
CERIAS Tech Report 2005-23

AN UPDATE PROTOCOL FOR XML DOCUMENTS IN DISTRIBUTED AND COOPERATIVE
SYSTEMS

by Y. Koglin, G. Mella, E. Bertino and E. Ferrari

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



An Update Protocol for XML Documents in Distributed and Cooperative

Systems ∗

Yunhua Koglin † Giovanni Mella ‡ Elisa Bertino § Elena Ferrari ¶

Abstract

Securing data is becoming a crucial need for most

internet-based applications. Whereas the problem of data

confidentiality has been widely investigated, the problem

of how to ensure that data, when moving among different

parties, are modified only according to the stated policies

has been so far not deeply investigated. In this paper, we

propose an approach supporting parallel and distributed

secure updates to XML documents. The approach, based

on the use of a security region-object parallel flow (S-RPF)

graph protocol, is particularly suited for all environments

requiring cooperative updates to XML documents. It allows

different users to simultaneously update different portions of

the same document, according to the specified access con-

trol policies. Additionally, it supports a decentralized man-

agement of update operations in that a subject can exercise

its privileges and verify the correctness of the operations

performed so far on the document without interacting, in

most of the cases, with the document server.

1. Introduction

The widespread use of the Internet for exchanging and

managing data has pushed the need for techniques and

mechanisms that secure information when it flows across

the net. Confidentiality and integrity are two main security

properties that must be ensured to data or information in all

those distributed cooperative applications, such as collabo-

∗The work of Elisa Bertino and Yunhua Koglin is supported in part

by the National Science Foundation under the Project “Collaborative Re-

search: A Comprehensive Policy - Driven Framework For Online Privacy

Protection: Integrating IT, Human, Legal and Economic Perspectives”, by

an IBM Fellowship, and by the sponsors of CERIAS.
†Computer Science Department, Purdue University, West Lafayette,

IN, USA, luy@cs.purdue.edu
‡DICO, University of Milano, Via Comelico, 39/41, 20135 Milano,

Italy, mella@dico.unimi.it
§CERIAS and CS Department, Purdue University, West Lafayette, IN,

USA, bertino@cerias.purdue.edu
¶DSCFM, University of Insubria, Via Valleggio, 11, 22100 Como,

Italy, Elena.Ferrari@uninsubria.it

rative e-commerce [7], distance learning, telemedicine and

e-government. Confidentiality means that data can only be

accessed by subjects who are authorized by the stated ac-

cess control policies. Integrity means that data can only be

modified by authorized subjects. It is, however, crucial that

security be achieved with reasonable performance.

Confidentiality has been widely investigated and several

access control mechanisms, specifically tailored to the man-

agement of web documents [4, 5, 6], have been proposed.

By contrast, the problem of integrity has not been much in-

vestigated, even though it is a common requirement in many

application environments that not all parties be authorized

to modify any data that is exchanged. This is one major

limitation of the previous research. Another limitation is

that most previous access control mechanisms heavily rely

on a server to mediate access to data. We are interested in

reducing the server overhead, as it is particularly important

for performance; also, it is a basic requirement in some con-

texts, such as real-time adaptive content delivery or mobile

ad-hoc networks.

Several issues need to be addressed to support decen-

tralized and cooperative document updates over the Web.

A first requirement, that we investigated in a previous pa-

per [3] is the development of a high level language for the

specification of flow policies, that is, policies regulating the

set of subjects that must receive a document during the up-

date process. Starting from these policies, the server can

determine the path that the document must follow. The sec-

ond previous contribution [1, 2] is the development of an

infrastructure and related algorithms to enforce confiden-

tiality and integrity during the process of distributed and

collaborative document updates. A major limitation of our

previous approach is that it does not exploit possible paral-

lelism that is inherent in data relationships and in the access

control policies.

In this paper, we address such limitation. In particular,

we propose the use of a protocol that we refer to as secu-

rity region-object parallel flow (S-RPF) graph protocol in

the update process. The most innovative feature of S-RPF

is that it supports parallel updates on documents, and at

the same time enforces confidentiality and integrity require-

1



ments. Thus S-RPF ensures a high degree of efficiency. To

the best of our knowledge this is the first approach which

supports secure and parallel updates of documents.

We cast our protocol in the framework of XML [8] 1 be-

cause of the widespread adoption of such a standard in a

large variety of application environments. Also, XML or-

ganizes data according to hierarchical nested structures thus

facilitating the update parallelization. However, the tech-

niques we present in this paper can be easily adapted to

other hierarchical document formats.

The remainder of this paper is organized as follows. Sec-

tion 2 provides some preliminary notions which are needed

throughout the paper. Section 3 presents a general overview

of our approach. Section 4 presents the server and subject

protocols. Section 5 discusses the complexity of S-RPF, and

compares it with a centralized system. Finally, Section 6

concludes the paper and outlines future research directions.

2. Preliminaries

2.1. Flow and access control policies

Flow policies explicitly define the order according to

which subjects have to receive the document, whereas ac-

cess control policies specify each subject’s privileges over

the document. These privileges include update and read.

Update privileges allow a subject to modify, insert or delete

certain portion(s) of a document. Read privileges allow a

subject to browse only certain portion(s) of the document.

These portions could be attribute(s), or element(s) of a doc-

ument, as we will explain later.

