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Abstract

In the past, there have been several denial-of-service
(DOS) attacks which exhaust some shared resource (e.g.,
physical memory, process table, file descriptors, TCP con-
nections) of the targeted machine. Though these attacks
have been addressed, it is important to continue to identify
and address new attacks because DOS is one of most promi-
nent methods used to cause significant financial loss. A
recent paper shows how to prevent attacks that exploit the
sharing of pipeline resources (e.g., shared trace cache) in
SMT to degrade the performance of normal threads. In this
paper, we show that power density can be exploited in SMT
to launch a novel DOS attack, called heat stroke. Heat
stroke repeatedly accesses a shared resource to create a hot
spot at the resource. Current solutions to hot spots inevita-
bly involve slowing down the pipeline to let the hot spot cool
down. Consequently, heat stroke slows down the entire SMT
pipeline and severely degrades normal threads. We present a
solution to heat stroke by identifying the thread that causes
the hot spot and selectively slowing down the malicious
thread while minimally affecting normal threads.

1   Introduction

When a number of users share a resource in a system,
some arbitration scheme must ensure fairness among the
users. While it may be straight forward to arbitrate an
explicitly shared resource, system design may overlook sub-
tle forms of resource sharing. A malicious user can launch a
denial of service (DOS) by exploiting such subtle forms of
sharing in order to harm other users [4]. Some well-known
DOS attacks are: (1) A process forks a large number of child
processes, exhausting the available entries in the process
table and preventing new processes from being spawned [5].
(2) A remote machine initiates a large number of TCP con-
nections with a server, exhausting the available entries in the
server’s TCB table and preventing any other machines to
establish TCP connections [6].

Because a DOS attack can render a system practically
inoperative, DOS attacks can be detrimental to businesses
that serve a large number of users (e.g., e-commerce data-
bases and webservers). Due to the scale of possible financial
loss, it is important to identify and address these attacks.

In Simultaneous Multithreading (SMT) [15] multiple
threads share pipeline resources at the same time in order to

achieve high throughput. Because of its high instruction
throughput and low implementation cost, SMT is being
adopted by the microprocessor industry. Because multiple
threads share resources in SMT, there are opportunities for a
malicious thread to launch a DOS attack by abusing the
shared resources. Consequently, it is important to address
DOS in the context of SMT. For example, [7] describes a
form of DOS attack in which a malicious process repeatedly
flushes the trace cache of an SMT by executing self-modify-
ing code. Because the trace cache is shared among all the
processes, the flushing degrades the performance of all
threads.

In this paper we show that power density can be
exploited to launch a novel DOS attack, calledheat stroke,
in SMT. Power density in high-performance microproces-
sors is the problem of high power dissipation in a small area
causing local hot spots in the chip. In heat stroke, a mali-
cious thread repeatedly accesses a resource to create a hot
spot at the resource. If the resource is not shared then the hot
spot affects only the malicious thread and it is easy to trace
the hot spot to the malicious thread and to stop fetching
from the thread. However, if the resource is shared then the
hot spot affects all the threads and it is harder to pinpoint the
source of the problem.

Today’s systems effectively protect themselves against
known DOS attacks. Heat stroke, however, is a new attack
and current systems are unprotected against it. If unad-
dressed, heat stroke can be used by attackers to launch suc-
cessful DOS attacks. Therefore, we must address the heat
stroke threat.

Solving power density using only packaging is hard.
Power density continues to increase with technology gener-
ations as scaling of current, clock speed, and device density
outpaces downscaling of supply voltages and the thermal
ability of packages to dissipate heat [10]. A localized hot
spot can reach emergency temperatures regardless of aver-
age or peak external package temperature or chip power;
therefore techniques designed to reduce those parameters
are ineffective at alleviating hot spots. Exotic technologies
such as liquid cooling and immersion can improve pack-
ages, but are expensive and do not scale with technology
[16].

Previous architectural solutions to power density allevi-
ate hot spots by slowing down activity until the temperature
drops to an acceptable level. The schemes slow down the



clock and lower the supply voltage as done in [12], com-
pletely stop the processor as done in [1] and in commercial
processors [8], or stop activity at the hot spot and migrate
and restrict activity to cooler components [9]. The schemes
are based on the premise that normal programs cause only
transient and not prolonged hot spots, and that the package
can keep the temperature at an acceptable level for most of
the execution time of normal programs. Accordingly, the
schemes temporarily slow down activity to allow the hot
spot to cool down and then resume to full-speed operation.
Consequently, the performance degradation incurred by the
schemes is acceptable. Heat stroke, however, does not
behave like normal programs and causes severe and pro-
longed hot spots. Because the hot spots occur at the shared
resources of SMT, applying the schemes to alleviate the hot
spots forces theentire processor into a repeated cycle of
heating and cooling periods. Because heat stroke can create
hot spots fairly quickly (e.g., within 5-10 million cycles at
4 GHz) and cooling takes much longer (e.g., 50 million
cycles), the heat-cool cycle results in severe performance
degradation in all the threads.

The degradation caused by heat stroke isneither by
monopolizing shared resources in SMT,nor by exploiting
SMT’s ICOUNT fetch policy [14]. ICOUNT attempts to
maximize throughput by choosing the thread that has the
fewest instructions in flight assuming that fewer instruc-
tions in flight implies less stalls and higher utilization. Con-
sequently, if an extremely high-IPC thread is run with
normal threads, the high-IPC thread gets a larger share of
the pipeline than the other threads under ICOUNT. We cal-
ibrate heat stroke to cause virtually no degradation with
perfect packaging that can remove any amount of heat
instantaneously, and severe degradation with realistic pack-
aging, showing that heat stroke is a general and novel
attack that does not monopolize SMT’s shared resources
nor exploit ICOUNT in any way. Moreover, SMT-aware
OS schedulers [13] cannot alleviate heat-stroke. Such
schedulers addresscoincidental incompatibilities among
simultaneously executing threads leading to performance
degradation. However, heat-stroke is adeliberatemalicious
behavior for which the scheduler does not look out.

