

,  where { , }i j
f

r r f I At � , implies that role r i is senior 

to r j and the hierarchical relationship between them can be either inheritance only, or activation only. If role r i is 

immediately senior to role r j then the superscript *  is omitted from the relation symbol
f
t .   

2.1 Dependency Constraint 
The event dependency relationship semantics is incorporated in the RBAC formalism by introducing event 

triggers. We define two types of dependency relations, namely: strong dependency relation represented by the 

symbol oo and weak dependency relation denoted by the symbolo.  In the following, we first define different 

types of event expressions and then introduce event triggers for implementing dependency constraints. 

 
Simple Role Event Expression: A simple role event expression (SREE) is of the form activate(ui, rj), where ui� 

U, r j �R, specifying that user ui has activated role r j. All the role-related events can be specified in terms of 

activation of a role by some user. In order to represent the event corresponding to enabling (disabling) of a role r j, 

a special user uej (udj) is assigned to role rj. Activation of r j by uej (udj) corresponds to the enabling (disabling) of 

role r j. To prevent simultaneous activations of r j by uej and udj a user-specific separation of duty constraint 

(discussed in Section 2.2) is specified between users uej and udj. 
 

Simple Permission Event Expression: A simple permission event expression (SPEE) is of the form access(ui, pk), 

where ui� U, pk �P, specifying that user ui has accessed permission pk. Like role related events, permission 

related events can also be expressed by a user access to the permission. A permission can be accessed by a user if 

the permission is in the enabled state and the user acquiring the permission has activated the role to which the 

permission is assigned, or a senior role. A permission pk assigned to role r j becomes enabled (disabled) if it is 

being accessed by the special user uej (udj) of role rj. 
 

Event Triggers: Event triggers are used to model the dependence and ordering relationship between events. There 

are two types of triggers distinguishing the strong and weak dependency semantics. 
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Strong dependence Trigger: A strong dependence trigger is of the form: E1*...*EnssE, where Ei (i = 1,..,n) and 

E are simple role event or simple permission event expressions and * represents logical conjunction or 

disjunction. Event E occurs only if the body of the trigger (left hand side of the trigger) is true. 

 

Weak dependence Trigger: A weak dependence trigger is of the form: E1*...*EnsE, where Ei (i = 1,..,n) and E are 

simple role event or simple permission event expressions and * represents logical conjunction or disjunction. In 

case of weak dependence, event E can occur independently of Eis; however, when the body of the trigger becomes 

true, event E is triggered. 

 

2.2 Separation of Duty Constraint 
Separation of duty (SoD) policies have been found to be crucial for securing many commercial and 

business applications. Role-based models provide a convenient way for expressing and enforcing such policies. In 

the event-based RBAC formalism presented in this paper, majority of the SoD constraints identified in the 

literature [2, 13] can be composed from the following four basic SoD constraints: 

 

i) Role-specific SoD: a role-specific SoD disallows activation of conflicting roles by same user in the same session 

or in concurrent sessions. 

ii) Permission-specific SoD: a permission-specific SoD prevents same user to access conflicting permissions in 

the same session or in concurrent sessions. 

iii) Role-level-user-specific SoD: a role-level-user-specific SoD prohibits conflicting users of a role from 

assuming that role in concurrent sessions. 

iv) Permission-level-user-specific SoD: a permission-level-user-specific SoD prevents conflicting users of a 

permission from accessing that permission concurrently. 

 

2.3 Permission Access Semantics in Event-Dr iven RBAC 
In traditional RBAC models, permissions are considered static in a sense that any user assuming a role 

acquires all the permissions assigned to that role. A limitation of this permission acquisition semantics is that no 

permission-level access constraints can be defined. For instance, permissions may have separation of duty 

constraints or constraints regarding the order in which permissions are accessed. Permission centric constraints 

can be modeled in RBAC by creating separate roles for all permissions with such constraints and defining these 

constraints at the role level. However, creating a separate role for each permission, introduces a disparity between 

the abstraction of a role in RBAC and the notion of role in an organization hierarchy. For defining constraints at 

the permission level, we distinguish permissions into two types: i) static permission, and ii) dynamic permission.  
 

Static Permission: A static permission does not have any permission level constraint and becomes enabled when 

the corresponding role to which it is assigned is enabled. For a user ui to access a static permission ps assigned to 

role r j, user ui needs to activate at least one role in the set of roles * + * +} ’*

psR : j j
I

r r r r r? ? ° ‡ .  

Dynamic Permission: Permission level constraints can be defined on dynamic permissions. For a user ui to access 

the dynamic permission pk assigned to role r j, following conditions must hold: 

i) pk is in the enabled state. 

ii) ui has activated at least one role in the set of role Rpk. * + * + * +} ’* *

pkR : j j j
I A

r r r r r r r? ? ° ‡ ° ‡  

iii) ui has not accessed any permission pl that conflicts with pk in the same session or in concurrent sessions. 

iv) pk is not being accessed by any user uc that conflicts with user ui for permission pk (permission-level user-

specific SoD). 

   

Note that unlike static permission, a user can also acquire a dynamic permission pk assigned to role r j by only 

activating a role senior to r j in the A-hierarchy semantics. 
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2.4 Graph-Based Specification Model for  Event-Dr iven RBAC 
A graph based formalism can be used to specify the RBAC policy and associated event-based constraints. 

In the graph based model, user, roles and permissions are represented as nodes and the edges of the graph describe 

the association and constraints between different nodes. Nodes in a RBAC graph cannot be connected in an 

arbitrary manner. The type graph shown in Fig. 1(a) defines all possible edges that may exist between different 

nodes. An edge between a user node u and a role node r indicates that role r is assigned to user u. The hierarchy 

relationship between roles are modeled by self-edges labeled with I and A. In the type graph, I-hierarchy and A-
hierarchy are represented by solid and dashed edges respectively. There can be edges between role and 

permission nodes. A permission is a pair (object, access mode), which specifies which objects can be accessed 

and in which mode (read, write, execute, approve, etc). In order to distinguish between the two permission types, 

static permissions are represented as a solid square and dynamic permissions as dashed square. The graph model 

also supports specification of various separation of duty (SoD) constraints. A Role-specific or permission specific 

SoD constraint between two roles or permissions is represented by a double headed arrow between corresponding 

nodes. To represent conflicting users ui and uj for role rk (permission pl), a double headed edge with a label rk (pl) 

is drawn between the user nodes ui and uj. The label rk (pl) specifies that the corresponding users are conflicting 

for role rk (permission pl) and cannot access rk (pl) simultaneously. An event trigger in the graph-based model is 

represented by a bold edge labeled with the trigger expression TE. The trigger edge originates from all role or 

permission nodes, listed in the body of the trigger, and terminates at the role or permission node defined in the 

head of the trigger. A single trigger may have more than one edge because of the presence of multiple terms in the 

body of the trigger; however, all such edges are labeled with the same trigger expression. 

Fig. 1(b) shows an instance of the event driven RBAC policy graph consisting of four roles: General 

Manager (GM), Technical Manager (TM), Refund Manager (RM), and Refund Clerk (RC). The policy graph has 

three users: u1, u2, and u3, and three permissions: P1, P2, and PC (prepare check). Users u1 and u2 are assigned the 

role GM and u3 is assigned the role RC. The static permissions P1 and P2 are assigned to role RM and TM 

respectively, while the dynamic permission PC is assigned to role RC. The inheritance hierarchy relationship 

GM RM RC
I I
‡ ‡ enables user u1 and u2 to acquire the permissions of junior roles RM and RC by assuming the 

senior role GM. On the contrary, assumption of role GM does not entitle u1or u2 to inherit all the permissions of 

role TM without activating TM. Role TM is junior to GM in the A-hierarchy semantics, GM TM
A
‡ . This A-

hierarchy relationship permits u1 and u2 to activate role TM. A role-specific SoD constraint is defined between 

role TM and RM, implying that these roles cannot be accessed by same user simultaneously. The double headed 

arrow between the user nodes u1 and u2 defines the user specific SoD constraint between these two users for role 

TM, meaning that users u1 and u2 cannot activate role TM concurrently. The strong dependency constraint, 

1 1GM TMu u›› , defined between the role nodes GM and TM, implies that user u1 can activate the role TM only 

if u1 has activated the role GM.  