In the following, we denote with the term Policy

Base (PB) the set of flow and access control poli-

cies apply to the set of documents managed by a

document server (DS). The flow path of the doc-

ument among the subjects is denoted as Path =
〈

subject0, subject1, . . . , subjectN , subject(N+1)

〉

,

where subject0 = subject(N+1) is DS. Thus we assume

that the server is always the first and the last subject in the

path. A subject can appear more than one time in Path and

its privileges over the document may not be the same every

time.

To enforce authenticity/integrity, public-key algorithms,

such as RSA, are used for digitally signing the documents.

We assume that DS knows the public keys of the subjects in-

volved in the update process and that all subjects know the

public key of DS. Thus the path a document must follow

can also be specified in terms of the public keys of the sub-

jects that must receive the document. More precisely, Path

=
〈

pubk0, pubk1, . . . , pubkN , pubk(N+1)

〉

denotes the path

that the document must follow, where pubk0 = pubk(N+1)

1Therefore in the following we use the terms data and documents as

synonyms.

is the public key of DS, and pubki is the public key of the

ith subject in the document flow sequence.

2.2. Atomic elements and document regions

An XML document [8, 9] is formed by tagged elements.

A tagged element may have one or more sub-elements, and

one or more attributes. Elements can be nested. Because of

this feature, an XML document may be represented accord-

ing to a graph structure [1] as illustrated by Figure 1.

S

S

</leader>1S

</report>

</leader>S<leader>

<leader>

</report>

<leader>

<report>
</business>

<business>

<leader>

<report>

<report>

<report>
</R&D>

<R&D>

</manufacture>

</leader>

10/01/2004

&11&8

dcdcdc dc

S4S1

(b)

reportleaderreportleader

&1

&5

R&D

manufacture

market

business

date

(a)

<manufacture>

&12 &13&3

&2

&4

3

4

</leader>

</report>

2

</report>

</market>

<market>

</annual_report>

<annual_report date="10/1/2004">

Figure 1. (a) An example of XML document

and (b) its corresponding graph representa-

tion

An atomic element (AE) is either an attribute or the start-

ing and ending tags of an element. An atomic region (AR)

is a set of atomic elements to which the same access con-

trol policies apply. We assume that each region be uniquely

identified.

A region can be either modifiable or non-modifiable. A

region is non-modifiable by a subject if this subject can only

read it. A region is modifiable by a subject if this subject

possesses the authorization to modify it, according to the

access control policies.

Based on the above definitions, we introduce the follow-

ing notations:

Let D = {ae1, ae2, . . . , aem} be a document to be ex-

changed, consisting of a set of atomic elements each of them

individually identified by an identifier. Document D is par-

titioned into a set of regions {R1, R2, . . . , RK} such that

each region consists of a region identifier (i) assigned by

DS and of a set of atomic elements. We denotes a region

as Ri = (i, {aeji
1
, aeji

2
, . . . , aeji

r
} where i ∈ {1, . . . , K}

and for any t ∈ {ji
1, ..., j

i
r}, 1 ≤ t ≤ m. Atomic ele-

ments within the same region are distinct and atomic ele-

ments within disjoint regions are distinct.

Each document in our approach has an associated

access control information structure (ACIS). Let D be

a document, the corresponding ACIS is defined as

{ar0, . . . , arN , ar(N+1)} such that:

2



• ari = (mod, non-mod)

Access regions are split into modifiable and non-

modifiable regions.

• mod ⊆ {1, . . . , K}, non-mod ⊆ {1, . . . , K}
The modifiable region set and non-modifiable region

set are subsets of the entire regions.

• mod ∩ non-mod = ∅
If a region is modifiable for a subject, it cannot be in

the non-modifiable set of this subject and viceversa.

All regions are considered modifiable by DS.

A region object O is an instance of the information in

a region. A region object is associated with the region

identifier, the subject who authors it, and the time when

the subject authors it. Time is not a concern with respect

to integrity; so we denote a region object O with a tuple

(r, pubkey), where r ∈ {1, . . . , K} and pubkey is the pub-

lic key of the subject who generates this region informa-

tion. If a region Ri is authored by two different subjects,

with public key of pubkl and pubkm, there will be two dif-

ferent region objects, one is (Ri, pubkl) and another one is

(Ri, pubkm), even though the information in region Ri may

be the same. In XML, a region object can be expressed as

an element and the tag denotes the region identifier.

All subjects participating in the update process use the

same one-way hash function for integrity. When a sub-

ject subj updates a region Ri, it generates one-way hash

of the region object Oi it has authored. It then encrypts the

hash with its private key, thereby signing this region object.

The signed hash will flow together with the region object

to which it corresponds. When a receiver s checks if Oi

is authored by subj, s generates a one-way hash of Oi and

decrypts the signed hash with subj’s public key that s re-

ceived from DS in the control information. If the signed

hash matches the hash value that s generated, the region ob-

ject Oi is valid.

A package exchanged among subjects contains one or

more region objects. Each package starts with sid which

denotes that this package is for the receiver who is the ith

subject in the Path. Following sid there are region objects.

Each region object includes an attribute of hash which is

the encrypted hash from the subject who authored this re-

gion object.

