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red

blueFigure 1: Example of a mathing of red and blue retangles with monotone paths.It has been studied in both the sequential and parallel settings and using vari-ous metris. The retilinear version of the problem, whih assumes that eah of apath's onstituent segments is parallel to a oordinate axis, is motivated by appli-ations in areas suh as VLSI wire layout, iruit design, plant and faility layout,urban transportation, and robot motion. There are many eÆient sequential algo-rithms that ompute various shortest retilinear paths avoiding di�erent lasses ofobstales,11;12;13;14;15;17;18;19;21;24;25;27;28;29;38;39;40;41 and some parallel algorithmsas well.4;5In this paper, we present eÆient algorithms for the problems of mathing redand blue disjoint geometri obstales in the plane and onneting the mathed ob-stale pairs with mutually noninterseting paths that have ertain useful geometriproperties. The �rst problem we onsider has the following input: n of the given2n pairwise disjoint retilinear retangles are olored red (think of them as souresof something, e.g., eletri power in a VLSI iruit), and the other n are oloredblue (think of them as onsumers of power). By retilinear objets, we mean thateah edge of suh an objet is parallel to a oordinate axis. We are interested inmathing eah red retangle with one and only one blue retangle, and vie versa.Spei�ally, we would like to �nd suh a mathing and onnet eah mathed pairof red/blue retangles with a planar retilinear path in suh a way that (i) eahpath is monotone with respet to a oordinate axis, (ii) eah path does not touhany retangle other than the mathed pair that it is supposed to onnet, (iii) notwo suh paths interset eah other, and (iv) eah path onsists of O(n) segments.Figure 1 shows an example of suh a mathing.Several geometri algorithms have been developed for solving various problemsof �nding obstale-avoiding pairwise disjoint paths that onnet ertain geometriobjets,26;32;36 beause of their relevane to VLSI layout appliations16;26;35 (e.g.,VLSI single-layer routing). Lee et al.26 designed an O((k2!)n logn) time algorithmfor omputing k shortest non-rossing retilinear paths in a plane region. Taka-hashi, Suzuki, and Nishizeki36 studied the problem of �nding shortest non-rossingretilinear paths in a plane region that is bounded by an outer box and an innerbox and that ontains a set of disjoint retilinear retangle obstales, giving anO(n logn) time algorithm for omputing k suh paths whose endpoints are all onthe two bounding boxes (with k � n). Papadopoulou32 obtained an O(n+ k) timealgorithm for omputing k shortest non-rossing paths in a simple polygon whose



endpoints are all on the polygon boundary. However, these problems are di�erentfrom the one we study here sine they often assume that a spei�ation on whih ob-jet mathes with whih other objet is already given (hene, these problems requireonly to ompute a set of non-rossing paths that realize the spei�ed mathing).We develop an O(n logn) time, O(n) spae algorithm that produes a desiredmathing for red/blue retilinear retangles. If an expliit printing of all the n pathsfor suh a mathing is required, then our algorithm takes O(n logn+ �) time andO(n) spae, where � is the total size of the desired output.We then extend these mathing algorithms to a more general geometri settingwhih onsists of disjoint red/blue polygonal obstales that are all monotone withrespet to a oordinate axis (say, the y-axis). The mathing paths that we om-pute for this more general setting have similar strutures to those for retilinearretangles, exept that in this ase their monotoniity has to be weaker: Eah suhmathing path an be partitioned into at most two subpaths, eah of whih is mono-tone to the y-axis. Our mathing algorithms for y-monotone polygonal obstaleshave the same omplexity bounds as those for retilinear retangles.We also prove that all the mathing problems studied in this paper have an
(n logn) lower bound in the algebrai omputation tree model.8 Our mathingalgorithms are based on a numbering sheme for ertain geometri objets and onseveral useful geometri observations. This numbering sheme also �nds applia-tions to other problems.7Our algorithms an also be viewed as proofs that suh mathings always exist,a fat that, to the best of our knowledge, was not previously established. Weshould point out that without the requirement that all mathing paths must satisfya monotoniity onstraint, the existene of noninterseting paths for any red/bluedisjoint polygonal obstale mathing is trivial to prove: For every mathed pair ofgeometri objets in turn, draw a diret retilinear path P between them, ignoringall previously drawn paths and obstales; at eah plae where path P intersetsa previously drawn path or an obstale, \deform" P so that P goes around thatpreviously drawn path or the obstale.Setion 2 gives some preliminary de�nitions, Setion 3 presents one of the in-gredients needed by the mathing algorithms for retilinear retangles, Setion 4desribes the data strutures that our mathing algorithms will use, Setion 5 givesthe algorithm for omputing a desired mathing for retilinear retangles, Setion6 extends this algorithm to also produing the n atual monotone paths that linkthe mathed retangle pairs, Setion 7 generalizes these algorithms to mathingy-monotone polygonal obstales, Setion 8 proves 
(n logn) lower bounds for themathing problems we onsider, and Setion 9 makes further remarks on severalonsequenes and possible extensions of this work.2. PreliminariesA geometri objet in the plane is retilinear if eah of its onstituent boundarysegments is parallel to either the x-axis or the y-axis. Without loss of generality(WLOG), we assume that no two boundary edges of the input obstales are ollinear.



