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Abstract. k-anonymity provides a measure of privacy protection by
preventing re-identification of data to fewer than a group of k data items.
While algorithms exist for producing k-anonymous data, the model has
been that of a single source wanting to publish data. This paper presents
a k-anonymity protocol when the data is vertically partitioned between
sites. A key contribution is a proof that the protocol preserves
k-anonymity between the sites: While one site may have individually
identifiable data, it learns nothing that violates k-anonymity with re-
spect to the data at the other site. This is a fundamentally different
distributed privacy definition than that of Secure Multiparty Computa-
tion, and it provides a better match with both ethical and legal views of
privacy.
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1 Introduction

Privacy is an important concept in our society, and has become very vulnera-
ble in these technologically advanced times. Legislation has been proposed to
protect individual privacy; a key component is the protection of individually
identifiable data. Many techniques have been proposed to protect privacy, such
as data perturbation [1], data swapping [2], query restriction [3], secure multi-
party computation (SMC) [4,5,6], etc. One challenge is relating such techniques
to a privacy definition that meets legal and societal norms. Anonymous data are
generally considered to be exempt from privacy rules – but what does it mean
for data to be anonymous? Census agencies, which have long dealt with private
data, have generally found that as long as data are aggregated over a group of
individuals, release does not violate privacy. k-anonymity provides a formal way
of generalizing this concept. As stated in [7,8], a data record is k-anonymous if
and only if it is indistinguishable in its identifying information from at least k
specific records or entities. The key step in making data anonymous is to gen-
eralize a specific value. For example, the ages 18 and 21 could be generalized to
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an interval [16..25]. Details of the concept of k-anonymity and ways to generate
k-anonymous data are provided in Section 2.

Generalized data can be beneficial in many situations. For instance, a car
insurance company may want to build a model to estimate claims for use in
pricing policies for new customers. To build this model, the company may wish
to use state-wide driver’s license records. Such records, even with name and
ID numbers removed, are likely to contain sufficient information to link to an
individual. However, by generalizing data (e.g., replacing a birth date with an
age range [26..30]), it is possible to prevent linking a record to an individual. The
generalized age range is likely to be sufficient for building the claim estimation
model. Similar applications exist in many areas: medical research, education
studies, targeted marketing, etc.

Due to vast improvements in networking and rapid increase of storage ca-
pacity, the full data about an individual are typically partitioned into several
sub-data sets (credit history, medical records, earnings, ...), each stored at an
independent site.1 The distributed setting is likely to remain, partially because
of performance and accessibility, but more importantly because of autonomy of
the independent sites. This autonomy provides a measure of protection for the
individual data. For instance, if two attributes in combination reveal private
information (e.g., airline and train travel records indicating likely attendance
at political rallies), but the attributes are stored at different sites, a lack of
cooperation between the sites ensures that neither is able to violate privacy.

In this paper, data are assumed to be vertically partitioned and stored at
two sites, and the original data could be reconstructed by a one-to-one join on a
common key. The goal is to build a k-anonymous join of the datasets, so that the
join key and any other candidate keys in the joined dataset are k-anonymized
to prevent re-identification.

1.1 What Is a Privacy-Preserving Distributed Protocol?

A key question in this problem is the definition of privacy preservation. Sim-
ply stating that the result is k-anonymous is not enough, as this does not en-
sure that the participating sites do not violate privacy. However, since the sites
already have individually identifiable information, we cannot fully extend the
k-anonymity measure to them. We now give an informal definition for privacy
preservation; the paper will then present an algorithm and show formally that
it does not violate k-anonymity in the sense of the following definition.

Definition 1. Let Ti be the input of party i,
∏

i(f) be the party i’s execution im-
age of the protocol f , r be the result computed by f , and P be a set of privacy con-
straints. f is privacy-preserving if every inference induced from < Ti,

∏
i(f), r >

that violates any privacy constraint in P could also be induced from < Ti >.