3. General Overview

The goal of the S-RPF protocol is to efficiently support

updates in distributed and cooperative systems, and at the

same time, to enforce flow and security policies.

Before starting the update process, DS determines a path

P that the document must follow. DS also generates an

access control information structure for each subject ac-

cording to the security and flow policies for each subject

(see Figure 2). From P and ACIS, DS constructs a S-RPF

graph and then derives the control information (CI) for each

subject from the graph. This control information specifies

which regions a subject will receive and how the subject can

check the integrity of each region object it receives. After

DS sends out the control information for each subject, the

update process starts.

XML
ACIS

S−RPF

Document

Path

CI

PB

Figure 2. Document pre-procssing

During the update process, each subject decrypts the

package it receives; then it uses the control information

from DS to check the integrity of and to authenticate the

received package. After passing these checks, the subject

may execute operation(s) on region(s) of the document over

which it possesses privileges. Once the update operations

are completed, the subject signs the region object(s) which

it is authorized to update with its private key, also in the

case in which it does not alter the region information. Fi-

nally, the subject enciphers the packages according to the

control information and sends them to the next receivers.

4. S-RPF protocols

In this section, we illustrate the two protocols on which

our approach relies, that is, the server protocol, executed by

DS, and the subject protocol, which is executed by a subject

upon receiving a document package. Before doing that, we

state the assumptions on which they rely.

4.1. Assumptions

We make the following assumptions for XML document

updates:

• The subjects participating in the updates are coopera-

tive. The completion of the update depends on each

subject. If one subject cheats more than twice, a re-

ceiver will notify DS and DS may broadcast that the

updates failed and aborted. A recovery mechanism is

detailed in Section 4.6.

• DS has access to the flow policies and to the security

policies of the document. The DS is a trusted entity.

It determines these policies before the update process

3



starts. Then these policies are enforced and are not

modified during the execution of the update process.

• There is no collusion among the subjects. Each subject

does not share information with other subjects.

4.2. Server protocol

The server protocol includes the following steps: (1)

construct the S-RPF graph, (2) generate and send each sub-

ject its own control information, and (3) send to the first

subject(s) the encrypted package(s). In the following, we

illustrate all such steps.

4.3. S-RPF construction

S-RPF is a directed graph G (see Figure 3(b)), where

each node represents an element in the flow path, and an arc

between si and sj denotes that sj has to access a document

region after si has accessed it. The arc is labeled with the

name of the corresponding region and with the id of the last

subject that modifies it.

S1

{}{R1, R2}

{R4}{}

S4

DS

S3
S2

S1 <(R2,S1)>

<
(R

1,
S
3)

,(
R

3,
S
3)

>

<
(R

1
,D

S
)>

<(
R

4,
S4

)>

<
(R

2
,S

1
)>

S2

(b)

{}

{R1,R2,R3,R4}

{}

mod

(a)

non−mod

{R1,R2,R3,R4}

{R2}

{R2}

{R1}

{R1, R3}

DSS4S3

<
(R

1
,D

S
),(R

3
,D

S
)>

DS

DS <(R4,DS)>

<(R2,S1)>

<(R
1,D

S),(R
2,D

S)>

Figure 3. (a) An example of Path and ACIS, (b)

the corresponding S-RPF graph

DS builds the S-RPF according to the following rule:

S-RPF Rule: Each region object, which is accessed by

a subject that does not author it, flows only once out of

the subject who authors it.

This rule enforces the correctness of the protocol (see

Section 5.1). The algorithm in Figure 4 is used to construct

the S-RPF graph. It aims at maximizing the parallelism of

the process enabling the maximum number of subjects to

work concurrently. This feature reduces the total amount of

time required to accomplish the update process. The algo-

rithm is organized according to the following main phases:

1. - Initialization. A node in the graph represents an ele-

ment in the flow path (since a subject may appear more than

once in the flow path, in the graph, subjecti and subjectj
may be the same subject). We also store in each node the

Algorithm Construct-RPF
Input: Path, ACIS
Output: G = (V, E)

1. for each i = 0 to N + 1 :

add node subjecti and

subjecti.pred = ∅
subjecti.suc = ∅
subjecti.reg = ∅

2. for each i = 1 to K :

Reg[i].s = Path.pubk0

for each i = 1 to N + 1
R = ACIS.ari

for each r ∈ R
add (r, Reg[r].s) to subjecti.reg
if r ∈ R.mod

Reg[r].s = subjecti.pubkey
3. AddEdges(Path, ACIS, G)

4. for each i = 1 to N
R = ACIS.ari

for each (r, s) ∈ subjecti.reg
if s = Path.pubki

j =delete-pred(i, r)

delete-succ(j, i, r)

if r ∈ R.non-mod

for each su ∈ subjecti.succ
if r ∈ su.reg

delete-succ(i, su.sid, r)

t = delete-pred(su.sid,r)

add-pred(j, r, su.sid)

add-succ(su.sid, r, j)

Figure 4. Algorithm for S-RPF construction

necessary information that we will use for generating con-

trol information for each node. This step initializes each

node’s predecessors (pred), successors (succ) and regions

(reg) which this subject is authorized to access. See Figure

6 for the definitions of pred and succ.

