
CERIAS Tech Report 2005-10

ALGORITHMS FOR VARIABLE LENGTH SUBNET ADDRESS ASSIGNMENT

by Mike Atallah, Sundararaman Jeyaraman

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Algorithms for Variable Length Subnet Address

Assignment

Mike Atallah, Sundararaman Jeyaraman

CERIAS and Department of Computer Sciences

Purdue University, West Lafayette, IN 47906

{mja,jsr}@cs.purdue.edu

Abstract

In a computer network that consists ofM subnetworks, theL-bit address

of a machine consists of two parts: A prefixsi that contains the address

of the subnetwork to which the machine belongs, and a suffix (oflength

L − |si|) containing the address of that particular machine within its sub-

network. In fixed-length subnetwork addressing,|si| is independent ofi,

whereas in variable-length subnetwork addressing,|si| varies from one sub-

network to another. To avoid ambiguity when decoding addresses, there is a

requirement that nosi be a prefix of anothersj . An interesting practical prob-

lem is how to find a suitable set ofsi’s in order to maximise the total number

of addressable machines, when theith subnetwork containsni machines. A

solution might leave some subnetworks completely unsatisfied and the rest of

the subnetworks completely satisfied; The abstract problemimplied by this

formulation is: Given an integerL, and givenM (not necessarily distinct)

positive integersn1, · · · , nM , find M binary stringss1, · · · , sM (some of

which may be empty) such that (i) no nonempty stringsi is a prefix of an-

other stringsj , (ii) no si is more thanL bits long (iii) the quantity
∑

|si|6=0
ni

is maximised and (iv) Every nonempty prefix completely satisfies the corre-

sponding subnetwork -i.e., |si| 6= 0 =⇒ 2
L−|si| ≥ ni, 1 ≤ i ≤ M . We

present a polynomial time algorithm for solving the aforementioned abstract

problem. We also provide an algorithm to solve the case where eachni has

1

a priority associated with it and there is an additional constraint involving

priorities: Some subnetworks are then more important than others and are

treated preferentially when assigning addresses. We also make observations

about the case where there is a hierarchy of subnetworks present.

1 Introduction

This introduction discusses about the motivation for this work and the connection

between computer networking and the abstract problems for which algorithms are

subsequently given. It also introduces some terminology.

In this introduction, we provide just enough background information to make

this paper self-contained. The reader interested in reading more about standard

subnet addressing, variable length subnet addressing and other related IETF spec-

ifi cations is encouraged to peruse through [4, 12–17]. A moregeneral discussion

on hierarchical addressing, its benefi ts in large networks and the various IP lookup

solution methods could be found in [5–7]. We also assume thatthe reader is famil-

iar with basic techniques from the algorithms and data structures literature found

in standard references like [1–3].

Variable length subnet address assignment is typically used for effective utili-

sation of the address space at the disposal of an organisation or any administrative

domain — especially in the presence of subnetworks with varied demands i.e.,

varied number of hosts. In a mobile world, where subnetworksconsisting par-

tially or entirely of mobile nodes (possibly MANETS) are thenorm, the problem

of automated dynamic allocation of subnet addresses becomes pertinent. Another

problem that could come to the fore is allocation of subnet addresses in the pres-

ence of constraints like a limited address space. (e.g.,) Anacademic department

with limited IP addresses having to cope with a sudden increase in demand during

a conference. Solutions based on address-confi guration techniques[8][21] could be

used for solving the automated dynamic allocation problem.But such solutions do

not perform correctly in the presence of partitions and hostmobility. A NAT based

approach could be used to handle the resource constrained case. But some of the

2

subnetworks might contain hosts that do not wish to functionbehind a NAT box.

Also, the NAT based approach does not work in the presence of mobile hosts that

travel across administrative domains.

In this paper, we develop algorithms and insights for effective dynamic allo-

cation of subnet addresses. We examine the scenarios when the demand is greater

than the existing reseources and when constraints like priorities dictate the alloca-

tion of addresses to the different subnetworks. We show thateventhough the gen-

eral allocation problem (which we defi ne later in this section) looks deceptively

similar to other resource allocation problems, most of which have been proven to

be NP-complete, polynomial time solutions are possible in certain scenarios.