To address heat stroke, we proposeselective sedation
based on two key observations: (1) There is a large differ-
ence in the rates of access of the heated resource by hot-
spot-creating threads and normal threads. (2) Previous hot-
spot solutions slow down theentire pipeline degrading all
the threads whereas it isonly the hot-spot-creating thread
that needs to be slowed down. The first observation implies
that it is easy to differentiate between the two types of
threads on the basis of resource usage. Accordingly, we
monitor the per-thread usage of potential-hot-spot
resources. When a resource reaches a threshold just below
the emergency temperature (similar to [1]), we identify the
thread with thehighestresource usage as the culprit thread
and slow the thread down. When the resource’s tempera-
ture drops to normal, the thread resumes full-speed opera-
tion. Because the heating and cooling times are long, our

monitoring can be slow and designed to be power- and
space-efficient. By such selective throttling we avoid slow-
ing down the entire pipeline and prevent one thread from
hindering the other threads, as per our second observation.

Two important features of our solution are: (1) We do
not attempt to solve the general problem of power density.
Instead, we only prevent a thread with a power-density
problem from degrading the performance of other threads
which do not have power-density problem. (2) Regardless
of whether a thread is malicious or not, if the thread has a
power-density problem, it must be prevented from causing
hot-spots and degrading the performance of other threads.
Therefore, it isunnecessaryto determine if a thread is actu-
ally malicious or not. Accordingly, our solution avoids
making this determination and still prevents hot-spot-creat-
ing threads from affecting other threads. Note that, we are
not unfair to non-malicious threads because any power-
density schememuststall such a thread if it has power-den-
sity problem.

Using SMT simulations, we show that (1) running a
SPEC2K program with a heat-stroke thread degrades the
performance of SPEC2K programs by a factor of four in a
processor with realistic packaging; (2) our solution restores
performance virtually entirely even in the presence of a
severely malicious heat-stroke thread; and (3) our solution
does not affect the performance of normal threads in the
absence of heat stroke.

The rest of the paper is organized as follows. In
Section 2 we describe the related work and background
material. In Section 3 we describe heat stroke and our solu-
tion in detail. In Section 4 we describe our experimental
methodology and in Section 5 we present the results from
our experimental evaluations. Finally in Section 6 we con-
clude.

2  Background and Related Work

We now provide some background details on the power
density problem, and DOS attacks in the context of SMT.

2.1 Power Density

The conduction of heat can be modelled via equivalent
heat circuits, in which the voltage indicates the tempera-
ture, the flow of current represents the flow of heat, and
various components have their respective thermal resis-
tances and capacitances. The more readily a component
conducts heat the smaller is its thermal resistance, and the
more heat a component can absorb, per unit change in tem-
perature, the higher is its thermal capacitance. Analogous
to electrical circuits, heat circuits also have RC time con-
stants which determine how rapidly a component may be
heated up or cooled down.

When a component in a processor is accessed at a high
rate, the repeated switching of transistors generates a large
amount of heat. Because the thermal capacitance of a typi-
cal component tends to be small, this heat raises the tem-



perature of the component considerably, creating a local
hot spot. The heat may propagate from the hot spot in two
different directions. It may travel laterally across the die to
neighboring components raising their temperature, or it
may travel vertically out of the die to the heat sink. Much
like an electrical circuit, more of the heat will flow through
the path of less thermal resistance. Unfortunately the ther-
mal resistances are such that the flow of heat in the lateral
direction is not appreciable. The motivation for thermal
greases and fans is to reduce the thermal resistance of the
path to the heat sink, drawing the heat through that path.

Nonetheless, the rate at which heat can flow out to the
heat sink is limited by the thermal resistance of that path.
When a component generates heat at a rate that is larger
than the rate which the path to the sink can accommodate,
the temperature of the component will steadily increase.
One obvious solution is to slow down the generation while
maintaining a steady extraction. To that end various solu-
tions for the power density problem temporarily either slow
down or completely suspend the activity at that particular
component. [8] simply halts the processor’s pipeline, while
[12] scale down the clock cycle and voltage, to slow down
the pipeline until the hot spot has cooled down. The RC
time constant of the path to the heat sink determines how
much time the component will require to cool down. For a
typical heat sink the cooling time is in the order of 10 ms.
Once this cooling time has elapsed, activity at the compo-
nent can be resumed to full speed.

2.2 DOS attacks in Simultaneous Multithreading

A typical program thread executing on a superscalar
generally underutilizes the available pipeline resources for
most of the execution time. Simultaneous multithreading
(SMT) can boost the net throughput of the pipeline by
allowing other threads to use the resources which would
otherwise go unutilized. Because of its high instruction
throughput and low implementation cost, SMT is being
adopted by the microprocessor industry. However, because
multiple threads share pipeline resources in SMT there
exists opportunity for malicious threads to launch DOS
attacks by abusing the shared resources.

For example, [7] describes a form of DOS attack in
SMT, in which a malicious thread may repeatedly execute
self-modifying code, causing the trace cache to be flushed
repeatedly. Because all threads in SMT share the same
trace cache, this repeated flushing degrades the perfor-
mance of all threads.

Because multiple threads share resources in SMT, a
power-density hot-spot at a shared resource can affect all
threads. In the next section we explain how a malicious
thread can exploit power density to launch a DOS attack
against other threads.

3  Heat Stroke and Selective Sedation

We have provided details on the general power density

problem and briefly described some previous solutions. We
now describe how a malicious thread in SMT can leverage
power density to carry out a DOS attack. We then propose a
solution that addresses such DOS attacks.

3.1 Inflicting Heat Stroke

Recall that when a resource is accessed at a high rate, it
generates a large amount of heat. The rate of heat dissipa-
tion towards the heat sink is limited by the thermal resis-
tance of that path. Because a resource may generate heat at
a rate higher than the capacity of that path, the temperature
of the resource may steadily increase until it reaches an
unacceptable level.