 

3 Consistency Analysis and Conflict Resolution 
Formal specification of security requirements and access constraints is the first step in designing access 

control policy. The next step is to identify and resolve any policy conflicts. Conflicts in an event-driven RBAC 

Fig. 1 (a) Type graph for event-driven RBAC. (b) Example of an event-driven RBAC policy 
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policy may not be explicit and may occur because of the interplay between various constraints embedded in the 

policy. For instance, the RBAC policy shown in Fig. 1(b) becomes inconsistent when user u1 assumes the role of 

GM. The strong dependency trigger defined between GM and TM constrains u1 to either assume both roles GM 

and TM or none at all. By activating the role of GM, u1 also acquires permission over the junior role RM because 

of the inheritance hierarchy relationship. This leads to a violation of the role-specific SoD constraint defined 

between TM and RM. One of the following solutions resolves this conflict: i) Disallow u1 to activate the role GM. 

ii) Drop the strong dependence constraint between GM and TM. iii) Relax the SoD constraint between TM and 

RM. iv) Remove the hierarchical relationship between GM and RM. The first one restricts the accessibility of u1 

to GM and all other junior roles and may cause deadlock if there is no other user to access these roles. The last 

three solutions correspond to conflict resolution by constraint relaxation. However, relaxing a constraint in an 

arbitrary manner may produce significant deviations from the original policy and may not yield optimal 

resolution. 

In the following, we describe a 0-1 integer programming (IP) based approach that resolves policy conflicts in 

an optimal manner. The authorizations produced by the resulting policy are always deterministic. The proposed 

approach primarily uses constraint relaxation strategy. All the constraints that can be relaxed are assigned a 

weight according to their importance and a conflict free policy is generated by selecting all the non-conflicting 

constraints that yield an optimal value of the objective function. The proposed approach is generic in the sense 

that it can work for a variety of optimality measures such as maximizing accessibility, minimizing the set of 

relaxed constraints,   and maximizing prioritized accesses and constraints. Changing the optimality measure in our 

formulation only requires changing the weight in the objective function. 

 

3.1 IP Formulation of Event-based RBAC Policy 
The event-driven RBAC policy can be formulated as the following 0–1 integer programming problem. 

1 2 3maximize  

subject to  [             ] 

,  0 or 1,  ,  0 or 1,  ,  0 or 1,

,  0 or 1,  ,  0 or 1

j j j j

j j j j

T T T
r pd

r pd r pd

i i i r r ir ip pd ip

ir r ir ip pd ip

c a c u c u

A a u u pu pu b

a a a u u u u u u

pu pu pu pu pu u

- -

~

$ Œ ? $ Œ ? $ Œ ?

$ Œ ? $ Œ ?

 

Where, c = [c1 c2 c3] is the cost function defining the optimality criterion. ‘a’ is a constraint vector whose 

elements correspond to the policy constraints including role assignment, role-hierarchy, SoD, and event 

dependency constraints.  ‘ur’ is a vector defining the user-role authorizations and ‘upd’ is a vector defining the 

user-permission authorizations. The vectors ‘pur’ and ‘pupd’ define the role and permission authorizations for 

proxy users. Proxy users (discussed in next section) are not the actual users specified in the original access control 

policy and are included in the IP formulation to create a problem instance in which all the constraints can be 

evaluated. In the IP formulation of an RBAC policy, all the constraints are defined using algebraic equations. The 

elements of matrix ‘A’ correspond to the coefficients of terms used in the equations/inequalities defining the 

constraints. All the variables used in above IP formulation are binary variables, i.e., they can only take a value of 

‘0’ or ‘1’.  

In the solution to the IP problem, if the value of a constraint variable ‘ai’ equals one then the 

corresponding constraint is retained in the final policy; otherwise, it is dropped. The user role authorization 

variable ‘
jiru ’ defines the authorization of user ui over role r j. If 0

jiru ?  is specified as an IP constraint, then user 

ui has no authorization over role r j and cannot access r j by any means. Similarly, the user permission variable 

jipu defines the authorization of user ui over the dynamic permission pj. Note that the user-permission 

authorization variable is only defined for dynamic permissions. Static permissions are automatically acquired by a 

user when the user accesses the role to which such static permissions are assigned. For instance, a user ui by 

activating role r j acquires all the static permissions of r j and all the static permissions of roles that are junior to r j 

in the I-hierarchy sense.   

 

3.1.1 IP constraint Transformation Rules 
The rules for transforming the policy constraints into IP constraints are listed in Tables II – IV. The 

predicates and functions used in these transformation rules are described in Table I. The transformation rules are 



 7

grouped into following categories: hierarchy and assignment, enabling, SoD and dependency triggers. Rules for 

each of these categories are separately defined for actual users specified in the original event-driven RBAC policy 

and for proxy users created to evaluate all possible authorizations and constraints in the underlying IP problem.  

Table II lists the rules for the users defined in the original policy. Rules 1-4 ensure that in any feasible 

solution of the IP, if a user accesses a role or permission then the user should have proper authorization for the 

role or permission being accessed. A user u is authorized for a role r if either u is assigned to r or u is assigned to 

senior role r’  such that there is an access path from r’ to r.  For accessing a dynamic permission, a valid 

authorization is required for the role to which such permission is assigned. The enabling rules (5 and 6) imply that 

a role or permission can only be accessed in the enabled state. Rules 7 and 8 represent the four basic SoD 

constraints in mathematical form using the corresponding user-role and user-permission binary decision variables. 

Rules 9 and 10 defines the event trigger dependency implying that whenever the body of the event trigger 

becomes true, the event listed in the head of the corresponding dependency constraint is triggered. For a strong 

dependency constraint the dependent event cannot occur if the body of the corresponding trigger is false. 

r 1

r 2 r 3

r 4

u1 u2

u3

a 3
: u

1r
1
s
s

u 3r
2

a
4 :

u
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s
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Returns the passive proxy-user of user u for role r. passive-proxy(u,r)

Returns the active proxy-user of user u for role r. active-proxy(u,r)

Returns True if permission p is assigned to role r.passign(p,r)

Returns True if user u is assigned to role r.uassign(u,r)

Returns True if the role or permission node x in the RBAC 

graph can be reached from the user node u. This reachability

implies that user u can access the role or permission x.

reachable(u,x)

Descr iptionFunction/predicate

Returns the passive proxy-user of user u for role r. passive-proxy(u,r)

Returns the active proxy-user of user u for role r. active-proxy(u,r)

Returns True if permission p is assigned to role r.passign(p,r)

Returns True if user u is assigned to role r.uassign(u,r)

Returns True if the role or permission node x in the RBAC 

graph can be reached from the user node u. This reachability

implies that user u can access the role or permission x.

reachable(u,x)

Descr iptionFunction/predicate

 
The solution to the IP problem with original user-role/permission and constraint variables may yield an 

instance in which not all policy constraints are evaluated. Omission of these constraints from IP evaluation can be 

attributed to SoD constraints and event triggers that derive the policy to a single instance out of many other legal 

policy instances. Because of this omission, it is quite possible that some conflicting constraints may remain 

undetected and unresolved in the final policy derived from the IP solution. For example in the RBAC policy graph 

shown in Fig. 2(a), the dependency constraints a3:u1r1oo u3r2 and a4:u2r1oo u3r3 jointly conflict with the SoD 

constraint a5 defined between roles r2 and r3. An IP problem derived from the rules given in Table II for the 

RBAC graph of Fig. 2(a) may yield a solution in which this conflict may remain unresolved. For instance, the 

assignment
11 2 3 4 5 4 1

r
a a a a a u      , and 

1 11 2 0
r r

u u   is a feasible solution to the IP problem 

corresponding Fig. 2(a). In this solution, the policy is evaluated without considering the activation of role r1 by u1 

and u2, and so the conflicting constraints a3, a4, and a5 remain undetected. 

 

 

 

Fig 2. (a) RBAC graph without proxy assignment leading to undetected conflicts. (b) RBAC graph with proxy assignment to 

evaluate all possible policy conflicts. (c) RBAC graph with SoD constraint a6 preventing any conflicting authorizations due 

to the conflicting constraints a3, a4, and a5 

Table I. Description of functions and predicates used in IP transformation rules    
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Category I

D 
Rule Meaning 

1 ¬reachable(ui, rj/pk)  µ  / 0
j ki r pu ?  If there is no access path from a user 

node ui to role or permission node r j/pk 

then ui is not authorized to access r j/pk . 

2 For an I-hierarchy constraint :m j k
I

a r r‡ , 

0
j km ir ira u u/ ~  

Any user ui assuming role r j also 

assumes rk if the constraint 

:m j k
I

a r r‡ is retained in the final 

policy. 