2. - Labeling regions. For each subject in the graph,

this step labels each region that this subject is authorized to

access with the public key of the subject who authored this

region. We use array Regi to store the public key of the

last subject that authored region i and a structure ari that

contains the accessible regions for the ith subject in Path.

3. - Adding edges. The procedure AddEdges, reported

in Figure 5, updates G by inserting edges for each subject

in G, according to Path and ACIS.

4. - Application of the S-RPF rule. If a region object

O is to be received later by the subject subj who authored

it, we remove it from subj’s incoming edges. If subj only

has read access to O later and needs to send O to another

subject subs, then the predecessor which is supposed to send

O back to subj will send O to subs.

Procedure AddEdges (Figure 5) works according to the

following strategy: a subject that has modified a region R

sends it to the first subsequent subject s in Path that can

access (read or modify) it. If s can only read this region,

it forwards the region to all subsequent subjects S in the

4



Procedure AddEdges
Input: Path, ACIS, G
Output: G

1. ACIS = ACIS

AR = ACIS.ar0

for each r ∈ AR
for j = 1 to N + 1

if r ∈ ACIS.arj.mod

add-pred(0, r, j)

add-succ(j, r, 0)

break

if r ∈ ACIS.arj.no-mod

add-pred(0, r, j)

add-succ(j, r, 0)

ACIS.arj.non-mod= ACIS.arj.non-mod \{r}
continue;

2. for each i = 1 to N

AR = ACIS.ari

2.a for each r ∈ AR.mod
for j = i + 1 to N + 1

if r ∈ (ACIS.arj .mod ∪ ACIS.arj .non-mod)

and Path.pubkj �= Path.pubki

add-pred(i, r, j)

add-succ(j, r, i)

break

if r ∈ ACIS.arj .mod and Path.pubkj = Path.pubki

break

if r ∈ ACIS.arj .non-mod and Path.pubkj = Path.pubki

ACIS.arj.non-mod = ACIS.arj.non-mod \{r}
continue;

2.b for each r ∈ AR.non-mod

for j = i + 1 to N + 1

if r ∈ ACIS.arj .mod

add-pred(i, r, j)

add-succ(j, r, i)

break

if r ∈ ACIS.arj .non-mod

add-pred(i, r, j)

add-succ(j, r, i)

ACIS.arj.non-mod = ACIS.arj.non-mod \{r}
continue

Figure 5. Procedure AddEdges

path that can only read R until a subject m is found that can

modify R. Also m will receive from s the region. All sub-

jects in S will not send out R to anyone. Thus the subject

that has generated a region object cannot distribute different

versions of the same region to different subsequent subjects

because they have to receive that region object from another

subject.

The main phases in the procedure AddEdges are as fol-

lowed:

1. - Generating the outgoing regions for DS. This phase

also adds incoming region for subjects in Path. A region

will be received by all the subjects that can only read that

region, following DS and preceding the first subject in Path

that can modify the region. Also this last subject will re-

ceive this region from DS.

2. - Generating the outgoing regions for all subjects.

This phase also adds incoming regions for subjects in Path

and DS. We analyze, in order, for each subject in Path the

following:

2.a - Modifiable regions. A region will be received only

by the first subsequent receiver that can access (read or

modify) the region. As a subject may appear in Path several

times, this receiver must not be the current subject. A re-

gion object O will not appear in the flow if the next receiver

of O is the subject who authored it and the next receiver has

update privilege over it.

2.b - Non-modifiable regions. A region will be received

by all the subjects that can only read that region, following

the current one and preceding the first subject in Path that

can modify the region. Also this last subject will receive

this region from the current subject.

If there is no element p ∈ subjectx.pred such that

p.pid = i, function add-pred(i, r, x) inserts in the set

subjectx.pred an element p where: (1) p.pid = i, (2)

p.sk = k and k is a symmetric key generated by DS (3)

p.reg = 〈t〉 where t is the tuple in subjecti.reg such that

t.r = r. Otherwise it appends t in p.reg.

If there is no element su ∈ subjecti.succ such that

su.sid = x, function add-succ(x, r, i) inserts in the set

subjecti.succ an element su where: (1) su.sid = x, (2)

su.sk = k and k = subjectx.pred.p.sk, (3) su.reg = 〈r〉.
Otherwise it appends r in su.reg.

delete-pred(i, r) function deletes r from p.reg such that

p ∈ subjecti.pred and r ∈ p.reg, and returns an index

p.pid. subjecti will not expect to receive a region r from

its predecessor subjectp.pid. If p.reg = ∅ , then delete p

from subjecti.pred.

delete-succ(j, i, r) function deletes r from su.reg such

that (1) su ∈ subjectj.succ, (2) su.sid = i, (3) r ∈
su.reg. subjectj will not send region r to its succes-

sor subjecti. If su.reg = ∅, then delete su from

subjectj.succ.

So it is possible that different subsets of all non-

modifiable regions are sent to different subjects, and the

same region object can be sent to different receivers by the

same subject. According to the algorithm for the construc-

tion of S-RPF, a given region of the document cannot be

updated by more than one subject at a time.

From above, the S-RPF graph that DS generated has the

following properties:

• If no subject has access rights to a region R, then no

region object O such that O.r = R will appear in the

flow of the S-RPF graph.

• If a region object is modified by a subject subj, then

this region object will not flow out from subj and a

new region object will start at subj.