In a computer network consisting ofM subnetworks, the L-bit address of a

machine in the network is composed of two parts: A prefi x that identifi es the sub-

network to which the machine belongs and a suffi x that contains the address of that

particular machine within its subnetwork. If all the subnetworks contain roughly

the same number of machines, afixedpartitioning of the address space works well

in practise. In such afixed length scheme, each subnetwork is assigned the same

number of addresses – TheL-bit address of any machine consists of a fi xed length

t-bit prefi x and an(L − t)-bit suffi x, wheret = ⌈log M⌉. However, if theM sub-

networks were to consist of different number of machines, say, ni machines for the

ith subnetwork, such a fi xed length scheme proves to be wasteful. It could poten-

tially leave many machinesunsatisfied(i.e.,) they will have no address assigned to

them and the only way to satisfy those machines is to increasethe address space.

In a variable partition scheme, the length of the prefi x containing the subnet-

work’s address varies from one subnetwork to another. In other words, if we let

si be the prefi x that is the address of theith subnetwork, then we now can have

|si| 6= |sj|. However, to avoid ambiguity (or having to store and transmit |si|),

there is a requirement that nosi be a prefi x of anothersj. Variable length sub-

network addressing is easily shown to satisfy a larger totalnumber of addressable

machines than the fi xed length scheme: There are examples where fi xed length

subnetwork addressing cannot satisfy all of theN = n1 + · · · + nM machines,

3

whereas variable length subnetwork addressing can. More importantly, we are in-

terested in the cases where even variable length addressingcannot satisfy all of the

N machines.

In such cases we want to use theL bits available as effectively as possible,

subject to certain constraints. [18]describes a polynomial time algorithm when the

optimal solution is allowed to containpartially satisfi ed subnetworks. In this paper,

we describe a polynomial time algorithm to fi nd the optimal solution when it is

constrained to contain onlycompletelysatisfi ed subnetworks. An optimal solution

therefore consists of binary stringss1, · · · , sM such that|si| 6= 0 =⇒ 2L−|si| ≥

ni, 1 ≤ i ≤ M and maximise the following sum

∑

|sk|6=0

2L−|sk|

The prioritised version of the problem models the situationwhere some sub-

networks are more important than others. We use the following priority policy.

Priority Policy: “The number of satisfi ed machines of a subnetwork is the same

as if all lower-priority subnetworks did not exist”. We present a polynomial time

algorithm to handle the prioritised version. Finally, we comment on the case where

there is a hierarchy of networks present.

This paper is organised as follows: Section 2 reviews related work and com-

pares and contrasts them with our work. Section 3 discusses the defi nitions and

observations that lead to our algorithm. Section 4 introduces the unprioritised ver-

sion of the algorithm. Section 5 presents the prioritised version of the algorithm.

Section 6 discusses future research and fi nally, the conclusions are summarised in

section 7.

2 Related Work

The problem of subnet address allocation is an instance of a well known general

resource allocation problem in which blocks of resources are allocated from a re-

source “pool”, based on a series of requests. Resource allocation problems arise

4

very frequently in a variety of contexts ranging from memorymanagement, dis-

tribution of zip codes and telephone numbers to bandwidth allocation in computer

networks. In this section, we briefly go over various approaches to solve those

resource allocation problems that closely resemble the subnet address allocation

problem.

Memory Management involves contiguous bytes of memory being allocated

and de-allocated over time. While there are many memory allocation algorithms,

the buddy allocation strategy [19] exhibits characteristics similar to those required

to solve the subnet address allocation problem. Since memory is cheap, there is

no notion of resource constraint and having to share the available resources in the

most effi cient manner.

Multicast address allocation problem (Malloc). The Any

Source Multicast (ASM) requires that applications share a single, global address

space. A multicast address identifi es a logical group of members and any source

may send data to this dynamic set of members any time. The key allocation prob-

lem here is to assign a unique address to each application from a limited globally-

shared address space. [9, 10] describe the MASC address allocation architecture

for dynamically allocating multicast addresses. [11] models the Malloc problem

theoretically and provides complexity results for variousallocation strategies. The

key difference between the malloc problem and our problem isthat, while a solu-

tion to our problem is restricted to using a prefi x-based allocation scheme, malloc

solutions are also free to use contiguous and non-contiguous address allocation

schemes [11]. Figure 2 illustrates the difference between prefi x-based, contiguous

and non-contiguous allocation schemes.