3 Let } ’*
| ( , ) ( )Ik k k

A
U u uassign u r r r r r? ¬ ® ? ° ‡ and 

} ’| :Ik j j j k
I

R r a r r? ‡ . ,  0
j k

j IK

IK j r r
r R

u U a u u
Œ

$ Œ / ‡Â  

Any user u not assigned to rk or any of 

its senior roles in the A-hierarchy 

sense, can access rk only if u is able to 

access at least one role in the set RIk.  

Hierarchy 

and 

assignment 

4 Let } ’*
| ( ) ( )  and ( , )Ak j j k j

A
R r r r r r passign p r? ? ° ‡ . 

0
k

Ak

ir ip
r R

u u
Œ

/ ‡Â  

A user ui can acquire a dynamic 

permission pk assigned to role r j by 

accessing at least one role in the set RAk 

5 $ uŒU, $ rŒR and all dynamic permissions pk assigned to r j, 

0,  and 0
j j k kr ejr p ejpu u u u/ ~ / ~ .  

 

Any role or permission can only be 

accessed in enable state. For defining 

the event corresponding to a enabling 

of role r j, a special user uej is assigned 

to r j. 1
jejru ? implies that r j is in 

enable state. Any dynamic permission 

pk assigned to r j becomes enable 

if 1
kejpu ? . 

Enabling 

6 Let { | ( , / )}u j kA u reachable u r p? . / / 0
j k j k

u

r p ejr p
u A

u u
Œ

/ ‡Â . 

Where, pk is a dynamic permission assigned to r j. 

If a role or permission is enabled, then 

at least one of the authorized users 

must access that role or permission in 

any feasible solution of IP. 

7 For a role (permission specific) SoD constraint am between r j 

and rk (pj and pk ), / /( ) 1  
j j k km r p r pa u u- ~  

Conflicting roles or permissions cannot 

be accessed by same user concurrently. 

SoD 

8 Let Uc be the set of conflicting users for role rk (dynamic 

permission pk) and am be the corresponding SoD constraint. 

/ 1
k k

c

m r p
u U

a u
Œ

~Â  

Conflicting users cannot access same 

role/permission concurrently. 

9 For a strong dependency trigger, * +:
i x i

m x y
C u C

a u u
Œ

° ® ›› , 

, 0,  and 0,
ix i x i

i m x y m x y
C Cu C u C

C a u u a u u
ŒŒ Œ

$ / ~ / ‡Âß ß where, C=̌Ci . 

User u accesses the dependent 

role/permission y if and only if the 

body of the trigger is true. 

Dependenc

y triggers 

1

0 
For a weak dependency trigger, * +:

i x i
m x y

C u C
a u u

Œ
° ® › , 

, 0
x i

i m x y
u C

C a u u
Œ

$ / ~ß , where, C = ̌Ci . 

Whenever the body of the trigger 

becomes true, user u is forced to access 

the dependent role/permission y. 

  
In order to include all the legal authorizations and constraints, we expand the IP problem to include proxy 

user-role and proxy-permission role variables. Additional constraints are defined between the actual users and 

proxy users in such a way that all access rules and constraints are evaluated in the policy instance generated by the 

expanded IP problem. There are two types of proxy users: active proxy and passive proxy. An active proxy user 
upon activation of a role or acquisition of a dynamic permission triggers the activation of another role or 

permission for a passive proxy user, provided an event trigger is defined for such activation. Table III lists the 

rules for defining IP constraints involving proxy users.  

 

 

 

 

Table II. IP Transformation rules for actual users specified in the original policy 
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Category ID Rule Meaning 

11 For a dependency constraint ix jyu uµ , where { , }µŒ › ›› , assign an active proxy user puia to 

role x. Incase x is dynamic permission, assign the active proxy user puia to the role to which 

permission x is assigned. Similarly, if y is a role assign a passive user puib to role y and if y is a 

dynamic permission assign the passive proxy puib to the role containing permission y.  
12 If a user ui is assigned to role r j then assign an active proxy user puia to role r j. 

Proxy User 

assignment 

13 Let user ui be assigned to role r j or any role rk such that * *
and  j k j k

A I
r r r r‡ ‡1 , assign an active proxy user 

puia to role rk. 
14 ¬reachable(pui, rj/pk)  µ  p / 0

j ki r pu ?  If there is no access path from a user node 

pui to role/permission node r j/pk then pui is 

not authorized to access r j/pk . 
15 Consider a user ui with an active proxy puia. If both ui 

and puia are authorized to access  role r j and all the 

dynamic permissions pk, then  

1
j jir iaru pu- ? and 1

k kip iapu pu- ?  

Either an authorized user ui  or its active 

proxy (but not both) must access r j / pk in any 

feasible solution of the underlying IP problem  

16 Consider a user ui with a passive proxy puib. If both ui 

and puib are authorized to access  role r j and all the 

dynamic permissions pk, then  

1
j jir ibru pu- ~ and 1

k kip ibpu pu- ~  

Either an authorized user ui  or its passive 

proxy (but not both) may or may not access r j / 

pk in a feasible solution of the underlying IP 

problem 

17 For an I-hierarchy constraint :m j k
I

a r r‡ , 

0
j km ir i ra pu pu/ ~  

Any proxy user pui assuming role r j also 

assumes rk if the constraint :m j k
I

a r r‡ is 

retained in the final policy. 
18 

Let } ’*
| ( , ) ( )Ik k k

A
PU pu uassign pu r r r r r? ¬ ® ? ° ‡ a

nd } ’| :Ik j j j k
I

R r a r r? ‡ . 

,  0
j k

j IK

IK j r r
r R

pu PU a pu pu
Œ

$ Œ / ‡Â  

Any proxy user pu not assigned to rk or any 

of its senior roles in the A-hierarchy sense, 

can access rk only if pu is able to access at 

least one role in the set RIk.  

Hierarchy 

and 

assignment 

19 Let } ’*
| ( ) ( )  and ( , )Ak j j k j

A
R r r r r r passign p r? ? ° ‡ . 

0
k

Ak

ir ip
r R

pu pu
Œ

/ ‡Â  

A proxy user pui can acquire a dynamic 

permission pk assigned to role r j by 

accessing at least one role in the set RAk 

20a For a generic dependency constraint, : ( )
i x i

m x y
C u C

a u u
Œ

° ® µ , 

where "µŒ {››,›}, 

1

1 1 1

1

\     

     

_ ( ) 1  

                                                                 _ ( ) 0

x i i x i i j z j

j ii

x x z
u C C u C C C u C

C CC

y

active proxy u u u

passive proxy u
h

Œ Ø Œ Œ
””

Ã Ô
/ /Ä ÕÄ Õ

Å Ö
~

ß ß ß ß  

This IP constraint implies that in case the 

body of the dependency trigger am is false, 

the passive proxy of u for role/permission y 

is able to access y.  This ensures that all 

authorizations related to dependency 

constraints are checked in the final solution 

of IP. 

Dependency 

trigger 

20b For a strong dependency constraint, : ( )
i x i

m x y
C u C

a u u
Œ

° ® ›› ,  

_ ( ) _ ( ) 0
x i

x y
u C

active proxy u passive proxy u
Œ

/ ‡Â
I

 

For strong dependency, 20a and 20b imply 

that u can access role/permission y if an 

only if the body of am is false and at least 

one active proxy for user-role or user-

permission listed in the body of am accesses 

the corresponding role/permission. 

  
Fig. 2(b) shows the policy instance of Fig. 2(a) with proxy user assignment according to Rules 11 - 13 of 

Table III. With this proxy assignment, Rules 9, 15, and 20 ensure that the dependency triggers a4 and a5 always 

get evaluated, implying that roles r2 and r3 are activated by either u3 or its passive proxy user pu3b. By applying 

Rule 21 on the policy graph of Fig. 2(b), an SoD constraint is defined between r2 and r3 for the proxy user pu3b. 

This ensures that the conflict among the constraints a3, a4, and a5 is detected and resolved in any feasible solution 

of the extended IP problem. However, in presence of dependency constraints, specification of role/permission-

specific SoD constraints for proxy users becomes very tricky. For example, consider the RBAC policy graph of 

Fig. 2(c) which is similar to Fig. 2(b) except that it contains an additional user-specific SoD constraint a6 defined 

between u1 and u2 for role r1. Because of this additional constraint, users u1 and u2 cannot activate role r1 

simultaneously, and therefore the dependency triggers a3 and a4 cannot become active at the same time. This 

means that user u3 is not able to assume the conflicting roles r2 and r3 concurrently, implying that the SoD 

Table III. IP transformation rules for proxy users
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constraint a5 will never be violated. Therefore, the RBAC policy of Fig. 2(c) is consistent and conflict free. 