• A region object may have several copies flowing in the

graph at the same time.

5



• No region object flows back to the subject who au-

thored it.

• If no subject has update rights on a region R, but at

least one subject has access to this region, then a region

object O, such that O.r = R, will start its flow at DS

and its author will be DS.

From above, we can easily derive the following property:

Property 1: The flow of each region object among the

subjects in the update process is acyclic.

Based on this feature, the S-RPF protocol could allow

any static update policy. For example, during the update

process a region can be modified more than once by a sub-

ject, or a region could be updated by a subject, and later on,

read by the subject. Even though the original path may con-

tain cycles among all subjects, based on the algorithm we

presented in this paper, each region object flows among all

subjects in an acylic way.

4.4. Control information

The Control Information (CI) contains, for each subject

in the path, the corresponding incoming package templates

and outgoing package templates. Figure 6 details the struc-

ture of CI.

An incoming package template contains the symmetric

key for the receiver to decrypt an incoming package; it also

includes the sequence of regions the incoming package will

contain, and for each region the public key of the last subject

who authored this region. The goal of an incoming package

template is to help a receiver to verify that the package it

receives is from a specified sender and to verify that the

content of the package is correct up to that point. Different

subjects will receive different incoming templates from DS.

An outgoing package template includes the symmetric key

for the sender to encrypt the package and the sequence of

regions to be sent in this package, so the sender can organize

a package for its successor with the correct content.

After building the S-RPF graph G, it is easy for DS

to generate control information for each subject. DS just

copies G.subjecti.pred and G.subjecti.succ to CIi.pred

and CIi.succ, then sends to each subject its control infor-

mation.

Example 1 Suppose that S5 receives R1, R2, R3, R4 from S1,

S2, S3, and S4, respectively and that R1, R2, R3, R4 are updated

by S1, S2, S3, and S4, respectively (Figure 7). The instructions

from DS to S5 are: to read R1 and send it to DS (no one will

access R1 anymore), to form a new package which consists of

three regions, R2, R3 and R4 and to send it to S6. If Path

=〈pubk0, pubk1, pubk2, pubk3, pubk4, pubk5, pubk6, pubk7〉,
where pubk0 and pubk7 is the public key of DS and pubki is

the public key of Si, then the control information for S5 will be

expressed as following:

CI5 = (5, pred, succ) where

CI = {CI0, CI1, . . . , CIN , CI(N+1)} and

CIi =(i, pred, succ) is the control information generated

for ith subject in Path

pred = {pP1 , . . . , pPi
}: set of incoming package templates

px = (pid, skxi, reg): an incoming template from xth subject in Path, where

1. pid = x and x ∈ {P1, . . . , Pi}
reg = 〈rs1, . . . , rsH(x)〉
rsj = (r, s), j ∈ {1, . . . , H(x)}
r ∈ {1, . . . , K}, s is the public key of the last P-proxy that modified r
pid is the sender’s position generated according to Path

skxi is the symmetric key for encrypting/decrypting the package

sending from subjx to subji , where subjt is the tth subject in Path

2. ∀j, w ∈ {1, . . . , H(x)}: j �= w ⇒ rsj .r �= rsw.r

a region must appear only once in the sequence of regions

from a predecessor.

3. ∀j, q ∈ {1, . . . , P(i)}: j �= q ⇒ skji �= skqi

component pred contains distinct predecessor subjects

4. ∀j, q ∈ {1, . . . , P(i)}, j �= q, x ∈ {1, . . . , H(j)},

y ∈ {1, . . . , H(q)} : pj .rsx.r �= pq.rsy.r

an accessible region must be received only from one predecessor.

succ = {suS1, . . . , suSi}: set of outgoing package templates

suy = (sid, skiy , reg) this is an outgoing template, where

1. sid = y and y ∈ {S1, . . . , Si}
sid is the position of the receiver of this package according

to Path.

skiy is the symmetric key as defined before

reg = 〈r1, . . . , rW (y)〉: sequence of regions sent to

successor who is at the yth position in Path.

rf ∈ {1, . . . , K}, f ∈ {1, . . . , W(y)}
∀j, g ∈ {1, . . . , W(y)}: j �= g ⇒ rj �= rg

A region must appear only once in the sequence of region objects

to be sent to a successor.

2. ∀j, x ∈ {S1, . . . , Si}: j �= x ⇒ suj .skij �= sux.skix

successors are distinct.

Figure 6. Control information specification

• pred = {(1, sk15, < (1, pubk1) >), (2, sk25, <

(2, pubk2) >), (3, sk35, < (3, pubk3) >), (4, sk45, <

(4, pubk4 >)}

• succ = {(7, sk57, < 1 >), (6, sk56, < 2, 3, 4 >)}.

S1 S2 S3 S4

S5 S6

R2

R2,R3,R4

R1

R1 R3
R4

R3 R4R1 R2

DS

Figure 7. Generating control information for

S5

Control information is signed by DS and enciphered with

the recipient’s public key so that only the designated sub-

ject can see the information. The designated subject can

6



verify that the message is from DS. Control information ex-

change could also be performed by opening an SSL session

in which a symmetric session key is generated and used dur-

ing the communication. Thus a secure channel is built be-

tween a subject and DS.