We use R = fR1, R2, : : : ; R2ng to denote the set of 2n input retilinear retangles.Unless otherwise spei�ed, all geometri objets in the rest of this paper (e.g.,paths, rays, lines, polygons, obstales, et) are assumed to be retilinear in theplane.A path is a ontiguous sequene of line segments suh that every two onseutivesegments in the sequene are onneted at a ommon endpoint. The number of linesegments (e.g., edges) in a path P is alled the size of P , denoted by jP j, and thelength of P is the sum of the distanes of its edges in a ertain metri. A path issaid to be monotone with respet to the x-axis (resp., y-axis) if its intersetion withevery vertial (resp., horizontal) line is either empty or a ontiguous portion of thatline. A path is said to be monotone if it is monotone to the x-axis or to the y-axis.A retilinear path is xy-monotone or onvex if it is monotone to both the x-axisand the y-axis. In general, an xy-monotone (retilinear) path has the shape of astairase, and in fat we shall heneforth use the word \stairase" as a shorthand for\xy-monotone path". Stairases an be either inreasing or dereasing, dependingon whether they go up or down as we move along them from left to right. A stairaseis unbounded if it starts and ends with a semi-in�nite segment, i.e., a segment thatextends to in�nity on one end. A stairase is said to be lear if it does not intersetthe interior of any input obstale.A polygon G is said to be monotone to the x-axis (resp., y-axis) if its intersetionwith any vertial (resp., horizontal) line L is either empty or a ontiguous segmenton L; the boundary of suh a monotone polygon G an be partitioned into twopaths eah of whih is monotone to the x-axis (resp., y-axis). In fat, the notionof monotoniity of a polygon or a path is in general with respet to an arbitraryline.34 Note that it is possible to �nd out in linear time whether there is a line (in anarbitrary diretion) to whih all polygons in a polygon set are monotone, by usingPreparata and Supowit's monotoniity test algorithm.34A point p in the plane is spei�ed by its x-oordinate x(p) and y-oordinatey(p). A point p is stritly below (resp., to the left of) a point q if x(p) = x(q) andy(p) < y(q) (resp., y(p) = y(q) and x(p) < x(q)); we an equivalently say that q isstritly above (resp., to the right of) p. A retangle r is below (resp., to the left of)an unbounded stairase S if no point of r is stritly above (resp., to the right of) apoint of S; we an equivalently say that S is above (resp., to the right of) r.Let Z be a set of points in the plane. We say that a point p 2 Z is north-eastdominated by another point q 2 Z if p 6= q, x(p) � x(q), and y(p) � y(q). A pointp 2 Z is a north-east maximal element of Z if there is no other point q 2 Z suh thatp is north-east dominated by q. (See Ref. [33℄ for more disussions on the dominationrelations and maximal elements of a point set.) We denote the set of all north-eastmaximal elements of Z by MaxNE(Z) (see Figure 2). Suppose that the pointsin MaxNE(Z) are fp1; p2; : : : ; prg, ordered by their x-oordinates inreasingly. Wede�ne the north-east domination hain DCNE(Z) of Z as follows: Shoot a leftwardshorizontal ray and a downwards vertial ray from every point pi 2 MaxNE(Z);DCNE(Z) is obtained by going left-to-right, starting at the leftwards ray of p1, tothe downwards ray of p1, until meeting the intersetion between the downwards ray