Subcube allocation in HyperCubes. A hypercube is a recursive

mathematical structure that served as the underlying communication network of

the Intel iPSC and N-Cube parallel processors. A hypercube consists of2n pro-

cessors where each processor is labeled with ann–bit address. Processors whose

labels differ in exactly one bit position are connected. Asubcubeof a hypercube

is a subset of its nodes and edges that themselves form a smaller hypercube. In a

5

Address space - 210 addresses
Address block - 25 addresses

Prefix Based - 00100XXXXX
Contiguous - 001XXXXX01, XX00110XXX
Non-Contiguous - X00XX10XX0

Figure 1: Examples for prefi x-based, contiguous and non-contiguous allocation
schemes

hypercube machine, parallel applications request subcubes, hold them for the run-

time of the application, and then release the subcubes back to the operating system

scheduler. Considerable research has gone into developingsubcube allocation al-

gorithms[22–25]. [26] proves that the malloc problem and the subcubeallocation

problem are infact quite similar to each other. Similarly, subcube allocation strate-

gies do not face the constraint of having to use only prefi x-based schemes as we

do.

Despite the key differences between our problem and the afore-mentioned

problems, we hope to benefi t from the theory developed in those contexts.

3 Prelimnaries

The following defi nitions and observations will be useful later on. We assume,

without loss of generality, thatn1 ≥ · · · ≥ nM . Let T be a full binary tree of

heightL, i.e.,T has2L leaves and2L − 1 internal nodes. For any solutionS, one

can map each nonemptysi to a node ofT in the obvious way: The nodevi of T

corresponding to subnetworki is obtained by starting at the root ofT and going

down as dictated by the bits of the stringsi (where a 0 means “go to the left child”

and a 1 means “go to the right child”). Note that the depth ofvi in T (its distance

from the root) is|si|, and that novi is ancestor of anothervj in T (because of the

6

requirement that no nonemptysi is a prefi x of anothersj). For any nodew in T ,

we useparent(w) to denote the parent ofw in T , and we usel(w) to denote the

number of leaves ofT that are in the subtree ofw; hencel(vi) = 2L−|si|. Observe

that solutionS completely satisfi es subnetworki iff l(vi) ≥ ni, in which case

we can extend our terminology by saying that “nodevi is completely satisfi ed by

S” rather than the more accurate “the subnetworki corresponding to nodevi is

completely satisfi ed byS.”

lemma 1. Let S = (v1, . . . , vk) be any solution (not necessarily optimal). Then

there is a solutionS ′ = (v′1, . . . , v
′
k) that, for each subnetworki (1 ≤ i ≤ k), hasv ′

i

at the same depth asvi, and is such thati < j implies thatv′
i has smaller preorder

number inT than v′j (which is equivalent to saying thats′i is lexicographically

smaller thans′j).

Proof: S ′ can be obtained fromS by a sequence of “interchanges” of various

subtrees ofT , as follows. Seti = 1, let T ′ be initially a copy ofT , and repeat the

following until i = k:

1. Perform an “interchange” inT ′ of the subtree rooted at nodevi with the

subtree rooted at the leftmost node ofT ′ having same depth asvi; v′i is

simply the new position occupied byvi after this “interchange”.

2. Delete fromT ′ the subtree rooted atv′i, and seti = i + 1.

Performing inT the interchanges done onT ′ gives a newT where thev′i’s have

the desired property.

The “interchange” operations used to prove the above lemma will not be ac-

tually performed by our algorithm – their only use is for the proof of the lemma.

2

lemma 2. Let S be a solution set (optimal or otherwise).S = {vi | 1 ≤ i ≤

M, l(vi) ≥ ni}. If S has more than one element, thenS can be partitioned into

two disjoint subsetsS ′ andS′′ such that, for somek,

S′ = {vx | vx ∈ S, 1 ≤ x ≤ k}, S ′′ = {vy | vy ∈ S, k + 1 ≤ y ≤ M},

7

Proof: Let S = (v1, . . . , vi) be a solution. Use lemma 3 to get a solutionS ′ ==