4.5. Subject protocol

During document updates, each subject executes the fol-

lowing steps: (i) it performs integrity check according to in-

coming package templates received from DS; (ii) it executes

operations on the document according to its privileges; (iii)

it forms packages according to outgoing package templates

received from DS, and sends out these packages. We detail

these steps in the following:

1. Upon receiving a package P , the receiver by using the

control information CIi, verifies (1) if there has been

any transmission error; if there is any error, asks the

sender to send the document again; (2) that the pack-

age has been sent by one of its predecessors. Sup-

pose the receiver deciphers P with the symmetric key

k such that k = px.sk and px ∈ CIi.pred. If

P.sid 	= CIi.id, the package is discarded. (3) the in-

tegrity and authorization of each region according to

the incoming package template. For each R in px.reg,

the receiver checks if the region object in the package

starts with a region identifier equal to R.r. If so, the

receiver generates a hash value using one-way hash

function, deciphers the hash in the package with R.s

and checks if these two values are equal. If there is

any error, it asks the sender to recover

2. The receiver performs operations on the document ac-

cording to its privileges. After correctly receiving a

package from each predecessor, the receiver executes

its privileges on the documents. If it has update priv-

ileges on some regions, it updates the regions, calcu-

lates the hash value for each region it updated, and ci-

phers this value with its private key for future autho-

rization checking.

3. The receiver generates the new package(s). For each

su ∈ CIi.succ, the receiver forms an outgoing pack-

age U such that U.sid = su.sid. For each r ∈ su.reg,

fills hash and region object in U . After this, the sub-

ject encrypts U with su.sk and sends it to the sidth

subject. The receiver should also keep a copy for later

recovery.

4.6. Recovery protocol

If a subject receives a package which fails the verifica-

tion, the subject asks the sender to recover the package. If

a receiver cannot get an error-free package according to the

control information twice, it will send both packages it be-

lieves are incorrect to DS and the sender.

DS then first checks if the malicious sender m of the er-

roneous region has only read access to this region. If not,

DS decides to abort the update, because we assume that the

completion of update depends on each subject correctly up-

dating their corresponding regions. If m only has read ac-

cess, DS asks all the receivers who received this region from

m. If any one has a correct version, DS sends this correct

version to all the senders who did not receive a corrected

version from m. If no one has a correct version, DS asks

the subject who authored this region to send DS a copy, DS

then acts in the role of m, checking the integrity and send-

ing to all the receivers to whom m was supposed to send

this region.

5. Analysis and discussions

5.1. Correctness analysis

From Section 4.3, we can conclude that the S-RPF built

by DS enforces flow policies related to an XML document.

If subject Sa updates region R before subject Sb in the flow

policy, the flow of R in the S-RPF built by DS will also have

this order. Moreover if a subject Sc reads region R after Sa

has modified it, then this order is preserved in S-RPF.

Theorem 1 Protocol S-RPF is secure with respect to in-

tegrity.

Proof: We need to prove that a subject m cannot update a

region over which it does not have update privilege. There

are two cases.

(1) m modifies a region object which is not authored by

itself. In this case, integrity is enforced in the protocol by

digital signature. If a region R is modified by a subject i, i

will sign the hash that it calculated from R with its private

key. If a subject j has read privileges on R, j will receive

control information from DS, which contains an incoming

template. The incoming template includes the public key of

i for deciphering the hash. j will calculate the hash of the

region and check the signature. m cannot modify region R

before it reaches j, since m does not know i’s private key.

If m receives two region objects authored by the same

subject i, it cannot switch the information in these two re-

gions. As a region object represented in XML has a region

identifier in its tag.

Thus no subject can modify a region object which has

not been authored by itself.

(2) A subject modifies a region object authored by itself,

even though it does not has update privilege over it later.

This is avoided by the S-RPF rule. Suppose region R1 is

updated by A, then flows to B for read, and then back to

7



A for read (A cannot update R1 this time) and then ends

at C for read. In this case, A could not send to C a region

object which is different from the one it sends to B. In S-

RPF graph, B will send a copy to C instead of A. S-RPF

ensures that C receive the region object that A authored at

the beginning. Thus the integrity of the whole document is

enforced. �

Theorem 2 Protocol S-RPF is secure with respect to confi-

dentiality.

Proof: We need to prove that if a subject not authorized to

access a region, it can not read it. This is enforced by the

use of symmetric keys to encipher/decipher a package that

only designated receiver can see it. When a subject receives

a package, it can use the received control information from

DS to decipher the package. If a subject does not have such

information, it cannot decipher the package. S-RPF gen-

eration ensures that a subject only receives the parts of the

document which it is authorized to access. Thus S-RPF is

secure with respect to confidentiality. �

We now discuss the amount of information which could

be revealed and check if confidentiality and integrity are vi-

olated. With this approach, a receiver could partially know

the access rights of its predecessor(s) or successor(s). In

Example 1, S6 knows that S5 has access rights to at least

R2, R3 and R4. S5 knows that S6 has access rights to at

least R2, R3 and R4. Other than that, no other information

can be derived. This will not violate confidentiality and in-

tegrity as defined previously, because these definitions con-

centrate on the contents of a document.

5.2. Complexity analysis

We now analyze the complexity with respect to temporal

complexity and communication complexity. The latter is

evaluated in terms of number of exchanged messages. We

also compare our approach against a centralized approach.