However, if a SoD constraint of the form of Rule 7 is defined between r2 and r3 for the proxy user pu3b then one of 

the following constraints a3, a4, or a5 will be removed from a consistent policy. Suppose 

that * +
2 36 3 3 1br bra pu pu- ~ , is specified as a constraint in the integer program generated for the RBAC policy of 

Fig. 2(c). If in the solution none of the users (u1 and u2) activate role r1, then by Rule 15 their proxies do. Because 

of the dependency constraint defined for the proxy users (Rule 20), the constraints a3, a4, and a5 become 

conflicting and one of them is removed to get a feasible solution of the extended IP problem. 

CSP(r 1, r 2, u1, u2, G) 
INPUT: u1–r1, u2–r2, and policy graph G 

OUTPUT: Set A of conflicting constraints 

OUTPUT: cyclic-inher itance if G contains cyclic hierarchy 

OUTPUT:  infeasible if u1 cannot access r1 and u2 cannot access r2 concurrently in G 

OUTPUT:  feasible otherwise 

1. G’ « G 

2. Modify G’ by removing all the role-specific or permission-specific SoD constraints 

except between rx and ry (rx Œ ry)that have following properties: 

a. There is an immediate or series of dependency constraints from rx to r1 and 

from ry to r2. That is, the graph G’ contains event triggers of the form

1

*

1xxr ru uµ
2

*

2yy r ru uµ , where { , }µŒ › ›› , ux = uy. 

b. There is no event dependency trigger that activates rx for ux and ry for uy. Note 

that ux = uy. If such a trigger exists and condition (a) holds, then insert the

corresponding dependency constraint variable in the set A.  

3. Modify G’ by removing all the user-specific SoD constraint ‘ai’ between any two 

users ux and uy (ux Œ uy) over a role or permission r such that the conditions (a), (b), 

and (c) listed below hold: 

a. Activation of r by ux causes u1 to access r1, i.e., 
1

*

1xr ru uµ  

b. Activation of r by uy causes u2 to access r1, i.e., 
2

*

2yr ru uµ  

c. There exists at least one dependency constraint that causes either ux or uy to 

access r. 

d. If all the three conditions (a), (b), and (c) hold for ‘ai’ and there does not exist 

any role or permission r’  with conflicting users ux’ and uy’ such that 

1

* *

' ' 1  xr x r ru u uµ µ or 
2

* *

' ' 2yr y r ru u uµ µ , then let * +1 1 i kxc a a? / ß and 

* +2 1 i kyc a a? / ß , where, each akx (aky) is a dependency constraint that 

appear in the sequence of dependency constraints 
1

*

1xr ru u››

(
2

*

2yr ru u›› ). Insert c1 and c2 in the set A. 

4. Modify G’ by removing all user-specific SoD constraints between any two users ux

and uy (ux Œ uy) over a role or permission r’ such that there does not exist any 

dependence from uxr’ to u1r1 or from uyr’ to u2r2.  

5. Write the IP constraint equations for the modified graph G’ using the IP

transformation rules 1 – 9. 

6.  For each constraint ai appearing in the modified graph G’, add ai = 1 as an IP 

constraint. 

7. if no binary feasible solution to the constraints formulated in above steps exists then 

A = ̋ and return cyclic-inher itance and A. 

8. Add 
1 21 21 and 1r ru u? ? as IP constraint. 

9. if no binary feasible solution to the constraints formulated in above steps exists then

return infeasible. 

10. return feasible and A. 

  
 

 

 

 

 

Fig. 3. Constraint satisfiability algorithm that checks the possibility of SoD violations due to 

dependency constraints 
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Role/permission Specific SoD, an 

Condition: Let an represents a role/permission-specific SoD between r i and r j and let uk be a user such that there exists a 

passive dependency constraint for uk over both r i and r j (passive dependency constraint means that the variables ukri and ukrj 

appear in the head of their respective event triggers, e.g. ur µ ukrj , where µ Œ {››, ›}. If CSP(r i, r j, uk, uk, G) = cyclic-
inher itance or feasible then the following IP constraints need to be added 
ID Rule Meaning 
21a $ai Œ A (if A = h, then ai = 1) 

 ( ) 1
i ji n kbr kbra a pu pu- ~ ,  (  ) 1

i ji n kr kbra a u pu- ~ , 

 (  ) 1
i ji n kbr kra a pu u- ~  

In any feasible solution of the underlying IP problem, the 

conflicting roles/permissions r i and r j cannot be accessed by 

uk and/or its passive proxy pukb simultaneously. 

21b $ai Œ A (if A = h, then ai = 1)  
If ( , )ka iuassign pu r  then ( ) 1

i ji n kar kbra a pu pu- ~  

If ( , )ka juassign pu r then ( ) 1
i ji n kar kara a pu pu- ~  

In any feasible solution of the underlying IP problem, the 

conflicting roles/permissions r i and r j cannot be 

simultaneously accessed by active and/or passive proxies of 

user uk. Where, puka and pukb, respectively, denote the active 

and passive proxies of uk. 

User  Specific SoD 

Condition: Let am represents a user-specific SoD between users ui and uj for role rk. 

* +* +*
if ( , ) ( , )i n j n n k n kI

uassign u r uassign u r r r r r° ® ‡ ® ”  then the IP constraints defined in Rule 22 needs to be added. 

ID Rule Meaning 

22 ( ) 1
k km iar iara pu pu- ~ , if the active proxy puia of 

user ui  and active proxy puja of user uj are 

authorized for rk  

( ) 1
k km iar j ra pu u- ~ , if the active proxy puia of user 

ui  is authorized for rk  

( ) 1
k km ir jara u pu- ~ , if the active proxy puja of user 

uj  is authorized for rk  

This constraint prevents violation of user-specific SoD 

because of role inheritance. Two conflicting users ui and uj 

and/or their corresponding active proxies, puia and pujb, 

cannot access role rk (for which the users conflict), if one of 

the users ui or uj  is assigned to a role senior to rk in the I-
hierarchy semantics.    

 

 

Condition: Let an represents a role/permission-level-user-specific SoD between ui and uj for role/permission rk. Also, there 

exist passive dependency constraints for ui and uj over rk (passive dependency constraint means that the variables uirk and 

ujrk appear in the head of their respective event triggers, e.g. ur µ uirk , where µ Œ {››, ›}. If CSP(rk, rk, ui, uj, G) = 

cyclic-inher itance or feasible then the following IP constraints need to be added 

ID Rule Meaning 

23a $ai Œ A (if A = h, then ai = 1) 

( ) 1
k ki n ibr jbra a pu pu- ~ , (  ) 1

k ki n ir jbra a u pu- ~ , 

(  ) 1
k ki n ibr jra a pu u- ~  

In any feasible solution of the underlying IP problem, 

conflicting users ui and uj and/or their respective passive 

proxies puib and pujb cannot simultaneously access rk (for 

which ui and uj conflict). 

23b $ai Œ A (if A = h, then ai = 1) 
( ) 1

k ki n iar jbra a pu pu- ~ , if the active proxy puia of 

user ui  is authorized for rk  

  ( ) 1
k ki n ibr jara a pu pu- ~ , if the active proxy puja of 

user uj  is authorized for rk  

In any feasible solution of the underlying IP problem, 

role/permission rk cannot be accessed simultaneously by the 

active and/or passive proxies of conflicting user ui and uj 

respectively. Where, puia and puib (puja and pujb ), 

respectively, denote the active and passive proxies of ui (uj). 

  
In order to avoid the above discrepancy, an SoD constraint involving proxy users is only defined after 

ensuring that no other valid constraint prevents the violation of such SoD constraint. The constraint satisfiability 
problem (CSP) algorithm shown in Fig. 3 is used to determine the possibility of violation of role/permission-

specific or user-specific SoD constraint due to the event dependency constraints. CSP takes the conflicting user-

role/permission pairs (u1-r1, u2-r2) and the policy graph G as input and finds a configuration of the policy that 

allows u1 to access r1 and u2 to access r2 simultaneously. Note that for role/permission-specific SoD u1 = u2, and r1 

and r2 are conflicting roles/permissions. For a user-specific SoD, u1 and u2 are conflicting users for r1 = r2. Lines 2 

– 5 of the algorithm create a modified policy graph G’ by removing all the SoD constraints that do not prevent 

violation of the queried SoD constraint. In case the modified graph G’ is not conflict-free because of cyclic 

hierarchy (cf. Section 3.1.2) or other inconsistencies, CSP returns cyclic-inheritance (line 8) and therefore the 

SoD under consideration needs to be defined for the corresponding proxy variables to avoid any discrepancy in 

the final policy. CSP returns infeasible if it is not possible for u1 to access r1 and u2 to access r2 simultaneously in 

any valid configuration of the modified graph G’. This implies that the queried SoD constraint in the original 

policy graph G can never be violated, so this SoD constraint should not be defined for corresponding proxy users. 