(v′1, . . . , v
′
i) so thati < j implies thatni ≥ nj . Let T be the binary tree of which

v′1, . . . , v
′
i are interior nodes. LetT ′, T ′′ be the left and right subtrees of the root

of the binary treeT respectively. It is easy to see that there exists av ′
k such that

(v′1, . . . , v
′
k) are found inT ′ and(v′k + 1, . . . , v′i) in T ′′. 2

lemma 3. LetS be an optimal solution.S = {vi | 1 ≤ i ≤ M}. If S has only one

element,i.e., |S| = 1, then the nodevi that corresponds to the root of the binary

treeT is assigned to the subnetworki such that

max
1≤i≤M

{ni|l(vi) ≥ ni}

2

4 Algorithm for the unprioritised case

4.1 A pseudo-polynomial time algorithm

Let S = {s1, . . . , sM} be an optimal solution. We defi neF (i, j, ℓ) to be the maxi-

mum number of machines satisfi ed by any solution usingℓ bits, if the solution set

were to contain only those subnetworks in the seti, i + 1, · · · j i.e., in the solution

set, if for anyk, |sk| 6= 0 =⇒ i ≤ k ≤ j. We use the convention thatF (i, j, ℓ) is

0 when undefi ned,i.e., wheni > j. If S were to contain more than one element,

according to Lemma 2, the optimal solution can be obtained interms of optimal

solutions of subproblems. It allows us to defi neF (i, j, ℓ) using the following re-

cursive formula,

F (i, j, ℓ) = max
1≤k≤M

{F (i, k, ℓ − 1) + F (k + 1, j, ℓ − 1)} (1)

If S were to contain only one element, then Lemma 3 can be used to defi ne

F (i, j, ℓ) with the following formula,

F (i, j, ℓ) = max
1≤k≤M

{nk, if nk ≤ 2ℓ} (2)

8

Since we do not know ifS will consist of only one subnetwork,F (i, j, ℓ) is the

maximum of the two values specifi ed in equations 1 and 2,

F (i, j, ℓ) =

0 if j < i

max

{

max1≤k≤M{F (i, k, ℓ − 1) + F (k + 1, j, ℓ − 1)},

max1≤k≤M{nk, if nk ≤ 2ℓ}

}

otherwise

(3)

Clearly, the maximum number of machines that can be satisfi edby the optimal

solution usingL bits isF (1,M,L).

The algorithmCalculateOptimal described below takesL and theni’s

as inputs and computes the entries in theF (1 · · ·M, 1 · · ·M, 1 · · ·L) table. It also

maintains the tablef(1 · · ·M, 1 · · ·M, 1 · · ·L) to help us keep track of how to

construct the optimal solution. Intuitively,f(i, j, ℓ) points to the subnetworkk that

“gives F (i, j, ℓ) its value”. The algorithm returns theF andf tables.

The running time of the algorithm isO(m3L), since the calculation of each

table entry takesO(M) time (steps8 − 17) and there are2 ∗ m2L table entries.

Thef table returned by algorithmCalculateOptimal can be used to con-

struct an optimal solutionS as follows: For anyF (i, j, ℓ) that resulted because of

equation 1, thenf(i, j, ℓ) corresponds to that subnetworkk that is the sole member

of the solution set. In this case, we just print out the leftmost nodevi of the binary

treeT that has the same depth asL − ⌈lognk
⌉. On the other hand, ifF (i, j, ℓ)

had resulted because of equation 2, thenf(i, j, ℓ) corresponds to that subnetwork

k that ’splits’ the solution setS into two disjoint setsS ′ andS′′ (refer to lemma

2). In this case, we call the same procedure recursively on the two disjoint portions

of the table split byk. The following recursive algorithmPrintOptimal prints

out the optimal solution as described above.

It is easy to observe that the running time ofPrintOptimal is O(M). Ob-

serve that there can be atmostM recursive calls toPrintOptimal.