In particular, under a centralized approach, DS sends

each subject in Path a package containing only the contents

of a document to which the subject has access privileges.

After executing operations on it, the subject sends back to

DS only the parts that it has updated. When DS correctly re-

ceives it, that is, there are no transmission errors, DS sends

another package to the next subject in Path. Otherwise, DS

sends the subject the package again and asks for recovery.

A centralized system accomplishes the same function as our

protocol. It also uses symmetric key to allow DS securely

communicate with each subject. However, in a centralized

approach, no hash function is needed and subjects do not

need to sign the region objects they authored, since DS com-

municates with each subject securely and knows each sub-

ject’s access control information structure.

There are two types of errors that require a recovery.

They are as following:

1. Subject-will-recover error: This includes transmission

errors, and any other errors occuring in a centralized

approach that require DS to ask a subject recovery.

2. Malicious-subject-intentional error: A malicious sub-

ject illegally modifies a region object and refuses to

send the correct version to a receiver.

Only the first type of errors can happen in the centralized

approach. In S-RPF, DS is needed for the second type error

recovery.

In the following analysis, all communications before the

start of the updates are ignored. As in a centralized sys-

tem, DS also needs to communicate with all subjects to set

up secure communication channels before starting the up-

date process. In order to simplify our analysis, we will not

consider the size of hash value in a package.

We compare the following cases for communication

cost:

1. No recovery:

In this case, the total number of packages PK and total

size of messages M are as following:

• for the centralized approach

– PK = 2N

– M =
∑i=N

i=1 Ai +
∑i=N

i=1 Ui

• for S-RPF protocol

– PK =
∑i=N

i=1 Prsi
+ PrDS

– M =
∑i=N

i=1 Ai + u

Where:

N is the number of elements in the path, not including

DS;

Ai is the size of the package that DS sends to subjecti
in centralized approach;

Ui is the size of the package subjecti sends back to

DS. This package only contains updated regions

by subjecti.

Pri is the number of predecessors of subjecti in S-

RPF graph.

u is the sum of the size of packages DS received in

S-RPF graph. (u ≤
∑i=N

i=1 Ui)

2. Recovery:

If the recovery has to be executed because of the first

type of error, the extra packages caused by the recovery

in the centralized system is equal to that in S-RPF. As

in S-RPF, a receiver will act the same as DS in the

centralized system, asking the sender to recover.

8



If the recovery has to be executed because of the sec-

ond type of error, S-RPF will incur extra cost which

will not appear in the centralized approach. In this

case, DS in S-RPF may need to ask up to N − 2 sub-

jects for a correct version.

From above, we can see that when all subjects are co-

operative and a region is updated often (for example, Case

B in Figure 8), S-RPF reduces the number of packages (in

case B, only N + 1 packages) and the total size of mes-

sages (in case B,
∑i=N

i=1 Ai + UN ). However, S-RPF could

also possible generate O(N2) packages. The total num-

ber of packages in S-RPF is equal to the number of edges

in S-RPF graph. In congested networks and uncooperative

systems, S-RPF may not perform better than the centralized

approach.

S NS

NS1S

DS

DSDS

1 2 NSS S

1

Case DCase B

Case C

Case A

DS 2S

S

DS

DS

N
DS

DS

2+N/2S1+N/2S

1S 2S N/2S

Figure 8. Case study for the total time to com-

plete the update

Next, we analyze the efficiency of the protocol by com-

paring the time needed to complete the update. The pa-

rameters we used in analysis are listed in Table 1. The

total time needed to complete the update is formulated as

T ≤
∑i=7

i=1 Ti.

1. No recovery. We can easily estimate the time for the

centralized system. For the S-RPF, the time varies. We

study the cases in Figure 8 which represent a high-

level parallel updates (Case A and Case C) and low-

level parallel updates (Case B). Table 2 reports the time

complexity.

From Table 2, we can see that when N > 1 the S-RPF

for Case B takes more time than Case C:

TB − TC = (N − 1)(h + U)

Also, Case B takes more time than Case A:

TB − TA =
(N − 2)(D + E + H + 2h + 2U)

2

The best time for S-RPF to complete the update is hard

to find. For example, TC − TA = (N−2)(D+E+H)
2 −

Table 1. Notations for efficiency analysis

DS

T1 Total time for deciphering and enciphering packages

T2 Total time for calculating hash values and encrypting them

T3 Total time for integrity check of received packages

Subjects

T4 Total time for deciphering and enciphering packages

T5 Total time for integrity checking

T6 Total time for executing operations (read, update)

T7 Total time for calculating hash values and encrypting them

N Number of subjects in the path, not including DS

E Average time for enciphering a package

D Average time for deciphering a package

H Average time for checking integrity of regions in a received

package

U Average time for a subject in Path executing opera-

tions(read/update)

h Average time for a subject or DS in Path calculating the hash

values for the region objects that it authored and encrypting them

(h+U). If the average time for an object executing op-

eration takes longer time than the time of
N(D+E+H)

2 ,

then Case C is better than Case A. If N is large and the

average time for a subject finishing operations is fast,

then Case A can be better than Case C.