1 In the context of this paper, assume data are represented by a relational table, where
each row indicates an individual data record and each column represents an attribute
of data records.
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This definition has much in common with that of Secure Multiparty Compu-
tation (SMC) [9]. Both talk about a party’s view during execution of a protocol,
and what can be inferred from that view. The key distinction is the concept of
privacy (and privacy constraints) versus security. An SMC protocol must reveal
nothing except the final result, and what can be inferred from one’s own input
and the result. Definition 1 is weaker (giving greater flexibility): It allows infer-
ences from the protocol that go beyond what can be inferred from the result,
provided that such inferences do not violate the privacy constraints.

A more subtle distinction is that Definition 1 is also stronger than SMC. The
above definition requires that the inferences from the result r and from one’s own
input combined with the result (and the protocol execution) do not violate the
privacy constraints. The SMC definitions do not account for this.

For example, a privacy-preserving classification scheme meeting SMC defi-
nitions [10,11,12,13] ensures that nothing is disclosed but the resulting model.
Assume that Party A holds input attributes, and B holds the (private) class
attribute: B has committed to ensuring that the class is not revealed for the
individuals that have given it data. An SMC protocol can generate a classifier
without revealing the class of the individuals to A. Moreover, the classifier need
not inherently violate privacy: A properly pruned decision tree, for example,
will only contain paths corresponding to several data values. A, however, can
use its input along with the classifier to learn (with high probability) the class
values held by B. This clearly violates the commitment B has made, even if the
protocol meets SMC definitions. More discussion of this specific problem can be
found in [14].

Generally speaking, if the set of privacy constraints P can be easily incor-
porated into the functionality computed by a SMC protocol, a SMC protocol
also preserves privacy. However, there is no obvious general framework that eas-
ily and correctly incorporates privacy constraints into part of the functionality
computed by a SMC protocol.

This paper presents a privacy-preserving two-party protocol that generates
k-anonymous data from two vertically partitioned sources such that the protocol
does not violate k-anonymity of either site’s data. While one site may already
hold individually identifiable data, we show that the protocol prevents either
site from linking its own individually identifiable data to specific values from the
other site, except as permitted under k-anonymity. (This privacy constraint will
be formally defined in Section 3.) Interestingly, one of distinctive characteristics
of the proposed protocol is that it is not secure by SMC definitions; parties may
learn more than they can infer from their own data and the final k-anonymous
datset. Nevertheless, it preserves the privacy constraint.

The rest of the paper is organized as the following: Section 2 introduces the
fundamental concepts of k-anonymity. Section 3 presents a generic two-party
protocol, with proof of its correctness and privacy-preservation property. The
paper concludes with some insights gained from the protocol and future research
directions on achieving k-anonymity in a distributed environment.
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2 Background

We now give key background on k-anonymity, including definitions, a single-site
algorithm, and a relevant theorem, from [7,15,16]. The following notations are
crucial for understanding the rest of the paper:

– Quasi-Identifier (QI): a set of attributes that can be used with certain ex-
ternal information to identify a specific individual.

– T , T [QI]: T is the original dataset represented in a relational form, T [QI] is
the projection of T to the set of attributes contained in QI.

– Tk[QI]: k-anonymous data generated from T with respect to the attributes
in the Quasi-Identifier QI.

Definition 2. Tk[QI] satisfies k-anonymity if and only if each record in it ap-
pears at least k times.

Let T be Table 1, Tk be Table 2 and QI = {AREA, POSITION, SALARY}.
According to Definition 2, Tk[QI] satisfies 3-anonymity.