A malicious thread can exploit this fact to repeatedly
access a resource at a high-rate over a long period of time,
causing such a hot spot. In Figure 1 we show the example
code for such a malicious thread. The thread has a large
number of independent instructions so that all of them may
execute rapidly without stalls. Because each instruction in
the code accesses the register file, the thread effectively
issues accesses to the register file at a high-rate. Prolonged
execution of such code will lead to a hot spot at the register
file. A pipeline will generally have a number of tempera-
ture sensors, one at each potential-hot-spot location. Once
the temperature sensor at the register file is triggered, the
pipeline must invoke some mechanism to attend to this
power-density problem. Known techniques for controlling
power density either slow down or completely stall the
entire SMT pipeline until the hot-spot cools down.

Because the time constants involved in cooling are of
the order of 10 ms, a large number of cycles are lost in this
cooling-down phase. During the cooling-down phase, the
performance of all threads on the SMT suffers. If the mali-
cious thread can causes hot spots repeatedly, then repeated
time-outs for cooling will be required. We observe that it
takes a mildly malicious thread about 1.2 ms to heat up the
register file to the emergency temperature, and each time
that happens the pipeline needs 12.5 ms to cool down.
Thus, with hot-spots generated back-to-back, the duty
cycle of the entire pipeline degrades to 1.2/(1.2+12) = 0.09.
We show in results that such a small duty cycle can degrade
the IPC of normal threads by 88%. We call this severe deg-
radation via repeated hot-spots a case of heat stroke.

Because an SMT pipeline may fetch instructions from
multiple threads at any cycle, SMT needs some arbitration
mechanism to divide the fetch bandwidth per cycle.
ICOUNT, the commonly used fetch policy for SMT,
attempts to maximize the net IPC throughput of an SMT
pipeline. ICOUNT fetches from that thread which has the
fewest number of instructions in flight, assuming that fewer

FIGURE 1: Example code of a malicious thread
that causes heat stroke

L$1:
addl $1, $2, $3
br L$1



instructions means fewer stalls and higher utilization.
While ICOUNT inherently prevents starvation of threads, a
high-IPC thread can monopolize the fetch bandwidth and
degrade the performance of other threads. Observing the
code shown in Figure 1, we may suspect that the malicious
thread degrades other threads by monopolizing the fetch
bandwidth via its high IPC, and not via any power-density
problems. To isolate the role of power-density in a DOS
attack from any fetch-policy side-effects, we use the mod-
erately malicious code shown in Figure 2. The code con-
sists of two phases, the first phase is similar to the code
shown in Figure 1, and attempts to generate a hot-spot via
high rate accesses of the register-file. The second phase
consists of a number of L2 cache misses (by choosing
addr1 through addr9 such that they map to the same set in
an 8-way cache). By adjusting the duration of each phase
we can fine tune the IPC of this malicious thread to an
acceptable level. Thus we ensure that any degradation of
the other threads is caused by power-density problems and
not by fetch-bandwidth monopolization.

3.2 Selective Sedation

Having explained how and why heat stroke occurs, we
now propose a solution for heat stroke. Before proposing
the actual solution we make a few key observations that
will help us understand the required structure of the solu-
tion.

We make the first key observation that the access-rate
behavior of threads which cause hot-spots is distinctly dif-
ferent from that of normal threads. This observation
implies that the access-rate behavior of various threads at
each resource clearly divides the threads into potential hot-
spot creators and normal threads. We can monitor the
access-rate behavior of the threads at each resource and use
that information to identify the threads causing any power
density problems.

The underlying reason for heat stroke is that a thread
with a power density problem causes the entire pipeline to
be slowed down. Our second key observation is that it is
not necessary to slow down entire pipeline for cooling,
rather it is only the problematic thread that really needs to
be slowed down. We identify that the solution needs to
implement a per-thread slowing down instead of a global

slowing down, preventing a malicious thread from degrad-
ing the performance of other threads. However, underneath
our solution, we still retain a global stop-and-go as a
safety-net. By this safety-net we ensure that if, under any
circumstance, the pipeline does reach an emergency tem-
perature, we can shut it down to avoid permanent damage.
We now describe selective sedation, our solution to heat
stroke.

3.2.1 Identifying problematic threads
If a non-malicious thread causes hot-spots then it too

will cause the pipeline to slow down, degrading the perfor-
mance all other threads. Thus we do not need to distinguish
between malicious and non-malicious threads. Instead, if
any thread causes power density problems, we must iden-
tify it and prevent it from adversely affecting other threads.
Note that we do not try to solve the general power-density
problem. By addressing heat stroke, we are simply prevent-
ing a thread with a power density problem from degrading
the performance of other threads which do not have a
power density problem.

We maintain per-thread counters that track the access-
rates of different resources. We need to track the access
behavior of threads over a long period of time (e.g., 1 ms).
Simply counting the total number of accesses over a long
period of time does not work. A non-malicious thread may
make accesses at a small but steady rate over the entire
period, achieving a total count higher than that of a mali-
cious thread which carries out a relatively short burst of
aggressive-rate accesses. We found that the malicious
thread from Figure 1 may critically heat up the register-file
in just about 5 million cycles (at 4GHz). We must continu-
ously monitor the threads over long periods of time in order
to detect suspicious behavior. Because the time constants
involved in hot-spot generation are large this tracking need
not be done at a fine granularity, instead we may sample the
access-rates infrequently, say by counting the number of
accesses in every 1000 cycles. Obviously, it would be both
space-inefficient and cumbersome for analysis if we were
to store all the access-rate values periodically measured
over a long duration of time. Instead, we compute a run-
ning weighted average on all the access-rate values by
weighting each sample inversely proportionally to its age.
At every sampling instant the average is computed as:

Wt. Avg = (1-x) * Wt. Avg + x * access-rate

Every time the access-rate is sampled, a new weighted
average is computed, and the weight of each of the previous
access-rate values gets diminished by a factor of (1-x). The
parameterx can be tuned to adjust the memory of the
weighted average. We empirically know that the time to
generate a hot-spot is in the order of a million cycles (at 4
Ghz). Given that we sample the access-rate after every
1000 cycles, we need to retain memory for effectively 1000
sample points. We find that x = 1/128 suffices for such pur-
poses.