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Figure 2: The north-east maximal elements (the un�lled irles) and dominationhain DCNE(Z) of a point set Z.of p1 and the leftwards ray of p2, then ontinuing on the leftwards ray of p2, : : :,and �nally ending at the downwards ray of pr (see Figure 2). The sets of north-west, south-east, and south-westmaximal elements of Z,MaxNW (Z),MaxSE(Z), andMaxSW (Z), and their domination hains, DCNW (Z), DCSE(Z), and DCSW (Z), arede�ned in a similar way, respetively.Observe that for any setX of retilinear geometri objets, the maximal elementsof X of eah of the four types are all at the verties of the objets in X .We need some onepts related to the retilinear onvex hull of retilinear ge-ometri objets in the plane. The reader is referred to Ref. [30℄ for a study ofretilinear onvex hulls of planar geometri objets. Reall that the retilinear on-vex hull of a set of retilinear objets in the plane, if it exists, is the smallest-arearetilinear xy-monotone (i.e., onvex) polygon that ontains all objets in the set.30However, it is possible that suh a onvex hull (i.e., a single polygon) does not existfor ertain olletions of retilinear geometri objets beause the objets may beontained in multiple pairwise disjoint smallest-area retilinear onvex polygons (inthis ase, they form either an \inreasing" sequene or a \dereasing" sequene ofsuh onvex polygons that are pairwise separable by a vertial line and also by a hor-izontal line). Note that although suh smallest-area retilinear onvex polygons arenot onneted with eah other, as a olletion they still satisfy the xy-monotoniityondition: The intersetion of any vertial (resp., horizontal) line L with all onvexpolygons in the olletion is either empty or a ontiguous portion on L. See Figure3(a) for an example.We de�ne a useful struture whih an be viewed as a generalization of theretilinear onvex hull. For a set X of retilinear geometri objets in the plane, wede�ne the onneted smallest-area onvex enlosing region of X , denoted by CR(X)(for onvex region for short), as follows. CR(X) is a onneted onvex region thatontains X and has the smallest possible area. If the retilinear onvex hull CH(X)of X exists, then CR(X) = CH(X). Otherwise, let (P1, P2, : : : ; Pm) be the (say)left-to-right inreasing sequene of pairwise disjoint smallest-area retilinear onvexpolygons that together ontain all objets of X ; we form CR(X) by onneting theonvex polygons P1, P2, : : : ; Pm by two inreasing stairase hains, whih we de�nearefully in the next paragraph.Consider the two domination hains DCNW (X) and DCSE(X) of X . (Reall