Several algorithms have been proposed to generate k-anonymous data
[17,8,18]. Datafly [8,18] is a simple and effective algorithm, so for demonstra-
tion of our protocol, Datafly is used to make local data k-anonymous. Algorithm
1 presents several key steps in Datafly (detailed explanations regarding this al-
gorithm can be found in [8]). The main step in most k-anonymity protocols

Algorithm 1. Key Steps in Datafly
Require: T , QI[A1, . . . , Am], k, Hierarchies VGHs Assume k ≤ |T |
1: freq ← a frequency list contains distinct sequences of values of T [QI ] along with

the number of occurrences of each sequence.
2: while (sequences ∈ freq occurring less than k times that count for more than k

tuples) do
3: Ai ∈ QI having the most number of distinct values
4: freq ← generalize the values of Ai ∈ freq
5: end while
6: freq ← suppress sequences in freq occurring less than k times
7: freq ← enforce k requirement on suppressed tuples in freq
8: Tk[QI] ← construct table from freq
9: return Tk[QI]

is to substitute a specific value with a more general value. For instance, Fig-
ure 1(a) contains a value generalization hierarchy (VGH) for attribute AREA,
in which Database Systems is a more general value than Data Mining. Simi-
larly, Figure 1(b) and Figure 1(c) present VGHs of attributes POSITION and
SALARY contained in QI. Continuing from the previous example, Tk[QI] satis-
fies 3-anonymity. According to the three VGHs and the original data represented
by T , it is easily verified that Datafly can generate Tk[QI] by generalizing the
data on SALARY, then AREA, then SALARY again. Next, we present a useful
theorem about k-anonymity.
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Table 1. Original Dataset Before Partitioning

ID AREA POSITION SALARY SSN

1 Data Mining Associate Professor $90,000 708-79-1698
2 Intrusion Detection Assistant Professor $91,000 606-67-6789
3 Data Warehousing Associate Professor $95,000 626-23-1459
4 Intrusion Detection Assistant Professor $78,000 373-55-7788
5 Digital Forensics Professor $150,000 626-87-6503
6 Distributed Systems Research Assistant $15,000 708-66-1552
7 Handhold Systems Research Assistant $17,000 810-74-1079
8 Handhold Systems Research Assistant $15,500 606-37-7706
9 Query Processing Associate Professor $100,000 373-79-1698
10 Digital Forensics Assistant Professor $78,000 999-03-7892
11 Digital Forensics Professor $135,000 708-90-1976
12 Intrusion Detection Professor $145,000 606-17-6512

Table 2. Generalized Data with k = 3

ID AREA POSITION SALARY SSN

1 Database Systems Associate Professor [61k, 120k] 708-79-1698
2 Information Security Assistant Professor [61k, 120k] 606-67-6789
3 Database Systems Associate Professor [61k, 120k] 626-23-1459
4 Information Security Assistant Professor [61k, 120k] 373-55-7788
5 Information Security Professor [121k, 180k] 626-87-6503
6 Operating Systems Research Assistant [11k, 30k] 708-66-1552
7 Operating Systems Research Assistant [11k, 30k] 810-74-1079
8 Operation Systems Research Assistant [11k, 30k] 606-37-7706
9 Database Systems Associate Professor [61k, 120k] 373-79-1698
10 Information Security Assistant Professor [61k, 120k] 999-03-7892
11 Information Security Professor [121k, 180k] 708-90-1976
12 Information Security Professor [121k, 180k] 606-17-6512

Theorem 1. If Tk[QI] is k-anonymous, then Tk[QI’] is also k-anonymous,
where QI’ ⊆ QI [8].

Proof. Assume Tk[QI] is being k-anonymous and Tk[QI’] does not satisfy k-
anonymity. Then there exists a record t(QI’) that appears in Tk[QI’] less than k
times. It is trivial to observe that t(QI) also appears less than k times in Tk[QI].
That contradicts the assumption. Therefore, if Tk[QI] satisfies k-anonymity, so
does Tk[QI’]. ��

3 The Protocol: DPP2GA

Before presenting the protocol, we present an alternative view of k-anonymity.
Define Tk to be the k-anonymous data computed from T . Let x � y denote that
x is directly generalized from y. E.g., in Table 2 the Salary for ID 1: [61k, 120k]
� $90,000.
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Database Systems (DS)                  Information Security (IS)             Operating Systems (OS)

Computer Science

Handhold Systems (HS)
Distributed Systems (DS)

Query Processing (QP)
Data Warehousing (DW)
Data Mining (DM)

Digital Forensics (DF)
Intrusion Detection (ID)