The worst case for S-RPF is when DS sends a pack-

age to each subject and each subject sends a package

to everyone following it (Case D). However, the time

to complete the update is far less than
∑i=7

i=1 Ti in Ta-

ble 2. As S1 is deciphering the package and executing

integrity checking, all other subjects following it will

also check integrity of the packages they received from

DS. So the worst time of the S-PRF is

T ≤
E × N2 + 3N × E

2
+(N+1)(D+h+H)+N×U

The time difference between the centralized approach

with the S-RPF Case B is N(D +E −h−H)− (D +
E + H + h). Since D ≈ E and h ≈ H in Case B, it

can be simplified as N(2D − 2H) − 2D − 2H . This

means that, if deciphering a package takes similar time

as integrity checking a package, then the centralized

approach has similar time as S-RPF case B.

Next we compare a centralized approach with S-RPF

Case A, where subjects can execute parallel operations

on the document. Since normally D ≈ E and h ≤ H :

3N ×D + N ×U ≥
N × H

2
+ 4D + 3h + 2U + 2H

=⇒ U ≥
H

2
− 3D +

6H − 2D

N − 2

Under the situation that D ≥ 2H
N−2 , when the average

time for a subject executing operation is longer than

half time of integrity checking, then S-RPF in this case

9



Table 2. Time analysis in the case of no recovery
Centralized S-RPF (Fig 8)

approach Case A Case B Case C Case D

T1 N × (D + E)
N×(D+E)

2
D + E N × (D + E) N × (D + E)

T2 0 h h h h

T3 0 N×H

2
H N × H N × H

T4 N × (D + E) 2(D + E) N × (D + E) D + E
N×(1+N)(D+E)

2

T5 0 2H N × H H
N×(N+1)H

2

T6 N × U 2U N × U U N × U

T7 0 2h N × h h N × h

requires less time to complete update than the central-

ized approach.

2. Recovery: If a recovery has to be executed because of

the first type of error, for the centralized system, the

extra time is 2D + 2E; for n recoveries, the extra time

increases linearly, that is, n(2E + 2D). For the S-RPF

protocol, the extra time varies. It depends on the S-

RPF graph computed by DS and the location of the

recovery. It may even not increase the total time due to

the parallel operations among all participants.

If the recovery has to be executed because of the sec-

ond type of error, no extra time is required for the cen-

tralized approach. For S-RPF, the additional incurred

time varies. If the number of subjects involved in the

recovery is very small, then the overall completion

time may not increase. If many subjects are involved in

the recovery, the extra time may increase substantially.

Since encipher and decipher operations can be very fast,

while human interactions are in most cases involved in the

update, S-RPF can complete the update faster than central-

ized approach if subjects are cooperative. When more sub-

jects are involved, even if U ≤ H , S-RPF could be still

more efficient than centralized systems.

6. Conclusion and future work

In this paper, we have proposed a protocol for distributed

document update in cooperative systems.The protocol en-

forces both flow and security policies of a document and

simultaneous updates on different parts of a document can

be executed. In a cooperative system, when several sub-

jects update a large document, S-RPF can reduce the time

to complete the update, especially when human beings are

involved in update process. If the recovery is not due to ma-

licious subjects, the frequency of recovery to be executed

by DS is low. However, if a malicious subject is detected,

the recovery can be expensive.

Flow policies and access control policies can be static

or dynamic. Subjects involved in static flow policies will

not change and their order of receiving a document is pre-

fixed. In static access control policies, each subject’s privi-

lege over a document will not change during the update pro-

cess. By contrast, in dynamic flow policies, a subject may

join in or drop out of during the update. The privilege of

a subject over a document may also change. This protocol

applies to static flow and access control policies. It can also

be extended to certain dynamic security policies; however,

due to space limits, we do not detail such extensions here.

Future work includes to test our protocol’s performance in

real systems.

References

[1] E. Bertino, E. Ferrari and G. Mella, “An Approach

to Cooperative Updates of XML Documents in Dis-

tributed Systems”, Technical Report, DICO, University

of Milano, Italy, 2003.
[2] E. Bertino, G. Correndo, E. Ferrari and G. Mella, “An

Infrastructure for Managing Secure Update Operations

on XML Data”, in SACMAT’03, Como, Italy, 2003.
[3] E. Bertino, E. Ferrari and G. Mella, “An XML-based

Approach to Document Flow Verification”, in Proceed-

ings of 7th International Conference on Information Se-

curity(ISC04), Palo Alto, CA, USA, 2004.
[4] C. Pollmann. The XML Security Page. Avail-

able at http://www.nue.et-inf.uni-siegen.de/ geuer-

pollmann/xml security.html.
[5] W. Fan, C. Chan and M. Garofalakis, “Secure XML

Querying with Security Views”, in SIGMOD 2004,

Paris, France, 2004.
[6] G. Miklau and D. Suciu, “Controlling Access to Pub-

lished Data Using Cryptography”, in Proceedings of the

29th VLDB Conference, Berlin, Germany, 2003.
[7] B. Thuraisingham, A. Gupta, E. Bertino and E. Fer-

rari, “Collaborative Commerce and Knowledge Man-

agement”, in Knowledge and Process Management,

9(1):43-53(2002).
[8] Extensible Markup Language (XML). Available at:

http://www.w3.org/XML/.
[9] W3C XML Schema. Available at:

http://www.w3.org/XML/Schema.

10