FIGURE 2: A moderately malicious thread

L$1:
addl $1, $2, $3
br L$1

L$2:
ldq $4, addr1
ldq $4, addr2
............
............
ldq $4, addr9
br L$2



Because the computation of the weighted average
involves two multiplication operations, one may think that
this computation is expensive. However, if we choosex to
be a power of 2, then the multiplication operations are
reduced to shift operations. We can assignx to a value of 1/
128, replacing the multiplication by an 7-bit shift opera-
tion. Because the remainder of the operations are simple
additions and subtractions, the computation of the weighted
average becomes inexpensive. The infrastructure required
to monitor access-rate behavior consists of one counter, one
register and some peripheral arithmetic logic, per resource
per thread. Each counter records the access-rate for one
thread at a particular resource, and it is incremented every
time the thread accesses that resource. The register holds
the weighted average of access-rate for that thread at that
particular resource, and we recompute the weighted aver-
age at every sampling interval using its current value and
the value in the access-rate counter. After we read the value
in the access-rate counter, we reset the counter to zero in
order to begin measuring the next sample.

Because the weighted average tracks the access-rate
behavior over a reasonable period of time, it is an effective
metric for identifying the culprit thread when a hot-spot
occurs. We see that the weighted average for threads with a
power-density problem tends to be distinctly higher than
that of other threads. However we also observe that typical
programs, such as the SPEC2K suite, occasionally exhibit
short bursts of a high weighted-average without causing
any power-density problems. Hence, policing the threads
via an absolute weighted-average threshold would degrade
performance significantly due to false positives (i.e.,
threads with no power-density problems are penalized).
Furthermore, raising the weighted-average threshold in
order to reduce the performance degradation would enable
a malicious thread to inflict heat stroke without being
detected. Instead, we use a temperature-based threshold to
detect suspicious behavior. When the temperature of a
resource rises to near the emergency temperature we can
expect that the weighted average for the culprit thread will
be distinctly higher than that of the other threads. In order
to avoid emergencies, we borrow from [1] and adjust the
temperature sensors to trigger at a temperature slightly
below the emergency temperature (e.g, 356K when the
actual emergency temperature is 358.5K). We call this tem-
perature threshold the upper-threshold. In the event of an
upper-threshold trigger at any resource, we identify the cul-
prit thread as the one with thehighestweighted average at
that resource. A temperature-based threshold rarely causes
false positives because the upper-threshold is set close to
the emergency temperature.

Upper-threshold triggering is similar to the idea of
emergency-temperature triggers first proposed in [1]. This
paper uses emergency temperature triggers to prevent the
chip-wide temperature from reaching a damaging level,
and not to address local hot-spot problems. We could imag-
ine adapting the paper to address the problem of local hot-
spots. However, this adaptation in itself would not solve the

problem because, upon temperature emergencies, the adap-
tation would stall theentirepipeline, essentially degenerat-
ing to stop-and-go.

3.2.2 Sedating Problematic Threads
Once we have identified the culprit thread as described

above, wesedateits execution by ceasing to fetch instruc-
tions from that thread. We observe, from the behavior of
average programs such as the SPEC2K suite, that a non-
malicious thread may also cause an occasional upper-
threshold trigger. Recall that we do not attempt to distin-
guish between malicious and non-malicious threads. While
the sedation of such a non-malicious thread is needed
(because any power-density scheme must slow down at
least that thread if not the entire pipeline), it would be detri-
mental to the performance of the thread if its execution
were sedated indefinitely. To that end, we sedate an offend-
ing thread only for a period long enough to allow the
resource to cool down. Once the culprit thread is sedated,
we expect that the resource will not be accessed aggres-
sively and will begin to cool down. We detect sufficient
completion of cooling by another threshold which is set to
a temperature just above that of normal operation for that
resource (e.g., 355K for the integer register file, where nor-
mal operating temperature is 354K). We call this tempera-
ture threshold the lower-threshold. Thus, for the purposes
of selective sedation, we associate two temperature triggers
with each resource, one for the upper-threshold and one for
the lower-threshold. When the sensor triggers at the lower-
threshold we restore the sedated thread to normal execu-
tion. Note that during sedation, the access-rate and the
weighted average of the culprit thread are not computed at
all. Thus, we ensure that the period of inactivity will not
artificially lower the weighted average for that thread.

So far we have assumed that there is only one thread
with a power-density problem, which may not necessarily
be true. If there are multiple threads with power density
problems, then sedating the first culprit thread does not
guarantee that the heated-up resource will actually cool
down. Therefore, after the upper-threshold triggers, we
wait for a duration that is twice the expected cooling time
of the resource, and then reexamine the temperature of the
resource. We choose twice the duration because the cooling
time inherently assumes no heat generation, whereas for
our purposes a thread may still be running, generating
some heat. After this duration if the temperature is still
above the lower-threshold, we conclude that there is
another thread with a power-density problem which is still
operative. As before, we identify and sedate the thread with
the highest weighted-average. When the resource cools
down to the lower-threshold, we resume normal execution
of all threads that were sedated for that resource. As long as
the resource does not cool down to the lower-threshold and
there are un-sedated threads still operative, we must con-
tinue periodic reexamination. The only exception is that
when there is only one un-sedated thread left, that thread
cannot degrade the performance of any other thread. We



allow the last unsedated thread to continue to operate even
above the upper-threshold. In the event that the thread heats
up the resource to the emergency temperature, the safety-
net stop-and-go mechanism intervenes. Stop-and-go stalls
the entire pipeline until the resource cools down to normal
operating temperature, restoring all sedated threads to nor-
mal execution.