An astute reader would have observed that theO(m3L) running time of algo-

rithmCalculateOptimal is not polynomial time, but infact pseudo-polynomial

9

Algorithm 1 CalculateOptimal - Calculating the optimal solution

1: for ℓ = 1 to L do
2: for i = 1 to M do
3: for j = 1 to M do
4: F (i, j, ℓ) = 0
5: f(i, j, ℓ) = 0
6: if i > j then
7: F (i, j, ℓ) = 0
8: for k = 1 to M do
9: q = F (i, k, ℓ − 1) + F (k + 1, j, ℓ − 1)

10: if q < nk then
11: q = nk

12: end if
13: if q > F (i, j, ℓ) then
14: F (i, j, ℓ) = q

15: f(i, j, ℓ) = k

16: end if
17: end for
18: end if
19: end for
20: end for
21: end for

Algorithm 2 PrintOptimal(i, j, ℓ) - Printing the optimal Solution

1: Let k = f(i, j, ℓ).
2: Let T ′ be initially a copy of the binary treeT .
3: if F (i, j, ℓ) = F (i, k, ℓ − 1) + F (k + 1, j, ℓ − 1) then
4: Call PrintOptimal(i, k, ℓ− 1).
5: Call PrintOptimal(k + 1, j, ℓ − 1).
6: else
7: Print out the leftmost nodevi of T ′ having the same depth asL − ⌈lognk

⌉.
8: Delete fromT ′ the subtree rooted atvi.
9: end if

10

time. The size of the input is
∑

1≤i≤M ni + log L and the factor ofL (instead of

log L) present in the running time makes it pseudo-polynomial. Inthe next section,

we describe a polynomial time solution.

4.2 Polynomial time solution

In this section, we show that the optimal solution can be characterised in a way that

yields a polynomial time dynamic programming solution.

We call level ℓ the2ℓ nodes of the binary treeT whose depth (distance from

the root) isℓ. We number the nodes of levelℓ as follows: (ℓ, 1), (ℓ, 2), · · · ,

(ℓ, 2ℓ), where(ℓ, k) is thekth leftmost node of levelℓ. We know from our prob-

lem defi nition that subnetworki is either assigned a nodevi at depthdi, where

di = L − ⌈log ni⌉ or it is not assigned any node at all (i.e.,|si| = 0). This limits

the number of choices for where to placevi to 2di choices at depthdi, if at all

placed. For everyi, j pair where1 ≤ i ≤ M and1 ≤ j ≤ 2di , we defi neF (i, j) to

be the maximum number of machines of subnetworks1, . . . , i that can be satisfi ed

by using only the portion ofT having preorder numbers≤ the preorder number of

(di, j). Let A be a corresponding optimal solution.

Another notion used by the algorithm is that of theℓ-predecessorof a nodev of

T , whereℓ is an integer no greater thanv’s depth: It is the node ofT at levelℓ that

is immediately to the left of the ancestor ofv at levelℓ (if no such node exists then

v has noℓ-predecessor). In other words, ifw is the ancestor ofv at levelℓ (possibly

w = v), then theℓ-predecessor ofv is the rightmost node to the left ofw at levelℓ.

The algorithms will implicitly make use of the fact that theℓ-predecessor of a given

nodev can be obtained in constant time: Ifv is represented as a pair(a, b) wherea

is v’s depth andb is the left-to-right rank ofb at that depth (i.e.,v is thebth leftmost

node at deptha), then theℓ-predecessor of(a, b) is (ℓ, c) wherec = ⌈b2ℓ−a⌉ − 1.

We uselpred(ℓ, v) or lpred(ℓ, a, b) interchangeably, to denote theℓ-predecessor

of a nodev = (a, b), with the convention thatlpred(ℓ, a, b) is (−1,−1) when it is

undefi ned, i.e., whenℓ > a or (a, b) has noℓ-predecessor.

If di−1 > di, vi can be safely placed at(di, j). Because of the difference in

11

depth, none of thev1, . . . , vi−1 nodes can be placed at(di, j). In that case,F (i, j)

can be defi ned as

F (i, j) = F (i − 1, lpred(di−1, j)) + ni (4)

If di−1 = di, the node(di, j) can be used to satisfy any of the subnetworks

1, . . . , i having the same depth asdi. Hence,F (i, j) is defi ned as

F (i, j) = max{F (i − 1, j), F (i − 1, lpred(di−1, j)) + ni} (5)

Since the substructure of the optimal solutionA is not known beforehand,

F (i, j) is defi ned as the maximum of equation 4 and 5. Clearly, if we hadF (i, j)’s

for all i, j pairs, then the maximum number of machines satisfi ed by an optimal

solution is obtained by choosing the maximum among them:

max
1≤i≤M,1≤j≤2di

F (i, j) (6)