If there exists a configuration in the modified graph G’ in which u1 accesses r1 and u2 accesses r2 concurrently, 

then CSP returns feasible. However, before returning CSP finds a set of constraints A that conflicts with the given 

Table IV. Transformation rules for SoD constraints involving proxy users 
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SoD (line 3d). If any of the constraint ai � A is retained in the final policy then the corresponding SoD needs to 

be defined for proxy users. The rules for defining the SoD constraints for proxy users are listed in Table IV. 

 

3.1.2 Cyclic Hierarchy 
Cyclic hierarchy is a form of inconsistency that arises because of the presence of one or more hierarchy 

paths consisting of I-hierarchy and/or A-hierarchy edges from a role to itself. In order to resolve this 

inconsistency, one of the hierarchical edges from all cyclic paths needs to be removed. Cyclic hierarchy conflicts 

can be specified in the IP problem using a special user variable. For any role r j that has a cyclic inheritance path to 

itself, a special user ucj is assigned to r j and the following IP constraints are defined: 

a. 1
jcjru   

b. If there is no inheritance path from role r j to any role rm then 0
mcjru   

c. For a hierarchy constraint :m k j
f

a r rt , where { , }f I A� , the special user ucj, assigned to r j, cannot access the 

senior role rk if the hierarchy constraint ‘am’ is retained in the final policy, i.e.,  0
km cjra u  . 

d. For any hierarchy constraint :n p q
f

a r rt , if 
*

 and j p p q
f

r r r rt z , then 0
p qn cjr cjra u u� d  

e. For a role rp such that 
*

j p
f

r rt and j pr rz , let ^ `: pf f
r r rR t . For any role rs belonging to the set Rf, let ‘as’ 

be the corresponding hierarchy constraint. For the special user ucj, assigned to role r j, the following constraint 

is added to the IP: 

 0
s p

s f

s cjr cjr
r R

a u u
�

� t¦  

3.2 Optimal Resolution 
The IP transformation rules described in the above section are used to represent the constraints embedded 

in the underlying access control policy. Once the policy constraints are transformed into IP constraints, an optimal 

resolution can be achieved by solving the IP problem described in the beginning of Section 3.1. The optimality 

measure is embedded in the objective function of the corresponding IP problem. Each decision variable in the 

objective function is assigned a weight and an optimal solution maximizes the over all weight of the objective 

function. These weights are assigned based on the priority of the underlying constraints and accesses. There are 

several other factors that need to be considered for weight assignment and a detailed discussion on this issue is 

beyond the scope of this paper.   
ConfRes(Gi) 
INPUT: Policy graph Gi. 

OUTPUT: A consistent and conflict free policy graph. 

1. G m Gi 

2. Add all the special and proxy users in the policy graph G according to the IP 

transformation rules. 

3. Using the constraint transformation rules, write the constraints for policy graph G in 

algebraic form. 

4. For each constraint variable ai, add ai = 1 as an IP constraint. 

5. If a binary feasible solution to the constraints formulated in the above steps exists then 

Gi is consistent. In this case return Gi. 

6. Reformulate the integer programming (IP) problem by removing all the assignment 

constraints added in step 4. 

7. Define the objective function. 

8. Find an optimal feasible solution for the IP problem. 

9. Remove all the constraints from the policy graph Gi for which the corresponding 

constraint variable a = 0 in the optimal feasible solution. 

10. Return the modified policy graph Gi. 

  
 

Fig. 4 shows the algorithm ConfRes for optimal resolution of conflicts in the event-based RBAC policy. 

The algorithm takes input an event-driven policy graph Gi and returns a consistent and conflict-free policy graph. 

Fig. 4. Conflict resolution algorithm
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If the input graph policy Gi is consistent then the same policy graph is returned. ConfRes first generates proxy 

user to role and special user to role assignment as discussed in the IP transformation rules. It then transforms the 

updated set of policy constraints into IP constraints using the transformation rules described in the above section. 

The consistency of the given policy graph is determined in steps 4 – 5. In step 4 all the variables ais corresponding 

to original policy constraints are assigned a value of one implying that all constraints are assumed to be valid. If 

there exists an assignment that satisfies all the IP constraints formulated in steps 2 – 5, then the given policy graph 

is consistent. In this case, the algorithm returns with the original policy graph. Otherwise, the IP problem is 

reformulated by removing all the IP constraints added in step 4. Next the objective function is defined based on 

the desired optimality criterion and the IP problem is solved for an optimal solution. Finally, all the constraints for 

which the corresponding constraint variable ai equals zero in the optimal solution are removed from given policy 

graph. 

A single optimality measure may not be suitable for resolving all types of policy conflicts. For instance, 

resolution of conflicts pertaining to cycles in role hierarchy may require a different optimality criterion than the 

resolution of SoD and dependence conflicts. A resolution strategy that tends to maximize accessibility of roles 

and permissions may work well for resolution of SoD and dependence conflicts but may resolve cyclic hierarchy 

conflicts in an undesirable manner. Such a resolution strategy would produce an acyclic role hierarchy with more 

users assigned to senior roles than to junior roles.  Generally, in any organization’s hierarchy, the number of users 

authorized for senior roles is lesser than the number of users authorized for junior roles. A better strategy for 

resolving cyclic hierarchy conflicts would be to remove the hierarchy edges with least priority or weights, 

assuming that the priorities/weights of the hierarchical edges reflect the responsibilities and authority of 

corresponding roles. However, a different optimality measure might be considered for resolving policy conflicts 

other than cyclic hierarchy. In this case, policy conflicts need to be resolved in two steps, with cyclic hierarchy 

conflicts resolved first followed by resolution of conflicts of other types. 

 

4 Illustrative Example 
 In this section, we illustrate the proposed conflict resolution technique by considering an event-based 

RBAC policy that models a workflow and the associated policy constraints. An important aspect highlighted in 

this example is the resolution of policy conflicts that may arise because of the interplay between workflow 

execution constraints and the organizational constraints restricting the accessibility of users over certain roles and 

permissions. 
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Fig. 5. (a) Event-driven RBAC policy graph modeling access control policy related to tax refund process. (b) Tax 

refund process workflow 
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Fig. 5(a) shows a graphical representation of an event-driven RBAC policy modeling the workflow of the 

tax refund process of Fig. 5(b). The RBAC graph in Fig. 5(a) consists of four roles: General Manager (GM), 

Technical Manager (TM), Refund Manager (RM), and Refund Clerk (RC), and five users:  u1, u2, u3, u4, and u5. 

Users u1 and u2 are conflicting users for role GM (constraint a2), u1, u2, and u3 are conflicting for TM (constraint 

a1), and u2 and u4 are conflicting for RM (constraint a4). The strong dependency constraint a5:u1GM oo u3TM 

implies that use u1 can activate role TM only if u1 has activated the role of GM. Similarly the event trigger a6:u2GM 

oo u2RM prevents u2 to activate the role RM without assuming the role GM. The tax refund workflow shown in 

Fig. 5(b) is represented in the policy graph using the dynamic permissions and event dependency triggers. The 

workflow includes the following tasks: prepare check, approve or disapprove check, summarize decision and 

issue or void check. The dynamic permissions PC, ADC1 and ADC2, SD, and IVC correspond to these workflow 

tasks. Since a check needs to be approved by two separate managers, this task is represented as two separate 

dynamic permissions ADC1 and ADC2. The event triggers defined on dynamic permissions define the execution 

semantics of the workflow. First a refund clerk (RC) prepares a check which needs to be approved by two 

separate managers for further processing. These constraints are represented in the graph by the triggers a10:u5PC 

oo enable ADC1 and a11:u5PC oo enable ADC2. Enabling of the permissions ADC1 and ADC2 imply that the 

users authorized for the manager roles can now approve or disapprove the refund check. The condition that the 

check must be approved by two different users assuming the manager role is enforced by defining a permission 

level SoD a7 between ADC1 and ADC2. After the checks are approved or disapproved, a summary of the decision 

is prepared. The decision summary is prepared by accessing the permission SD, which can only be accessed by a 

user authorized for some Manager role who has not approved or disapproved the check. The event trigger 

a12:
1 2

( ) ( )  
i M i M

i ADC i ADCu U u U
u u enable SD

� �
� � � oo , where UM = {u1, u2, u3, u4},  implements this workflow 

dependency by enabling the permission SD. The permission-specific SoD constraints (a7, a8, a9) among SD, 

ADC1, and ADC2 prevent a single user assuming manager role(s) to perform more than one operation on a given 

check. Once any user assuming Manager role prepares decision summary by accessing SD, the refund check 

needs to be issued or void. This workflow dependency is represented by the event 

trigger  
i M

i
u U

u SD enable IVC
�
� oo . Enabling of the permission IVC implies that any authorized user can issue 

or void the refund check depending on the decision summary. 