In addition to alleviating heat-stroke in hardware, we
also report the offending threads to the operating system.
This reporting facilitates the identification of offensive
threads and their users.

We show in our experimental evaluation that selective
sedation successfully alleviates heat-stroke without causing
performance loss due to false-positives.

3.3 Generality of Heat Stroke

A number of previous proposals address the issue of
fairness in the context of SMT execution. [7] addresses
DOS attacks based on trace-cache flushing, and [13] pro-
poses an OS scheduler that ensures fair, priority-based
CPU utilization across all the threads in an SMT machine.
We argue that heat stroke is a general DOS attack which
may not be alleviated by the techniques proposed in [7] and
[13].

[7] addresses a specific DOS attack which is character-
ized by repeated execution of self-modifying code, result-
ing in repeated flushing of the trace-cache. A malicious
thread may degrade the performance of other threads in an
SMT by flushing the trace-cache repeatedly. [7] proposes a
scheme that detects such behavior and notifies the OS
about the offending thread. [7] detects culprit threads based
on the observation that, the cache-flush pattern of normal
threads is noticeably distinct from that of self-modifying
code. While our scheme is similar to [7] in terms of behav-
ior-based detection, we exploit power density while [7]
exploits self-modifying code. Furthermore, we actually
prevent heat-stroke attacks via selective sedation, whereas
[7] only detects and reports culprit threads to the OS.

In SMT machines, multiple threads may occupy the
CPU during a single quantum, yet they may make different
amounts of progress during that quantum. Thus, simply
keeping an account of the number of quanta that each
thread runs for, does not guarantee fair, priority-based CPU
usage in SMT. [13] proposes an OS scheduler that monitors
the individual progress across threads within one quantum
to provide this guarantee. The OS scheduler uses this infor-
mation to guarantee progress proportional to priority by
allocating quantums to groups of threads (to be run simul-
taneously) and to individual threads (to be run alone).
Because the monitoring poses an overhead in system
throughput, [13] first runs a monitoring phase and then
allocates CPU quantums for a longer non-monitored
period. [13] does not consider the possibility of malicious
programs, and is designed under the premise that all pro-
grams behave in a non-malicious manner.

While it may seem that such an OS scheduler can pre-

vent a DOS attack by guaranteeing fair CPU usage to all
threads even in the event of a heat stroke, a malicious
thread can defeat the scheduler by exploiting the internal
details of the scheduler. (1) If a malicious thread deliber-
ately degrades the performance of other threads, such an
OS scheduler assumes that the degradation is due to coinci-
dental incompatibility for SMT execution. The scheduler
continues to execute the malicious thread, and continues to
team it up with other threads in search of non-existent SMT
compatibility. In contrast, selective sedation actually identi-
fies such malicious threads and notifies the OS, so that the
scheduler may mark such threads ineligible for execution.
(2) While the OS scheduler guarantees fair, priority-based
CPU sharing, it may do so at the cost of low CPU utiliza-
tion. By launching repeated heat strokes during the evalua-
tion phase, a malicious thread may force the scheduler to
schedule other threads for solo execution (i.e., only one
thread in the pipeline) on the CPU for long periods of time.
Alternately, a malicious thread may assume a high priority
and exhibit an artificially low IPC during specific parts of
the evaluation phase, forcing the scheduler to schedule the
malicious thread for solo execution over long durations.
Long periods of solo execution degenerate the SMT
machine to a non-SMT machine, degrading overall system
utilization. (3) If the duration of the monitored and non-
monitored periods are fixed then a malicious thread may
easily behave as a normal thread during the monitoring
periods and launch repeated heat-stroke attacks during the
non-monitored periods. Whereas, if the duration of the
monitored and non-monitored periods are randomized, then
a malicious thread can alternate between normal and mali-
cious behavior to achieve probabilistic DOS. Using more
than one malicious thread, the probabilistic DOS attack can
be turned into an effective DOS attack. Such attacks not
only degrade system utilization but also defeat the primary
task of the scheduler, preventing fair priority-based CPU
sharing.

4  Experimental Methodology

In this section, we describe the simulation methodology,
hardware parameters and benchmarks that we use in our
experiments. We demonstrate heat stroke and selective
sedation using execution driven simulations of an SMT. We
build our SMT simulator on SimpleScalar 3.0b [3]. Our
simulator uses the ICOUNT fetch policy and can fetch
from two threads every cycle. The architectural configura-
tion parameters are shown in Table 1. Our SMT simulator
implements common optimizations techniques such as
squashing a thread on an L2 miss to avoid filling up the
issue queue. All the architectural techniques which we use
in our SMT simulator are commonly used in commercially
available SMT processors.

To model the power consumption, we integrated Wattch
[2] with our base SMT simulator. We extend the Wattch
model to include HotSpot [12] in order to model the power
density in the SMT simulator. The processor runs at 4GHz



frequency and senses the temperature every 20,000 cycles
(this sensing frequency is well under the thermal RC time-
constant of any resource). The circuit and packaging
parameters are shown in Table 1. For the core of the pro-
cessor we use the floorplan provided in [12]. We use a chip-
wide Vdd of 1.1 V. The parameters correspond to next-
generation of high-performance processors according to
[11]. Our thermal packaging corresponds to an air-cooled,
high performance system.

While there are a number of proposed techniques for
addressing hots-spots [12], in our power-density SMT sim-
ulator, we usestop-and-goas the base-case technique for
preventing hot-spots. From Figure 6 in [12], we see that for
realistic configurationsstop-and-go(called global clock
gating in [12]) has nearly the same throughput as DVS.
Further, DVS is not expected to scale with technology.
DVS reduces Vdd to reduce the power consumption which
may not be possible in future for scaled, low-voltage tech-
nologies. Transistor threshold voltage scales more slowly
than the supply voltage [11] and as the gap between the
supply voltage (e.g., 1.1V) and the threshold voltage (e.g.,
0.25 V) closes, there is a substantially less flexibility for
DVS. Finally, supply voltage reduction may cause soft
errors or prevent transistors from switching even at reduced
clock frequencies. Because stop-and-go performs compara-
bly to other schemes for our purposes, and is already
implemented in commercially available processors today,
we use stop-and-go as the base-case method for hot-spot
prevention.