(a) VGH of AREA

Assistant Professor (AsP)
Associate Professor (AoP)
Professor (Prof)

Teaching Assistant
Research Assistant

Faculty

Professors Assistants

(b) VGH of POSITION

       [11k, 180k]

[11k, 60k]          [61k, 120k]          [121k, 180]

$135,000
$145,000
$150,000$100,000

 $91,000
 $95,000

$78,000
$78,000
$90,000

$17,000
$15,500

 $15,000 

[11k, 30k]  [31k, 60k] [61k, 90k] [91k, 120k] [121k, 150k] [151k, 180k]

(c) VGH of SALARY

Fig. 1. Value Generalization Hierarchies

Theorem 2. Tk achieved through generalization satisfies k-anonymity if and
only if ∀t′ ∈ Tk, P rob[t′ � t ∈ T ] ≤ 1

k .

Proof. ⇒: Given generalized values t′, if t′ ∈ Tk then there is a set S of identical
t′i ∈ Tk s.t. |S| ≥ k and t′ = t′i (by the definition of k-anonymity). Each t′i ∈
S � t ∈ T . Since we cannot distinguish between the t′is, the probability that we
have a particular t′i = 1

S ≤ 1
k . Thus the probability that t′ is generalized from a

particular ti is Prob[t′ � ti] = Prob[t′ = t′i] ≤ 1
k .

⇐: Let Prob[t′ � t ∈ T ] ≤ 1
k , and t′ be the record with the highest such

probability for a generalization from t. Since the generalization is done according
to a hierarchy, t must generalize to a (uniquely determined) single node in each
hierarchy. This defines the only allowed values for t′. Thus all t′i ∈ Tk have
Prob[t′i � t] = 0 or Prob[t′i � t] = Prob[t′ � t] ≤ 1

k . Since t must uniquely generalize
to one of the t′i, the sum of probabilities must be 1. Thus there must be at least
k t′i ∈ Tk that are identical to t′, so k-anonymity holds for t′. ��

From Theorem 2, the privacy constraint P in our application domain can
be formally defined as: inferences from < Ti,

∏
i(f), Tk > do not enable party

i to conclude ∃t′ ∈ Tk (or a t′ seen in
∏

i(f)) such that Prob[t′ � t ∈ T ] > 1
k .

Informally, < Ti,
∏

i(f), Tk > does not make Tk less k-anonymous. We will re-
visit this privacy constraint when proving that the proposed protocol is privacy-
preserving.

Since the protocol can utilize any k-anonymity algorithm to compute locally
anonymous data, we call the proposed approach Distributed Privacy-Preserving
two-Party Generic Anonymizer (DPP2GA). The protocol is presented in Section
3.1, Section 3.2 proves the correctness of the protocol and Section 3.3 proves the
protocol satisfies the k-anonymity privacy constraint.
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3.1 DPP2GA

The protocol is executed between two parties: P1 and P2. Let T refer to Table
1 and QI = {AREA, POSITION, SALARY}. T is vertically partitioned into
T 1 ≡ T [ID, AREA, POSITION] and T 2 ≡ T [ID, SALARY, SSN] stored at P1
and P2 respectively. Also, assume P1 and P2 are semi-honest in that they follow
the execution of the protocol but may later use the information seen to try to
violate privacy. (Discussion of the privacy properties under stronger adversarial
models omitted due to space constraints.)

The key idea of the protocol is based on Theorem 1. Initially, each party Pi
(i = 1 or 2) makes his data k-anonymous locally (for simplicity, Datafly is used
for illustration). Based on this locally k-anonymous data, a set γi is produced
containing IDs partitioned into subsets. Let γi[p] indicates the pth subset in γi,
then all records Pi whose keys are contained in γi[p] have the same value with
respect to QI. For any γi, the following properties hold:

– γi[p] ∩ γi[q] = ∅, for any 1 ≤ p, q ≤ |γi| and p �= q
–

⋃
p γi[p] is the same across all γis

Note that although each element γi[p] in γi contains record keys, it does make
sense to say that γi[p] contains a subset of records or data tuples because each
key is related to a single tuple. Define T iγi be the generalized data at Pi based
on which γi is computed. For example, refer to Table 3, the columns [AREAp,
POSITIONq] indicate the generalized data of T 1[AREA, POSITION], where p+q
indicates the number of times T 1[AREA, POSITION] has been generalized (by
Datafly). Also, the last generalization of T 1[AREA, POSITION] was performed
on the attribute whose superscript was incremented comparing to its previous
value. T 2[SALARY] can be interpreted similarly. According to Table 3, we have:

γ1
1 = {{1, 3, 9}, {2, 4, 10}, {5, 11, 12}, {6, 7, 8}}

γ2
1 = {{1, 4, 10}, {2, 3, 9}, {5, 11, 12}, {6, 7, 8}}

Table 3. P1 and P2 ’s Generalized Data (left and right respectively)

ID AREA1 POSITION0 AREA1 POSITION1

1 DB AoP DB Professors
2 IS AsP IS Professors
3 DB AoP DB Professors
4 IS AsP IS Professors
5 IS Prof IS Professors
6 OS RA OS Assistant
7 OS RA OS Assistant
8 OS RA OS Assistant
9 DB AoP DB Professors
10 IS AsP IS Professors
11 IS Prof IS Professors
12 IS Prof IS Professors

ID SALARY1 SALARY2

1 [61k, 90k] [61k, 120k]
2 [91k, 120k] [61k, 120k]
3 [91k, 120k] [61k, 120k]
4 [61k, 90k] [61k, 120k]
5 [121k, 150k] [121k, 180k]
6 [11k, 30k] [11k, 30k]
7 [11k, 30k] [11k, 30k]
8 [11k, 30k] [11k, 30k]
9 [91k, 120k] [61k, 120k]
10 [61k, 90k] [61k, 120k]
11 [121k, 150k] [121k, 180k]
12 [121k, 150k] [121k, 180k]
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The two parties then compare γ1
1 and γ2

1 . If they are equal (this notion of equality
will be defined shortly), joining data T 1γ1

1
and T 2γ2

1
creates globally k-anonymous

data. If γ1
1 and γ2

1 are not equal, each party generalizes his local data one step
further and creates a new γi. Repeat the above steps until the two parties find a
pair of equal γis. Let’s define the notion of equality between any two γis.

Definition 3. If γi
α ≡ γj

β, then there are no p, q such that 0 < |γi
α[p]∩γj

β [q]| < k.

According to the above definition, γ1
1 �= γ2

1 because |{1, 3, 9} ∈ γ1
1 ∩ {2, 3, 9} ∈

γ2
1 | = 2 < k (where k = 3). Thus, P1 and P2 generalize their data one step

further and compute two new γis:

γ1
2 = {{1, 3, 9}, {2, 4, 5, 10, 11, 12}, {6, 7, 8}}

γ2
2 = {{1, 2, 3, 4, 9, 10}, {5, 11, 12}, {6, 7, 8}}

Since γ1
2 ≡ γ2

2 , the join of T 1γ1
2

(columns [AREA1, POSITION1] in Table 3) and
T 2γ2

2
(column [SALARY2] in Table 3) satisfies 3-anonymity.

Due to privacy issues, the comparison between γis are not performed directly.
Instead, P1 encrypts γ1 and sends EKP1(γ1) to P2. P2 then encrypts EKP1(γ1)
and sends a copy of EKP2(EKP1(γ1)) back to P1. γ2 is treated similarly. After
this exchange, both parties have copies of

[
EKP2(EKP1(γ1)), EKP1(EKP2(γ2))

]
.

Note that the encryption is applied to individual value, and we also adopt the
commutative encryption scheme described in [19], but any other commutative
encryption scheme can also be used. The key property of this scheme is that
EKP2(EKP1(v)) = EKP1(EKP2(v)): encryption order does not matter.