In order to ensure successful completion of any workflow instance, it is required that in any configuration 

of the policy shown in Fig 5(a), there exist a set of authorized users who can take the workflow instance to 

completion by executing the corresponding dynamic permissions.  The workflow completion constraints, 

although not discussed in this paper because of space limitations, are included in this example to illustrate the 

applicability of the proposed framework in capturing a wide variety of policy constraints. The workflow 

completion requirement, stated above, and the permission specific SoD constraints among ADC1, ADC2 and SD 

make the given policy inconsistent as there exist some policy instances of Fig. 5(a) in which the workflow 

completion requirement cannot be satisfied. For example, consider a scenario in which u1 assumes the role GM. 

By activating GM, u1 also acquire the junior role TM because of the dependency constraint a5. In this case TM 

cannot be acquired by any other user because of the SoD constraint a1. Similarly, the user specific SoD constraint 

a6 for role RM allows either u1 and u2 or u1 and u4 to access RM. This means that only two users can assume the 

Manager roles; whereas, the completion of the underlying workflow requires that three different Managers must 

perform the tasks associated with ADC1, ADC2 and SD.  

Apart from the workflow completion inconsistency, the policy graph shown in Fig. 5(a) may also lead to 

conflicting authorizations. For instance, the dependency constraint a5 and user-specific SoD constraint a1 becomes 

conflicting by activation of role GM by u1 and assumption of TM by u2 or u3. Conflicts in the event-driven RBAC 

policy shown in Fig. 5(a) are resolved by applying the conflict resolution algorithm ConfRes. The IP constraint 

transformation process produces almost 750 constraints with 130 variables for the event-driven RBAC policy of 

Fig. 5(a). Fig. 6 shows the IP formulation of the event-driven RBAC graph of Fig. 5(a) generated by the conflict 

resolution tool that we have developed. Due to space limitations, only the IP constraints corresponding to user u1 

are shown in Fig. 6. The optimality criterion of the IP shown in Fig. 6 is to retain a maximum number of 

constraints specified in the original policy. This is evident from the objective function that consists of only 

constraint variables with uniform weight assignment.  One of the optimal solution with this optimality criterion as 

found by our conflict resolution tool is to remove the user-specific SoD constraints a1 and a4 from the final policy 

graph. a1 prevents users u1, u2, and u3 from assuming the role TM in concurrent sessions; similarly, a4 prevents 
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users u2 and u4 from activating the role RM concurrently. This solution yields an objective function value of 

sixteen implying that sixteen out of a total of eighteen constraints are retained in this resolution.   

 
5 Correctness of proposed approach 

In order to show the correctness of the proposed conflict resolution approach, we need to prove that i) a 

consistent policy is not modified by the proposed conflict resolution algorithm, ii) the authorizations derived from 

the resulting policy are conflict free.   

The following theorem states that a consistent event-driven RBAC policy remains unchanged during the 

process of conflict resolution. 

 

Theorem 1: Let Gi be an input RBAC policy graph and G be the graph obtained after applying the proposed 

conflict resolution algorithm ConfRes. If Gi is consistent then G = Gi.  

Proof: The proof of this theorem is given in the appendix 

 

Conflicting authorizations in an event-driven RBAC policy occur because of cyclic hierarchy or SoD 

violations. The event driven RBAC policy obtained after applying the conflict resolution algorithm does not 

include any conflicts related to cyclic hierarchy and SoD constraints. This is formally stated in the following 

theorem. 

 

Theorem 2: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes.  
The policy graph G satisfies the following properties: 

a. There are no cyclic hierarchies in G (cf. Section 3.1.2). 

b. No hierarchy or event-dependency constraint exists in G that violates any role-specific SoD constraint, or 

permission specific SoD constraint, or role-level user-specific SoD constraint, or permission level user-

specific SoD constraint. 

Proof: The proof of this theorem directly follows from the Propositions 1- 3 given in the appendix. 

 

6 Related Work 
Several research efforts have been devoted to the topic of conflict detection and resolution in access 

control policies [14, 7, 6, 1, 9]. The resolution techniques proposed in literature can be classified into three 

classes: resolution by priority [14, 7, 8], resolution by constraint/rule relaxation [7], and resolution by restriction 

[9]. In the priority-based techniques each authorization is assigned a priority and a high priority authorization 

prevails over a conflicting low priority authorization. Priorities can either be explicitly assigned to each individual 

authorization or can be derived based on the administrative scope of the grantor, the specificity and the modality 

of the authorization [14]. For the latter case, an administrative hierarchy is considered to determine the 

authorization privileges of the grantors. The authorization of a grantor higher in the privilege hierarchy overrides 

any conflicting authorization granted by a grantor lower in the hierarchy. In case the grantors are incomparable or 

conflicting authorizations are specified by same grantor, object and subject hierarchies are used to resolve policy 

conflicts and a more specific authorization is allowed to supersede a less specific authorization. In some cases, it 

may not be possible to compare conflicting authorizations based on their specificity. Then, conflicts may be 

resolved in favor of negative authorizations. The resolution strategy that relies on the authorization privileges of 

grantors is more suitable for systems that are managed by multiple administrators who may specify contradictory 

rules for access to a particular resource.  Conflict resolution based on the specificity of authorization assumes the 

existence of an object oriented hierarchy relating the targeting objects and also the subjects. However, such a 

hierarchy may not exist for objects and/or subjects. For instance, in RBAC models there is no assumption as to 

how the underlying objects are related to each other? And for all practical purposes the target objects can be 

considered as atomic entities. Therefore, conflict resolution based on specificity is not applicable in RBAC.  The 

rule that negative authorization takes precedence although resolve policy conflicts but decreases flexibility [14] 

and may produce deadlocks in case there are other authorizations dependent on the denied authorization For 

instance in RBAC model, if a user assuming role ‘r’ is denied access to an object ‘o’ assigned to a role junior to 

‘r’, then none of the users assigned to role ‘r’ or its senior roles can access the object ‘o’ via the role ‘r’.  Other 

priority-based resolution techniques [8, 13] resolve policy constraints at runtime and do not consider a global 

optimality measure for conflict resolution. 
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Restriction-based resolution strategy prevents any conflicting access at the expense of restricting 

accessibility. Some of the conflict resolution techniques that belong to this group include the event-action 

constraint cancellation technique proposed by Chomicki et. al. [9], the well-formed model authorization set, and 

the stable model authorization set with pessimistic reasoning [7]. The restricted access semantics in these 

approaches may significantly reduce accessibility which may drive the system to a deadlock.   

A constraint or rule relaxation strategy avoid deadlock at the expense of dropping some constraints or 

policy rules. Bertino et. al. in [7] have proposed a conflict resolution technique based on optimistic stable model 

authorization. This technique uses constraint relaxation and yields maximum accessibility. The authorizations in 

this technique are derived by evaluating the current system state and all the stable models which may correspond 

to different relaxation of constraints. The multiplicity of stable models and the differences in the relaxation rules 

deriving these stable models make this approach non-deterministic, i.e., same access request with same system 

state evaluated at different times may result in different authorization. This kind of non-determinism cannot be 

accepted in systems that require well-defined and consistent authorization semantics at all times.  

1

1 1 2
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7 Conclusion 

In this paper, we have presented methodology for detection and resolution of inconsistencies and conflicts 

in event-driven RBAC policies. This methodology uses a binary integer programming (IP) based technique for 

optimal resolution of policy conflicts. The proposed approach is generic and can be tuned to a variety of 

optimality measures such as maximizing accessibility, minimizing set of relaxed constraints and maximizing 

prioritized accesses. We have developed a conflict resolution tool that first transforms an RBAC policy 

Fig. 6. Integer program corresponding to event-driven RBAC policy of Fig. 5(a) 
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specification into IP problem and then solves the corresponding IP problem for optimal resolution of policy 

conflicts. In addition, we have proposed two important extensions to current RBAC models for supporting 

specification and enforcement of access control policies at a very fine granularity. First, we introduce the concept 

of dynamic permissions which would allow specification of permission centric constraints. We also define two 

new types of event triggers for modeling stricter form of dependencies that often occur in many workflow 

applications. 