We do not compare against a number of other tech-
niques which are either not generally applicable or create
implementation difficulties. Temperature-Tracking Fre-
quency Scaling (TTDFS), as proposed in [12], allows the
processor to heat above its “maximum” temperature by
slowing the clock and relaxing timing constraints. As stated
in [12] TTDFS is effective only if the sole limitation on
power density is circuit timing. TTDFS does not reduce
maximum temperature or prevent physical overheating and

cannot handle large increases in temperature, which may
damage the chip.

We run each simulation for 500 million cycles. This
duration corresponds to the quantum of a typical operating
system. To show the effect of Heat-Stroke in a 2-way SMT,
we run each individual SPEC2K benchmark with a mali-
cious thread similar to the one shown in Figure 2.

In the implementation of selective sedation we maintain
per-thread access-rate counters corresponding to each
resource. We sample the access-rate every 1000 cycles.
Because it takes in the order of a million cycles to create a
hot-spot, we maintain a weighted average that captures a
window of 0.5 million cycles by choosing the value ofx (in
Section 3.2.1) to be 1/128.

5  Results

To demonstrate heat stroke and selective sedation, we
present a number of experimental results. In all experi-
ments, except where stated otherwise, we run one program
from the SPEC2K suite and one malicious program, on a 2-
way SMT. Except for Section 5.5, we use a convection
resistance of 0.8 K/W [12] for the realistic heat. In all
experiments we assume stop-and-go as the base-case tech-
nique for addressing power-density problems. We used 358
K as the highest allowable operating temperature [12].
Except for Section 5.6, we use 356 K as the upper-thresh-
old and 355 K as the lower-threshold for selective sedation.

In our experimental evaluations we demonstrate the fol-
lowing results: (1) We show the number of times that the
SMT pipeline heats up to the emergency temperature, with
and without selective sedation. (2) We contrast the average
access-rate behavior of SPEC programs against the behav-
ior of malicious programs. (3) We demonstrate the actual
performance degradation of SPEC programs due to heat
stroke, and the effectiveness of selective sedation in restor-
ing their performance. (4) We show the breakdown of exe-
cution times for benchmark programs to illustrate how
selective sedation prevents heat-stroke. (5) In order to
establish the robustness of temperature-based thresholds,
we vary the thresholds and show that the effectiveness of
selective sedation is not critically sensitive to the thresholds
we choose. (6) We show that both the damage from heat-
stroke and the effectiveness of selective sedation remain
unchanged qualitatively with improvements in heat-sinks
and packaging technologies. (7) To show that selective
sedation does not adversely affect the execution of non-
malicious program, we execute pairs of only SPEC pro-
grams without any malicious threads.

In order to isolate the effects of the ICOUNT policy and
to establish the effectiveness of the weighted-average
resource-usage metric (Section 3.2.1), we use three varia-
tions of the malicious code.Variant1 is an aggressive pro-
gram which accesses the register-file at a high rate and also
has a high IPC (same as Figure 1).Variant2 is also an
aggressive program with a high register-file access-rate but
has a relatively lower IPC (same as Figure 2).Variant3 is a

Table 1: System parameters.

Architectural Parameters

Instruction issue 6, out-of-order

L1 64KB 4-way i & d, 2-cycle

L2 2M 8way shared 12-cycle

RUU/LSQ 128/32 entries

Memory ports 2

Off-chip memory latency 300 cycles

SMT 2 contexts

Power Density Parameters

Vdd 1.1 V

Base Frequency 4 Ghz

Convection resistance 0.8 K/W

Heat-sink thickness 6.9 mm

Thermal RC cooling time 10 ms



moderately malicious program that accesses the register
file at a rate chosen to evade selective sedation (variation of
Figure 2).

5.1 Average Access-Rates

In Section 3.2.1 we introduced the weighted average
metric, and argued that the flat access-rate averaged over a
period of time is not a viable metric for identifying prob-
lematic threads. We now show this flat average access-rate
of the integer register-file for SPEC benchmarks against
those for the three malicious variants.

We execute each program alone, periodically sampling
the access-rate and averaging the samples over a duration
of one OS quantum, to effectively obtain the accesses per
cycle for that program. In Figure 3 we show the average
access-rate of the integer register-file for all SPEC bench-
marks and for the three malicious variants. We observe that
the average access-rate stays below 6 for all SPEC bench-
marks. Forvariant1 the average access-rate is 10, which is
widely separated from the access-rates of SPEC programs.
However, the average access-rates forvariant2 and
variant3 are 4 and 1.5 respectively, which are not distin-
guishable from that of SPEC programs. We show in
Section 5.3, thatvariant2 successfully inflicts heat-stroke,
whereas the low access-rate ofvariant3 limits its ability to
inflict heat-stroke. We further show in Section 5.3 that the
weighted average metric successfully detects and contains
attacks byvariant2. We also show in Section 5.3 that
variant1monopolizes fetch and significantly affects SPEC
programs due both to ICOUNT and power-density prob-
lems. Becausevariant2does not monopolize fetch, we con-

sider variant2 to be representative of malicious programs
meant for heat-stroke attacks. In all those experiments
where, for lack of space, we can show only one variant, we
choose to show results forvariant2.

5.2 Number of Temperature Emergencies

For a reasonable heat-sink, we expect that non-mali-
cious programs will rarely heat an SMT processor up to the
emergency temperature. However, in the presence of mali-
cious programs we expect the number of temperature emer-
gencies to be significantly high. Because selective sedation
alleviates heat stroke, we expect selective sedation to suc-
cessfully reduce the number of temperature emergencies
back to a normal level.