We can avoid calculatingF (i, j)’s for the entire range ofj’s from 1 to 2di

because of the following claim: there is an optimal solutionthat, of the2a nodes

of any levela, does not use any of the leftmost2a − M nodes of that level. LetS

be an optimal solution that has the smallest possible number(call it t) of violations

of the claim, i.e., the smallest number of nodes(a, b) whereb < 2a −M and some

vi is at (a, b). We prove thatt = 0 by contradiction: Suppose thatt > 0, and

let a be the smallest depth at which the claim is violated. Let(a, b) be a node of

level a that violates the claim, i.e.,b < 2a − M and somevi is placed at(a, b) by

optimal solutionS. Since there are more thanM nodes to the right ofvi at levela,

the value ofS would surely not decrease if we were to modifyS by re-positioning

all of vi, vi+1, . . . , vM in the subtrees of the rightmostM − i + 1 nodes of level

a (without changing their depth). Such a modifi cation, however, would decreaset,

contradicting the defi nition ofS. Hencet must be zero, and the claim holds. Hence

12

the maximum number of machines satisfi ed by an optimal solution is:

max
1≤i≤M

max{1,2di−M}≤j≤2di

{F (i, j)} (7)

The algorithmPolyCalculateOptimal described below calculates the

entries in theF (1 · · ·M, 1 · · · 2di) table. It takesL and theni’s as inputs. Inorder to

help us construct the optimal solution, it also maintains the tablef(1 · · ·M, 1 · · · 2di).

f(i, j) tells us if the optimal solution corresponding toF (i, j) hasvi assigned to

the node(di, j) or not.

Algorithm 3 PolyCalculateOptimal - Calculating the optimal solution

1: for i = 1 to M do
2: for j = max{1, 2di − M } to 2di do
3: F (i, j) = F (i − 1, lpred(di−1, j)) + ni

4: f(i, j) = 1
5: if di−1 = di then
6: if F (i, j) < F (i − 1, j) then
7: F (i, j) = F (i − 1, j)
8: f(i, j) = 0
9: end if

10: end if
11: end for
12: end for

The time complexity ofPolyCalculateOptimal is O(M 2), since we it-

erate overM 2 distincti, j pairs in the worst case and do constant work during each

iteration.

The recursive algorithmPolyPrintOptimalprints out the optimal solution

using thef andF tables returned byPolyCalculateOptimal. It is initially

invoked with thei, j pair that produces the maximumF (i, j) value.

The running time ofPolyPrintOptimal is O(M) since there are at the

mostM recursive calls.

The following summarizes the result of this section.

Theorem 1. The unprioritized case can be solved inO(M 2) time.

13

Algorithm 4 PolyPrintOptimal - Printing the optimal solution

1: if f(i, j) = 1 then
2: Output the stringsi corresponding to the node(di, j). Calculation ofsi

given the(di, j) pair takes constant time.
3: Call PolyPrintOptimal withi − 1, lpred(di−1, j)
4: else
5: Call PolyPrintOptimal withi − 1, j
6: end if

5 Algorithm for the Prioritised Case

In this section, we present an algorithm for the prioritisedcase. In the prioritised

case, each subnetworki has a prioritypi associated with it and there is an addi-

tional constraint involving priorities: Some subnetworksare then more important

than others and are treated preferentially when assigning addresses. We use the

following priority policy.

Priority Policy: “The number of satisfi ed machines of a subnetwork is the same as

if all lower-priority subnetworks did not exist.’

In order to solve the prioritised case, we make use of thegreedy algorithm

described in [18], as a subroutine. We describe the algorithm briefly before pro-

ceeding to explain how it can be used to solved the prioritised case. The greedy

algorithm solves a related (easier) version of our problem:GivenM subnetworks,

either completely satisfy them or report that it is not possible to do so. It is pre-

sented as follows:

Algorithm 5 Greedy Algorithm

1: Sort theni’s corresponding to theM subnetworks in decreasing order, say
n1 ≥ · · · ≥ nM .

2: For eachni, compute the depthdi of vi in T : di = L − ⌈log ni⌉.
3: Repeat the following fori = 1, · · · ,M : Placevi on the leftmost node ofT

that is at depthdi and has none ofv1, · · · , vi−1 as ancestor (if no such node
exists then stop and output “No Solution Exists”).