Algorithm 2. DPP2GA
Require: Private Data T1, QI = (A1, . . . , An), Constraint k, Hierarchies V GHAi ,

where i = 1, . . . , n, assume k ≤ |T1|
1: P1 generalizes his data to be locally k-anonymous;
2: int c← 0;
3: repeat
4: c = c + 1;
5: P1 computes γ1

c ;
6: P1 computes EKP1(γ1

c ) and sends it to P2;
7: P1 receives EKP2(γ

2
c ) and computes ΓP2 = EKP1(EKP2(γ

2
c ));

8: P1 receives ΓP1 = EKP2(EKP1(γ1
c ));

9: until ΓP1 ≡ ΓP2

10: return Tk[QI] ← T1γ1
c

�� T2γ2
c
;

Key steps in our approach are highlighted in Algorithm 2. The algorithm is
written as executed by P1. Note that synchronization is needed for the counter c,
and the encryption keys are different for each round. When the loop is executed
more than once, the algorithm requires local data to be generalized one step
further before computing the next γ1

c at Step 5. At step 10, the symbol ��
represents the one-to-one join operator on the ID attribute to create globally
k-anonymous dataset from the two locally k-anonymous datasets.



174 W. Jiang and C. Clifton

3.2 Proof of Correctness

In this section, we prove Algorithm 2 achieves global k-anonymity. Refer to
notations adopted in Section 3.1, let γ1

c , γ2
c synchronously computed from P1

and P2’s locally k-anonymous data and use the equality operator ≡ defined in
Definition 3. Define T 1γ1

c
and T 2γ2

c
as the locally k-anonymous data related to

γ1
c and γ2

c respectively.

Theorem 3. If γ1
c ≡ γ2

c , then Tk[QI] ← T 1γ1
c

�� T 2γ2
c

satisfies global
k-anonymity.

Proof. Let’s prove the above theorem by contrapositive. In other words, prove
the following statement: If Tk[QI] does not satisfy global k-anonymity, then γ1

c �=
γ2

c . Suppose Tk[QI] is not k-anonymous, then there exists a subset of records
S = {t1, . . . , tj} ⊂ Tk[QI] such that |S| < k or j < k. Let tj [γ1

c ] denote the
portion of the record tj related to γ1

c stored at P1 and tj [γ2
c ] denote the portion of

the record related to γ2
c stored at P2. Then {t1[γ1

c ], . . . , tj[γ1
c ]} must be contained

in some subset γ1
c [p], and {t1[γ2

c ], . . . , tj [γ2
c ]} must be contained in some subset

γ2
c [q]; as a result, |γ1

c [p] ∩ γ2
c [q]| < k. According to Definition 3, the equality

between γ1
c and γ2

c does not hold. Thus, the contrapositive statement is true, so
Theorem 3 holds. ��

3.3 Proof of Privacy Preservation

Referring to Step 9 in Algorithm 2, although equality is tested on the encrypted
version of γ1

c and γ2
c , inference problems do exist.

For simplicity and consistency, let’s use γ1
c and γ2

c instead of ΓP1 and ΓP2 for
the following analysis. The inference problem exists only when γ1

c �= γ2
c . More

specifically, we analyze the inference problem when 0 < |γ1
c [p] ∩ γ2

c [q]| < k (for
some p and q) because this inference seemingly violates global k-anonymity.

We classify inference problems into two types: final inference problem (FIP)
and intermediate inference problem (IIP). FIP refers to the implication when the
inequality occurs at Step 9 of Algorithm 2 only once. IIP refers to the implication
when the inequality occurs multiple times. Let Tk[QI] be the k-anonymous data
computed by Algorithm 2.

Theorem 4. FIP does not violate the privacy constraint P (previously stated
in this section); in other words, FIP does not make Tk[QI] less k-anonymous.