In Figure 4 we show the number of times the processor
heats up to the emergency temperature, within one OS
quantum, for various benchmarks. For each benchmark we
show three bars corresponding to, from left to right: (1) The
SPEC benchmark executes alone. (2) The SPEC bench-
mark executes along withvariant2 while supervised by
stop-and-go. (3) The SPEC benchmark executes along with
variant2 while supervised by selective sedation. We see
that with the exception of bzip, crafty, equake, sixtrack and
vortex, all benchmarks cause none or a few temperature
emergencies when executing alone (1st bar). In the pres-
ence of variant2 (2nd bar), the number of temperature
emergencies increases to at least 8 for all benchmarks,
amounting to more than a four fold increase in temperature
emergencies averaged across all benchmarks. After deploy-
ing selective sedation (3rd bar), we see that, with the excep-
tion of bzip, crafty, gzip, mcf and wupwise, the number of

FIGURE 3: Average access-rates of integer register-file for SPEC programs and the three variants
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FIGURE 4: Number of temperature emergencies in one OS Quantum
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temperature emergencies for all benchmarks is restored to
exactly the same number as for solo execution. bzip, crafty,
gzip and mcf are benchmarks which already have power-
density problems. The sedated execution of a malicious
thread slightly increments their power-density problem
converting a few near-emergency instances into actual tem-
perature emergencies.

5.3 Effects of Heat Stroke and Selective Sedation

We now show the effect of heat stroke on the perfor-
mance of targeted programs, and show that selective seda-
tion effectively counters such DOS attacks. To establish
that heat stroke is a real problem in SMT, we must isolate
any effects of the ICOUNT fetch-policy, and of heat-sink
limitations. For the first two bars in Figure 5, we run each
SPEC benchmarkalone, once with an ideal heat-sink (i.e.,
one that has infinite heat removal rate), and once with a

realistic heat-sink (i.e., one that has a finite and reasonable
heat removal rate). If the realistic heat-sink is effective, we
expect that most benchmarks will not exhibit performance
degradation compared to the case of an ideal heat-sink. We
then run each SPEC benchmark in simultaneous execution
with each of the three malicious invariants (Section 5), one
by one. In Figure 5, for every benchmark-variant pair we
show three bars, one for each of the following configura-
tions: (1) An ideal heat-sink. (2) A realistic heat-sink,
supervised by stop-and-go. (3) A realistic heat sink, super-
vised by selective-sedation. In all configurations we mea-
sure the IPC performance of the benchmark program only
(the y-axis is the IPC of only the SPEC program). If a mali-
cious monopolizes fetch, we expect the first configuration
(3rd,6th, and 9th bar) to show a noticeable performance deg-
radation compared to the case of ideal-heat-sink, solo
benchmark execution (1st bar). If the malicious variant is
capable of inflicting heat stroke we expect the second con-
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figuration (4th,7th, and 10th bar) to show substantial perfor-
mance degradation compared to the first configuration.
Because selective sedation successfully counters heat
stroke attacks, we expect the third configuration (5th,8th,
and 11th bar) to perform significantly better than the second
configuration, achieving a performance comparable to that
of solo-execution with realistic a heat-sink (2nd bar).

With the exception of bzip, crafty, equake, sixtrack and
vortex, we see that the solo-execution performance for all
benchmarks is nearly the same regardless of ideal or realis-
tic heat-sinks. We conclude that the realistic heat-sink is
effective in heat-removal rate for typical programs, and that
heat-stroke does not exploit an ineffective heat-sink.

Recall that the first of the simultaneous-execution con-
figurations (3rd,6th, and 9th bar) attempts to isolate any
ICOUNT-policy side-effects. From Figure 5 we see that
variant1(3rd bar) exhibits noticeable performance degrada-
tion across many benchmarks for this first configuration.
Whereas,variant2 (6th bar) andvariant3 (9th bar) perform
comparably to the ideal-heat-sink, solo-execution case
across most benchmarks (1st bar). We conclude that
variant2 and variant3 are free from any ICOUNT-policy
side-effects, whereasvariant1 involves such side-effects.
For the remainder of our experiments we do not consider
variant1 in the context of heat stroke.

The second of the simultaneous-execution configura-
tions (4rd,7th, and 10th bar) shows the extent of heat stroke
that the malicious variants inflict. Recall thatvariant3mod-
erates its access rate in attempt to avoid being detected and
contained by selective sedation. From Figure 5 we see that
variant3 (10th bar) causes a performance degradation that
is much less pronounced compared to that ofvariant2 (7th

bar). The performance degradation averaged across all
benchmarks is 50.8% forvariant3, whereas forvariant2 it
is as severe as 88.2%. We see that heat stroke is a real prob-
lem, which can severely degrade the performance of SMT
systems.

We illustrate the effectiveness of selective sedation
using the third configuration of simultaneous execution
(5th,8th, and 11th bar). From Figure 5 we see that, for all
three variants, selective sedation successfully restores the

performance of the benchmark programs to a level compa-
rable to that of their solo-execution with a realistic heat-
sink (2nd bar). The IPC averaged over all benchmarks, for
solo execution with a realistic heat sink is 1.28, whereas
with variant2supervised by selective sedation (8nd bar) the
IPC is 1.24. We conclude that selective sedation success-
fully prevents heat-stroke attacks from a variety of mali-
cious programs.

5.4 Breakdown of Execution Times

When executing alone, we expect typical non-malicious
programs to spend most of their execution time in normal
operation. However, when executing along withvariant2,
we expect that SPEC benchmarks will spend a major frac-
tion of their execution time in stalls due to stop-and-go
cooling periods. Because selective sedation prevents heat-
stroke, we expect that even in the presence ofvariant2
SPEC benchmarks will spend only a small fraction of their
execution time, if at all, in cooling-period stalls. At the
same time, selective sedation should forcevariant2 to
spend a major fraction of its execution time in sedation
stalls.