Step 3 can be implemented as a construction and (simultaneously) preorder

14

traversal of the relevant portion ofT — call it T ′; i.e., we start at the root and

stop at the fi rst preorder node of depthd1, label it v1 and consider it a leaf ofT ′,

then resume until the preorder traversal reaches another node of depthd2, which

is labeledv2 and considered to be another leaf ofT ′, etc. Note that in the end the

leaves ofT ′ are thevi’s in left to right order.

The time complexity of the fi rst step (sorting) isO(M log M). The second

and the third step each take timeO(M). So, the time complexity of thegreedy

algorithm isO(M log M).

Now, we describe how the greedy algorithm can be used for solving our pri-

oritised case. Let the priorities of the subnetworks bepk1
, · · · , pkM

wherepki

is the priority of subnetworkki. Without loss of generality, let us assume that

pk1
> pk2

> · · · > pkM
. Usegreedy in a binary search for the largesti (call it î)

such that the subnetworksk1, · · · , ki can be completely satisfi ed, i.e., ifS is such a

solution in which all subnetworksk1, · · · , kî are completely satisfi ed, it is impos-

sible to completely satisfy all of subnetworksk1, · · · , kî+1
. Each “comparison” in

the binary search corresponds to a call togreedy.

This takes total timeO(M log M) instead ofO(M log2(M)) even though we

might end up callinggreedy log(M) times in the worst case. The reason being,

step 1 ofgreedy which takesO(M log M) time needs to be executed only once.

Hence the fi rst call togreedy costsO(M log M) and every subsequent call takes

only O(M) time.

The following summarizes the result of this section.

Theorem 2. The prioritized case can be solved inO(M log L) time.

6 Future Research

In this paper, we have dealt with scenarios where blocks of addresses are allocated

to subnetworks which contain only hosts. The allocated address blocks do not

get divided further. We would like to look into scenarios of allocating addresses

amongst competing networks that contain a multi-level hierarchy of subnetworks,

15

where the allocated address blocks get subdivided into subblocks according to the

structure of the hierarchy of the networks. Intuitively, the potentially arbitrary sub-

structure of the competing networks makes the problem appear very diffi cult to

solve. Infact we believe that it might be NP-Complete. If theproblem is proved to

be NP-Complete, then developing approximation algorithmswith tight bounds is

an interesting direction we would like to explore.

The algorithms described in this paper help solve subnet address allocation

when the requests for addresses are static and do not vary over time. This is a

simplifi ed view of reality where the requests are dynamic andvary over time. So,

there is a need to develop theory and algorithms for optimal allocation of addresses

for dynamic requests i.e., something on the lines of DHCP[20]. Some interesting

questions in this regard are: In an online version of the problem, the dynamic nature

of the requests means operating with a very fragmented address space. Does the

online version become more diffi cult than the static versionbecause of that? Can

the solution for the static version be leveraged to solve theonline version?

In the prioritised version of the problem discussed in section 5 we describe

our priority policy and the constraint involving the priorities. We are interested in

exploring scenarios with other types of constraints. Are polynomial time solutions

possible for those constrained versions? Or do they degenerate to NP-complete

optimisation problems? If they infact degenerate to NP-complete problems, we are

interested in developing approximation algorithms.

We believe that, the subnet address allocation problem is aninstance of a broad

class of resource allocation problems. Hence cross pollination with theory devel-

oped for other problems is another potentially fruitful direction we are interested

in exploring.

Finally, we are interested in implementing our algorithms and performing real-

istic simulations with arbitrary address demand functionsto study address utilisa-

tion and the performance of our algorithms.

16

7 Conclusion

In this paper, we have developed a theoretical framework forthe subnet address

allocation problem. We have a developed a pseudo-polynomial time algorithm for

the unprioritised version of the problem. We then showed that the algorithm can be

improved to a polynomial time solution. We discuss about theprioritised version

of the problem and show that it can be solved in polynomial time. We then proceed

to discuss about the various problems that need to be worked on in the future.

References

[1] A. Apostolico and Z. Galil (Eds),Combinatorial Algorithms on Words,

Springer, 1985.