  As a future work, we plan to extend the proposed framework to resolve inconsistencies in dynamic 

workflow-based applications. An important aspect of these applications which is not considered in this paper is 

the strict temporal inter-dependency between the workflow tasks. These temporal dependencies make the problem 

of conflict resolution extremely challenging.    
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9 Appendix 
 
9.1 Proof of Theorems 1 and 2 
 
Proof of Theorem 1: The conflict resolution algorithm, ConfRes, before relaxing any constraint checks the 

consistency of the input policy graph. If the input policy graph is inconsistent then no constraint relaxation takes 

place. Steps 2 – 4 of ConfRes generate IP problem constraints for consistency checking. In this IP problem all the 

constraint variables ai are assigned a value of one implying that all constraints are assumed to be valid. If a binary 

feasible solution to this IP problem exists, then the corresponding input policy graph Gi is consistent. Now we 

need to show that if the input policy is consistent then there exists a binary feasible solution to the IP problem 

formulated in steps 2 – 4 of the algorithm ConfRes. 
It can be proved that the only source of infeasibility that might occur in a IP problem derived from a 

consistent policy graph is because of the addition of SoD constraints that involve proxy users. A proof of this 

statement is omitted because of space limitation. SoD constraints involving proxy users are added in the IP 

problem only if there is a non-zero element in the set A returned by the algorithm CSP (Rules 21 and 23). Since 

all the constraint variables ai are assigned a value of one, therefore all the elements of set A have a value of zero 

(see line 3d of the CSP algorithm). This implies that in the IP problem generated in steps 2 -4, no SoD constraint 

is defined for proxy users if the corresponding input policy graph is consistent. Therefore, if the policy graph is 

consistent a binary feasible solution would exist to the IP problem generated in step 2-4 of the algorithm ConfRes. 
 

 
Proposition 1: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes. 
The graph G does not contain any cyclic hierarchy. 
 
Proof: Suppose the graph G contains cyclic hierarchy. In particular, consider two roles r i and r j with the hierarchy 

constraint, :m i j
f

a r rt and
*

j i
f

r rt , where f � {I, A}. Let Pij be the set of all hierarchy paths from r i to r j. Since r i and 

r j are included in the cyclic hierarchy path, therefore am Œ 0 and the set Pij is not empty. Because of the hierarchy 

constraint :m i j
f

a r rt , 0
im cjra u  is added as a constraint to the IP problem, where, ucj is a special user assigned to 

role r j to detect cycle in role hierarchy (Section 3.1.2). Since am Œ 0 therefore 0
icjru  , i.e., ucj cannot access role 

r i. 

According to condition a of Section 3.1.2, 1
jcjru  . If Pij is not empty then condition d leads to the 

deduction that 1
icjru  , which contradicts the assumption that am Œ 0. Therefore, either am = 0 in any feasible 

solution or Pij is an empty set, implying that there is no cyclic hierarchy path to r i via r j.     

 

In the event-driven RBAC semantics, users’ access to roles/permissions can be classified as direct access 
or indirect access. Access to a role is considered as a direct access if a user gains access to the role by activating 

that role. An indirect access to a role r can be made by either activating a senior role r’  that is related to r in the I-
hierarchy sense, or by the occurrence of an event that triggers activation of r by some user. In the event-driven 

RBAC policies, all the constraints related to direct accesses are explicitly stated and all the direct accesses by 

users to roles/permissions for which some SoD is defined can be easily checked based on the explicit policy 

statements. In presence of hierarchy and dependency constraints, indirect accesses may lead to conflicting 

authorizations that result in SoD violations. The proposed conflict resolution strategy ensures that no indirect or 

derived access will cause violation of any SoD constraint retained in the final policy. We prove this for role-

specific and user-specific (role-level) SoD constraints only. The case for permission specific and user-specific 

(permission-level) SoD constraints can be proved in a similar manner.   

 
Proposition 2: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes. 
For a role-specific SoD constraint ac in G, No hierarchy or event-dependency constraint exists in G that violates 

ac. 
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Proof: Any indirect access that may lead to the violation of role-specific SoD constraint will fall into one of the 

four cases shown in Fig. 7.  
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Case 1: In this case a user accesses two conflicting roles by activating a senior role that is related to both 

conflicting roles through an I-hierarchy. This is depicted in Fig. 7(a) in which roles rx and ry have a SoD 

constraint ac and role rz is a senior role linked to ry through an I-hierarchy. Assume that the policy graph G after 

conflict resolution contains a sub-graph isomorphic to the graph shown in Fig. 7(a). This implies that in the final 

solution to the IP ac = 1 and all the variables ai, corresponding to I-hierarchy edges that link rz to rx and ry, are 

assigned a value of one. As a result of the inheritance path from rz to rx and ry, any authorized user by activating rz 

accesses rx and ry (Rules 2 and 3). Rules 6 and 15 ensure that at least one regular user or proxy user accesses role 

rz. Without Loss of generality, assume that ui is such user. Therefore, in any feasible solution 1 and 1
x yir iru u  . 

However, the IP constraint ( ) 1
x yc ir i ra u u� d , derived from Rules 7 and 21 , imply that either ac = 0 or there is no 

inheritance from rz to rx or from rz to ry. Hence G does not contain a role that is linked to two conflicting roles 

through an I-hierarchy.  
 
Case 2: This case captures the role-specific SoD violations because of the existence of inheritance path 

and dependency constraint. The inheritance path from rz to ry enables a user assuming the role rz to access ry 

(Rules 2 and 3). An induced SoD constraint an (see Section 9.2) is defined between rz and rx because of the role 

specific constraint ac and the inheritance path from rz to ry. n c ia a a � , where ai corresponds to an I-edge in the 

path from rz to ry. Similar to case 1, Rules 6 and 15 ensure that at least one regular user or proxy user accesses role 

rz in any feasible solution to the underlying IP problem Let ui be such user. The dependency constraint ad causes 

ui to access role rx, whenever the body of the dependency trigger becomes true. Rules 9, 10 and 20 imply that in 

any feasible solution either ui or its passive proxy accesses rx. 

In the underlying IP problem, SoD constraint involving proxy variables is defined between rz and rx if 

there is a possibility that such constraint may be violated (Rule 21). If such a possibility does not exist 

(CSP(rx,ry,ui,ui,G) = infeasible) then in the graph G, the inheritance path from rz to ry and the role specific SoD 

constraint ac are non-conflicting. Proposition 4 implies that if the procedure CSP returns infeasible for the given 

role-specific SoD then the corresponding SOD will never be violated in the policy graph G. 

In case there is no other valid constraint in the policy graph G that prevents the violation of induced SoD 

between rz and rx, then SoD constraint with the corresponding proxy variables are added in the underlying IP 

problem (Rule 21).  In addition the IP constraints derived from Rule 7 for the induced SoD constraint an, imply 

that in any feasible solution, if an = 1, then the conflicting roles rz and rx cannot be accessed by ui and/or its 

proxies concurrently. This contradicts with the authorizations for ui derived from Rules 2 and 3 in conjunction 

with Rules 6 and 15 as explained above. Therefore, in any feasible solution either ad = 0 or � ai = 0 or ac = 0. 

Hence, G does not contain a role-specific SoD constraint that conflicts with a dependency constraint because of I-
hierarchy, as shown in Fig. 7(b). 

 

Case 3: Fig. 7(c) depicts a generic scenario in which a role-specific SoD conflicts with a dependency 

constraint. The nature of conflict between the role-specific SoD constraint ac and the dependency constraint ad in 

this case is similar to the conflict between the induced SoD an and the dependency constraint ad in Case 2. Using a 

Fig. 7. Case of role-specific SoD violations 
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reasoning similar to Case 2, we can show that either the SoD constraint ac never gets violated because of some 

preventive constraint in G, or one of the constraint ac or ad is not present in the policy graph G.  

 

Case 4: In this case two dependency constraints jointly conflict with a role-specific SoD constraint as 

shown in Fig. 7(d). If we assume that the graph G contains the graph shown in Fig. 7(d) as a sub-graph then in 

any feasible solution of the underlying IP problem, either ui or its passive proxy activate the conflicting roles rx 
and ry simultaneously (Rules 9, 10, 15 and 16).  