In Figure 6 we show the breakup of execution times for
SPEC benchmarks under three scenarios: (1) Executing
alone (1st bar). (2) Executing along withvariant2, super-
vised by stop-and-go (2nd bar) (3) Executing along with
variant2, supervised by selective sedation (3rd bar). We
also show the breakup of the execution time ofvariant2,
supervised by selective sedation (4th bar). We see that when
running solo (1st bar), averaged across all benchmarks,
SPEC programs spend 85% of total execution time in nor-
mal operation and only 15% in stalls for cooling. Most pro-
grams spend their entire time in normal execution, except
for bzip, crafty, equake, gzip, mcf, sixtrack and vortex,
which have slight power-density problems. Under heat-
stroke conditions (2nd bar), averaged across all bench-
marks, SPEC programs spend as much as 87% in cooling-
period stalls, resulting in severe performance degradation.
Selective sedation counters heat-stroke attacks (3rd bar),
enabling SPEC programs to spend as much as 83% of their

FIGURE 6: Breakup of execution times
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execution time in normal operation, averaged across all
benchmarks. Under selective sedation, all benchmarks
spend nearly as much time in normal operation as they do
in solo execution. We also see that, selective sedation suc-
cessfully identifiesvariant2 as the culprit program and
sedates it for as much as 99.9% of its execution time (4th

bar), averaged across all benchmarks.

5.5 Evaluations with an Improved Heat-Sink

In all experiments so far, we assumed a convection resis-
tance of 0.8 K/W for a realistic heat-sink. We now repeat
the evaluations shown in Section 5.3 but with a heat-sink
which has a convection resistance of 0.7 K/W. Due to lack
of space we present results only corresponding tovariant2.
In Figure 7 we see that when executing alone, except for
equake, all other benchmarks’ performance with realistic
sink (2nd bar) is similar to that of the ideal heat-sink case
(1st bar). The 1st and 2nd bars are closer in this figure than
in Figure 5 due to the better heat-sink shown here. When
executing along withvariant2, and supervised by stop-and-
go (4th bar), all benchmarks suffer substantial performance
loss, showing that heat-stroke is just as effective even with
an improved heat-sink. The IPC performance of all bench-
marks, when executing withvariant2, and supervised by
selective sedation (5th bar), is comparable to their solo-exe-
cution performance with a realistic heat-sink (2nd bar). We
conclude that heat-stroke is a threat to be reckoned with
even with improved packaging and cooling technologies,
and that selective sedation remains effective.

5.6 Threshold Sensitivity

We now vary the temperature thresholds to show that the
effectiveness of selective sedation is not critically sensitive
to the thresholds we choose. We use the improved heat sink
of Section 5.5 for this experiment because it allows a larger
threshold variation. We repeat the evaluations of
Section 5.3, but with the upper- and lower-thresholds set to
353 K and 352 K respectively. We also evaluated threshold
sensitivity for the less-aggressive heat-sink and obtained
similar results. Due to lack of space we present evaluations
only for the improved heat-sink and only forvariant2.

The results for the modified thresholds, shown in
Figure 8 differ from the results presented in Section 5.5
only in the 3rd bar which corresponds to the benchmarks
executing along withvariant2, while supervised by selec-
tive sedation. We see that even for the new set of thresh-
olds, selective sedation successfully prevents heat-stroke.
The IPC averaged over all benchmarks, for solo execution
with a realistic heat sink is 1.56 (1st bar), whereas with
variant2 supervised by selective sedation the IPC is 1.47
(3rd bar). We conclude that the effectiveness of selective
sedation is not critically sensitive to the choice of tempera-
ture thresholds.

5.7 Effect on Non-malicious Programs

We now investigate whether selective sedation adversely
affects the performance of non-malicious programs. We
observe that equake exhibits a greater degree of power-den-
sity problem that all other SPEC benchmarks. Therefore,
we run equake paired with other SPEC programs on the
SMT and observe their combined IPC performance with

FIGURE 7: Results for an improved heat-sink
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FIGURE 8: Results for varied thresholds with improved heat sink
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and without selective sedation.
In Figure 9 we show the total IPC of the SMT for pairs

of SPEC benchmarks for (1) with a realistic heat-sink using
stop-and-go (1st bar), and (2) with a realistic heat-sink
using selective sedation (2nd bar). We see that the IPC for
selective sedation is comparable to the IPC for stop-and-go.
In fact for a number of benchmarks (e.g., eon, gzip) selec-
tive sedation improves the performance in comparison to
stop-and-go by preempting emergencies. We conclude that
selective sedation has no adverse effect on the performance
of non-malicious programs.

6  Conclusions

In this paper we describe how power-density can be
exploited to launch DOS attacks in SMT. Currently known
techniques that address the power-density problem slow
down the entire SMT pipeline degrading the performance
of all threads. A malicious thread can inflict heat-stroke, a
novel DOS attack, by repeatedly creating hot-spots to
adversely affect the performance of other threads in the
system. We made two key observations to address heat-
stroke: (1) The average resource access behavior of mali-
cious threads is distinctly different from that of non-mali-
cious threads. (2) When a hot-spot occurs it is not
necessary to stall all the threads in the SMT, rather we need
to stall only that thread which is responsible for the hot-
spot. We proposed to detect power-density problems using
temperature-based thresholds, and to identify culprit
threads using a weighted average of their resource access-
rates. We proposed selective sedation, a scheme that selec-
tively penalizes only the culprit thread in the event of a hot-
spot, while allowing other threads to make normal
progress. Through experimental evaluations we showed
that heat-stoke is a real problem which can severely
degrade the performance of the threads in an SMT. We
showed that selective sedation successfully prevents heat-
stroke.

Because SMT is being widely adopted by the micropro-
cessor industry and because power-density is becoming
increasingly problematic, it is important to understand and
to propose solutions to attacks such as heat-stroke.
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FIGURE 9: Total IPC of two SPEC threads (equake paired with other SPEC benchmarks)
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