[2] T. Cormen, C. Leiserson, R. Rivest,Introduction to Algorithms,

McGraw-Hill, 1990.

[3] M. Crochemore and W. Rytter,Text Algorithms, Oxford University Press,

1994.

[4] Internet Assigned Numbers Authority (IANA), “Class A Subnet Experi-

ment”, RFC 1797, 04/25/1995.

[5] A.J. McAuley and P.J. Francis, “Fast routing table lookup using CAMs,”

Proceedings of the 12th Annual Joint Conference of the IEEE Computer

and Communications Societies - IEEE INFOCOM ’93, San Francisco,

CA, v 3, 1993, pp. 1382-1891.

[6] D. Knox and S. Panchanathan, “Parallel searching techniques for routing

table lookup,”Proceedings of the 12th Annual Joint Conference of the

IEEE Computer and Communications Societies - IEEE INFOCOM ’93,

San Francisco, CA, v 3, 1993, pp. 1400-1405.

17

[7] V. Srinivasan , George Varghese, ”Faster IP lookups using controlled pre-

fi x expansion,”Proceedings of the 1998 ACM SIGMETRICS joint inter-

national conference on Measurement and modeling of computer systems,

pp. 1-10, June 22-26, 1998, Madison, Wisconsin, United States

[8] Nitin Vaidya, “Weak Duplicate Address Detection in Mobile Ad Hoc

Networks” inACM MobiHoc, June 2002.

[9] S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D.Estrin, and M.

Handley, “The MASC/BGMP Architecture for Inter-domain Multicast

Routing,” inACM SIGCOMM, August 1998.

[10] P. Radoslavov, D. Estrin, R. Govindan, M. Handley, S. Kumar, and

D. Thaler, “The Multicast Address-Set Claim (MASC) Protocol”, RFC

2909, September 2000.

[11] V. Lo, D. Zappala, C. GauthierDickey, and T. Singer, “A theoretical

framework for multicast address allocation,” Tech. Rep. UO-TR-2002-

01, University of Oregon, 2002.

[12] B. Manning, “Class A Subnet Experiment Results and Recommenda-

tions”, RFC 1879, 01/15/1996.

[13] J. Mogul and J. Postel, “Internet standard subnetting procedure”, RFC

0950, 08/01/1985.

[14] J. Mogul, “Broadcasting Internet datagrams in the presence of subnets”,

RFC 0922, 10/01/1984.

[15] J. Mogul, “Internet subnets”, RFC 0917, 10/01/1984.

[16] T. Pummill and B. Manning, “Variable Length Subnet Table For IPv4”,

RFC 1878, 12/26/1995.

[17] P. Tsuchiya, “On the Assignment of Subnet Numbers”, RFC1219,

04/16/1991.

18

[18] M. Atallah and D. Comer, “Algorithms for Variable Length Subnet Ad-

dress Assignment”,IEEE Transactions on Computers, vol. 47, no. 6, pp.

693-699, 1998.

[19] D. E. Knuth, The Art of Computer Programming Vol I, Fundamental

Algorithms 3rd Edition,Addison Wesley, 1997.

[20] R.Droms, “Dynamic Host Confi guration Protocol”, RFC 2131, March

1997.

[21] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfi guration”,

RFC 1971, August 1996.

[22] S. Dutt and J. P. Hayes, “Subcube Allocation in Hypercube Computers”,

IEEE Transactions on Computers, vol. 40, no. 3, March 1991.

[23] M. Chen and K. G. Shin, “Process Allocation in an N-Cube Multipro-

cessor Using Gray Code”,IEEE Transactions on Computers,vol. 36, no.

12, December 1987.

[24] A. AlDhelaan and B. Bose, “A new strategy for processor allocation in an

n-cube multiprocessor”,Proceedings of the International Phoenix Con-

ference on Computers and Communication,March 1989.

[25] V. M. Lo, W. Liu, B. Nitzberg, and K.Windisch, “Noncontiguous Proces-

sor Allocation Algorithms for Mesh-Connected Multicomputers”, IEEE

Transactions on Parallel and Distributed Systems,July 1997.

[26] M. Livingston, V. Lo, D. Zappala, and K. Windisch, “Cyclic Block Al-

location”, First International Workshop on Networked Group Communi-

cation, 1999.

19