The dependency constraints of Fig. 7(d) do not conflict with the SoD constraint ac if some other 

constraint prevents simultaneous activation of dependency triggers ad1 and ad2. In this case, no indirect access 

through the dependency constraints ad1 and ad2 violates the roles specific SoD ac.     

If CSP(rx,ry,ui,ui,G) Œ infeasible, implying that no other constraint prevents the violation of the SoD 

constraint ac, then SoD constraints involving ui and its proxies are added in the underlying IP problem (Rule 21).  

In addition, the IP constraints derived from Rule 7 for the SoD constraint ac, imply that in any feasible solution, if 

ac = 1, then the conflicting roles rx and ry cannot be accessed by ui and/or its proxies concurrently. This contradicts 

with the authorizations for ui derived from Rules 9, 10, 15, and 16 as explained above. Therefore, in any feasible 

solution either ac = 0 or ad1 = ad2 =0. Hence, G does not contain a role-specific SoD constraint that conflicts with 

dependency constraints, as shown in Fig. 7(d).    

 
Proposition 3: Let G be the final policy graph obtained after applying the conflict resolution algorithm ConfRes. 
For a role-level user-specific SoD constraint ac in G, no hierarchy or event-dependency constraint exists in G that 

violates ac. 

 

Proof: Any indirect access that may lead to the violation of a role-level-user-specific SoD constraint can be 

classified into one of the following two cases. 
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Case1:  This case covers all the scenarios in which the existence of inheritance path(s) leads to the 

violation of role-level-user-specific SoD as shown in Fig. 8(a). In Fig. 8(a), users ui and uj have a user-specific 

SoD ac for role rz. For a generic case, the relationship between the roles shown in Fig 8(a) is given by: 

  
* * * *

( ) ( ) ( ) ( )x y x y y z v w v w w z w z
A I A I

r r r r r r r r r r r r r rt �  � t � t �  � t �   

In any feasible solution of the IP problem formulated for the policy graph of Fig. 8(a), either ui or its 

proxy (uj or its proxy) activates role ry (rw), which causes the corresponding users to access role rz because of the 

inheritance paths from ry to rz and from rw to rz. The constraint ac implies that the role rz cannot be simultaneously 

accessed by ui and uj. In case some valid constraint in G prevents simultaneous activation of ry by ui and rw by uj, 

the inheritance paths and the SoD constraint ac becomes non-conflicting and no violation of SoD constraint ac can 

occur through the inheritance paths:
* *

 and y z w z
I I

r r r rt t . 

If CSP(rx,rx,ui,uj,G) Œ infeasible, implying that no other constraint prevents the simultaneous activation of 

ry by ui and rw by uj, then in the underlying IP problem, SoD constraints involving the corresponding proxy 

variables are defined for ac (Rule 23). In addition, the IP constraints derived from Rule 8 for the user specific SoD 

constraint ac, imply that in any feasible solution, if ac = 1, then both ui and uj and/or their respective proxies 

cannot access role rz concurrently. This contradicts with the authorizations for ui and uj derived from Rules 2 and 

Fig. 8. Role-level user-specific SoD violation cases 
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3 in conjunction with Rules 6 and 15. Therefore in any feasible solution of the underlying IP problem either ac = 

0, or there is no inheritance from ry to rz and from rw to rz. Hence, G does not contain a user specific SoD 

constraint that conflicts with any inheritance path. 

 

Case2: In this case two dependency constraints jointly conflict with a role-level-user-specific SoD as 

shown in Fig. 8(b). In this figure, users ui and uj have a user-specific SoD ac for role rz. For a generic case, the 

relationship between the roles shown in Fig. 8(b) is given by:
* *

( ) ( )x z x z y z y z
A A

r r r r r r r rt �  � t �  . 

Because of the dependency constraint ad1 (ad2) depicted in Fig. 8(b), either ui or its proxy (uj or its proxy) 

activates role rz. The constraint ac implies that the role rz cannot be simultaneously accessed by ui and uj. In case 

some valid constraint in G prevents simultaneous activation of rz by ui and uj, the dependency constraints and the 

SoD constraint ac becomes non-conflicting and no violation of SoD constraint ac can occur through the 

dependency constraints ad1 and ad2. 

If CSP(rx,rx,ui,uj,G) Œ infeasible, implying that no other constraint prevents the simultaneous activation of 

rz by ui and uj, then SoD constraints involving the corresponding proxy variables are defined for ac (Rule 23). In 

addition, the IP constraints derived from Rule 8 for the user specific SoD constraint ac, imply that in any feasible 

solution, if ac = 1, then both ui and uj and or their respective proxies cannot access role rz concurrently. This 

contradicts with the authorizations for ui and uj derived from transformation rules for dependency constraints 

(Rules 9, 10, and 20) in conjunction with Rule 15. Therefore in any feasible solution of the underlying IP problem 

either ac = 0, or ad1 = ad2 = 0. Hence, G does not contain a user specific SoD constraint that conflicts with any 

dependency constraint.  

 

Proposition 4: If CSP(r1,r2,u1,u2,G) returns infeasible then no state in which u1 accesses r1 and u2 accesses r2 

simultaneously, can be derived from the event-driven policy graph G.  

 
Proof: The algorithm CSP constructs a modified graph G’ from the original policy graph G by removing some of 

the edges corresponding to SoD constraints. All Other edges associated with hierarchy and dependence 

constraints in G are included in G’.  CSP(r1,r2,u1,u2,G)  returns infeasible if it is not possible in the modified graph 

G’ to reach a state in which u1 accesses r1 and u2 accesses r2 simultaneously. Since G’ is a less restricted version of 

G (because of the removal of SoD constraints) and if such a state cannot be derived from G’, it cannot be derived 

from G.    

 
9.2 Induced Constraints  

Induced Constraints are added in the event-driven RBAC policy because of incomplete specification and 

without their addition the policy becomes inconsistent. There are two types of induced constraints: i) induced SoD 
and ii) induced dependence. 
 

i) Induced SoD: The I-hierarchy semantics of RBAC requires that conflicting role-set of a senior role 

includes the conflicting role-set of all its junior roles that are related to the senior role by I-hierarchy.  Conflicting 

role-set of a role r is the set of all roles that have a role-specific SoD constraint with r.  Induced SoD constraints 

are recursively defined from junior roles to senior roles in the following manner. 

Consider a role-specific SoD constraint ‘a1’ between two roles ra and rb as shown in Fig. 9(a). Let roles rc 

and rd be related to ra and rb with I-hierarchy constraints 2 : c a
I

a r rt and 3 : d b
I

a r rt . Induced SoD constraints a4 = 

a1a2 is added between rc and rb, a5 = a1a3 is added between rd and ra, and a6 = a4a5 is added between rc and rd. 

Similarly, the induced SoD constraint a5 propagates upward in the hierarchy. Note that an induced SoD constraint 

is defined between two roles only if such roles do not have a previous role-specific SoD constraint. The product 

of constraints in the definition of induced SoD constraint implies that if the original SoD constraint between 

junior roles is removed, the induced SoD constraint becomes invalid. 

 

ii) Induced dependence: The strong dependence semantics in an event trigger requires that the triggered 

event cannot occur without the occurrence of triggering event. An incomplete constraint specification may violate 

this dependence. For instance, in the event-driven RBAC policy shown in Fig. 9(b), it is possible that user u2 

accesses role r3 by activating the senior role r2 without the activation of role r1 by u1. This is a violation of the 



 22

dependence constraint 
1 31 1 2: r ra u uoo . In order to preserve the strong dependency implied by a1, a strong 

dependency constraint of the form 
1 21 2r ru uoo  need to be defined. Like Induced SoDs, induced dependence 

constraints are recursively defined from junior roles to senior roles. The recursive definition of induced 
dependence is given below. 

For a strong dependency constraint � �1 :
j

i x i
x irC u C

a u u
�

� � oo , if there exists a role rk such that 2 : k j
I

a r rt and 

user ui is authorized for rk, then a dependency � �3 :
k

i x i
x ir

C u C
a u u

�
� � oo is induced by a1 and a2. The induced 

dependency a3 is related to a1 and a2 by the equation a3 = a1a2, implying that the a3 becomes ineffective if any of 

the constraints a1 or a2 is dropped. 
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 Fig. 9. (a) Induced SoD constraint. (b) ) Induced dependence constraint 