Proof. If γ1
c �= γ2

c , then according to Definition 3, there must exist an intersection
set Ic = γ1

c [p] ∩ γ2
c [q] such that 0 < |Ic| < k. Since the equality test at Step 9 of

Algorithm 2 is performed on the encrypted versions of γ1
c and γ2

c , we are not able
to know the exact records in Ic. Because of the definition of FIP, γ1

c+1 ≡ γ2
c+1

holds. Since γi
c+1 computed from more generalized data than γi

c, the following
conditions hold:

– γ1
c [p] ⊆ γ1

c+1[p
′], where 1 ≤ p′ ≤ |γ1

c+1|
– γ2

c [q] ⊆ γ2
c+1[q

′], where 1 ≤ q′ ≤ |γ2
c+1|
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When the final generalized data released, for the worst case scenario, we may
be able to identify unencrypted records related to γ1

c+1[p
′] and γ2

c+1[q
′]. Define

Ic+1 = γ1
c+1[p′] ∩ γ2

c+1[q′]. According to the above conditions and γ1
c+1 ≡ γ2

c+1,
Ic ⊂ Ic+1 and |Ic+1| ≥ k.

Since the equality test was performed on encrypted data, Prob[x�y] = |Ic|
|Ic+1| ,

where x ∈ Ic+1 and y ∈ Ic. If x is not directly generalized from y of any Ic, then
Prob[x � t ∈ T ] ≤ 1

k because x is k-anonymous. If x � y, then Prob[x � t ∈ T ] =
Prob[x � y] · Prob[y � t]. y is |Ic|-anonymous, so Prob[y � t] = 1

|Ic| . Then we have

Prob[x � t ∈ T ] = |Ic|
|Ic+1| · 1

|Ic| ≤ 1
k . ��

Next, we show a concrete example that illustrates why FIP does not violate k-
anonymity. Refer to γ1

1 , γ2
1 , γ1

2 , γ2
2 in Section 3.1. Let γi

c = γi
1 and γi

c+1 = γi
2 where

i ∈ {1, 2}. As stated previously, we have γ1
1 �= γ2

1 , so let γ1
c [p] = {1, 3, 9} and

γ2
c [q] = {2, 3, 9}. Then we have Ic = γ1

c [p] ∩ γ2
c [q] = {3, 9}, γ1

c+1[p
′] = {1, 3, 9},

γ2
c+1[q

′] = {1, 2, 3, 4, 9, 10} and Ic+1 = γ1
c+1[p

′]∩γ2
c+1[q

′] = {1, 3, 9}. Note that in
this example, we can directly observe record IDs. However, in the real execution
of the protocol, each party can only see the encrypted ID values. Now let’s see if
the data records contained in Ic violate the property stated in Theorem 2. Let
x � y ∈ Ic, then Prob[x � t ∈ T ] = Prob[x � y] · Prob[y � t] = |Ic|

|Ic+1| · 1
|I| = 1

3 = 1
k .

Theorem 5. IIP does not violate the privacy constraint P ; in other words, IIP
does not make Tk[QI] less k-anonymous.

Proof. Use the notations defined in the proof of Theorem 4. According to the
definition of IIP, γ1

c �= γ2
c and γ1

c+1 �= γ2
c+1. Define Ic = γ1

c [p] ∩ γ2
c [q] such that

0 < |I| < k. Similar to the previous analysis, the following two conditions hold:

– γ1
c [p] ⊆ γ1

c+1[p′], where 1 ≤ p′ ≤ |γ1
c+1|

– γ2
c [q] ⊆ γ2

c+1[q
′], where 1 ≤ q′ ≤ |γ2

c+1|
Define Ic+1 = γ1

c+1[p
′]∩ γ2

c+1[q
′]. If Ic+1 is k-anonymous or |Ic+1| ≥ k, then this

inference problem caused by Ic is the same as FIP.
Now consider the case where |Ic+1| < k. Because γi

c+1 computed from more
generalized data than γi

c, Ic ⊆ Ic+1. If |Ic| = |Ic+1|, the inference effect caused
by Ic does not propagate to the equality test between γ1

c+1 and γ2
c+1. If |Ic| <

|Ic+1|, define x ∈ Ic+1 and y ∈ Ic. If x is not directly generalized from y, then
Prob[x � t ∈ T ] = 1

|Ic+1| because x is |Ic+1|-anonymous. Nevertheless, if x � y,

then Prob[x � t ∈ T ] = Prob[x � y] ·Prob[y � t] = |Ic|
|Ic+1| · 1

|Ic| = 1
|Ic+1| . As a result,

Prob[x � t ∈ T ] is the same for all records in Ic+1. The inference effect caused
by Ic is independent from one equality test to the next one. Consequently, the
effect of IIP is the same as that of FIP. ��

The equality test between γ1
c and γ2

c is not the focal point of this paper. It is
fairly simple to derive, so we do not provide any specifics about how to perform
the equality test. In addition, we note that if |Ic| ≥ k, the records in the Ic do
not violate the privacy constraint due to the definition of k-anonymity.
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4 Conclusion / Future Work

Privacy of information in databases is an increasingly visible issue. Partitioning
data is effective at preventing misuse of data, but it also makes beneficial use
more difficult. One way to preserve privacy while enabling beneficial use of data
is to utilize k-anonymity for publishing data. Maintaining the benefits of parti-
tioning while generating integrated k-anonymous data requires a protocol that
does not violate the k-anonymity privacy constraint. In this paper, we have laid
out this problem and presented a two-party protocol DPP2GA that is proven to
preserve the constraint. It is a generic protocol in a sense that any k-anonymity
protocol can be used to compute locally k-anonymous data.

One disadvantage of DPP2GA is that it may not produce as precise data
(with respect to the precision metric defined in [8]) as other k-anonymity al-
gorithms do when data are not partitioned. For instance, DPP2GA could be
modified to simulate Datafly. At Step 9 of Algorithm 2, when the equality does
not hold, only the party with the attribute that has most distinct values globally
should generalize the data. Then the equality test would be performed on the
newly computed Γ 1

c+1 with previously used Γ 2
c . The data generated this way are

the same as those computed by Datafly.
Even though this approach may produce more precise data, it does introduce

additional inference problems because some Γ i
c+j may be compared more than

once. It is not obvious that this additional inference must (or can) violate k-
anonymity with respect to individual parties, but proving this formally is not an
easy task. One key design philosophy of DPP2GA is to provably eliminate such
inference problems, so DPP2GA sacrifices a certain degree of precision. More pre-
cise protocols with fewer or no inference problems are a worthwhile challenge for
future research. Another observation we have during the design of DPP2GA is
that more precise data can also be generated by removing already k-anonymous
data at the end of each round (resulting in different data being generalized to dif-
ferent levels). Again, providing a formal method to analyze the inference problem
might be very difficult, but this provides a valuable future research direction.

DPP2GA is not a SMC protocol because it introduces certain inference prob-
lems, such as FIP and IIP. However, based on our analyses, both FIP and IIP
do not violate the k-anonymity privacy constraint. Formally defining and un-
derstanding the differences between privacy-preserving and Secure Multiparty
Computation may open up many new opportunities for designing protocols that
preserve privacy.
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14. Kantarcıoǧlu, M., Jin, J., Clifton, C.: When do data mining results violate privacy?
In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Seattle, WA (2004) 599–604

15. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k -
anonymity and its enforcement through generalization and suppression. In: Proceed-
ingsof the IEEESymposiumonResearch inSecurityandPrivacy,Oakland,CA(1998)

16. Sweeney, L.: Computational Disclosure Control: A Primer on Data Privacy Pro-
tection. PhD thesis, Massachusetts Institute of Technology (2001)

17. Hundepool, A., Willenborg, L.: µ- and τ -argus: software for statistical disclosure
control. Third International Seminar on Statistical Confidentiality (1996)

18. Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly sys-
tem. Proceedings, Journal of the American Medical Informatics Association (1997)

19. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory IT-24 (1978) 106–110


	Introduction
	What Is a Privacy-Preserving Distributed Protocol?

	Background
	The Protocol: DPP2GA
	DPP2GA
	Proof of Correctness
	Proof of Privacy Preservation

	Conclusion / Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.33333
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.33333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