P3

P2P1

P3

P2P1

2box

1box

NW(X) NW(X)

SE(X) SE(X)

(b)(a)

DC

DC

DC

DC

UP

UPFigure 3: (a) The two hains DCNW (X) and DCSE(X), and (b) the onnetedsmallest-area onvex enlosing region CRUP (X) of an objet set X .that (P1, P2, : : : ; Pm) is assumed to be a left-to-right inreasing sequene; for thease when the sequene (P1, P2, : : : ; Pm) is dereasing, we will instead use theother two domination hains DCNE(X) and DCSW (X) of X .) First, ut away fromDCNW (X) and DCSE(X) eah of their starting and ending semi-in�nite segmentsat a vertex of X . Note that the two modi�ed domination hains of X thus obtainedinterset eah other at exatly 2m � 2 points (see Figure 3(a)). Consider the re-gion Reg(X) that is enlosed together by the following four stairase hains: thosetwo modi�ed domination hains of X , DCSW (P1), and DCNE(Pm). Observe thatReg(X) is a onneted onvex region ontaining X , and every two polygons Pi andPi+1, i = 1, 2, : : :, m � 1, are onneted by a box boxi that is enlosed by twosubhains of DCNW (X) and DCSE(X) and their intersetions (see Figure 3(a) forexamples). However, the area of Reg(X), area(Reg(X)), is not as small as possiblesine area(boxi) > 0 and boxi \ X = �. To minimize the area of Reg(X) whilemaintaining its onnetivity, onvexity, and ontainment ofX , we remove every boxiand onnet Pi and Pi+1 by an inreasing stairase hain whih goes from the lower-left vertex of boxi to the upper-right vertex of boxi. (One may view that the twomodi�ed domination hains DCNW (X) and DCSE(X) of X are further modi�ed byshrinking every boxi into suh a stairase hain, on whih the resulted DCNW (X)and DCSE(X) overlap with eah other.) There are of ourse in�nitely many suhstairase hains for eah boxi, but we are often partiularly interested in two suhstairase hains: one along the left and upper edges of boxi (denoted by UP (boxi)),and the other along the lower and right edges of boxi (denoted by LO(boxi)). Morepreisely, we often hoose to further modify DCNW (X) and DCSE(X) by replaingall boxi's by UP (boxi)'s (or all by LO(boxi)'s), and denote the resulted hains byDCUPNW (X) and DCUPSE (X) (or DCLONW (X) and DCLOSE(X)). Note that DCUPNW (X)(resp., DCUPSE (X)) is the \leftmost" stairase hain that boundsX from above (resp.,below) in the sense that no stairase hain that bounds X from above (resp., below)an ontain a point that is stritly to the left of DCUPNW (X) (resp., DCUPSE (X)).In general, we let CR(X) be the onneted onvex region that ontains X and



is enlosed together by four stairase hains; these four stairase hains inludethe two domination hains DCNW (X) and DCSE(X) of X further modi�ed byshrinking every boxi into a ertain stairase hain, and inlude DCSW (P1) andDCNE(Pm). Suh a region CR(X) is learly of the smallest possible area (due tothe onvexity of the two modi�ed hains DCNW (X) and DCSE(X)). In partiular,the region enlosed by the following four stairase hains, DCUPNW (X) and DCUPSE (X)(resp., DCLONW (X) and DCLOSE(X)), as well as DCSW (P1) and DCNE(Pm), is suh aonneted onvex enlosing region of X , denoted by CRUP (X) (resp., CRLO(X)).See Figure 3(b) for an example.Observe that as for any retilinear onvex polygon, the boundary of every regionCR(X) an be partitioned into at most four stairase hains (two inreasing hainsand two dereasing hains). Further, every suh stairase hain onsists of O(K)segments, where K is the number of verties of the objets in X .3. Partitioning Retilinear Retangles with a StairaseGiven a set R = fR1, R2, : : : ; R2ng of 2n pairwise disjoint retilinear retanglesin the plane and an integer k with 1 � k < 2n, we present in this setion analgorithm for partitioning the set R into two subsets of respetive sizes k and 2n�k,suh that the two resulted subsets are separated by an inreasing stairase. Thisalgorithm runs in O(n logn) time, or in O(minfk; 2n� kg) time if R is given in asuitably preproessed form. The algorithm an also be implemented optimally inparallel (see Setion 9 on this). A key idea of this partition algorithm is a usefulnumbering sheme for ertain geometri objets, whih also �nds appliations toother problems.7Not only is the result of this setion needed as a key ingredient to the algorithmsfor mathing retilinear retangles given later, but it also implies simpler algorithmsfor a number of unrelated divide-and-onquer sequential and parallel algorithms forvarious retilinear shortest path problems among disjoint retangles, in whih suha stairase is needed for bipartitioning the problem before reursively solving thetwo subproblems de�ned by the stairase.4;5;11;293.1. The PreproessingWe begin by desribing our O(n logn) time preproessing. The �rst step of thepreproessing algorithm omputes a horizontal trapezoidal deomposition of R,33in O(n logn) time. Suh a horizontal deomposition onsists of extending leftwardsall horizontal edges of the retangles in R, stopping eah extension whenever it hitsanother retangular obstale of R. This gives, among other things, the followingParent information (atually, it gives more than what follows, but we only needwhat follows): For eah retangle Ri of R, Parent(i) is the �rst retangle Rj ofR enountered by shooting a leftwards-moving horizontal ray from the bottom-leftorner of Ri (see Figure 4). If no suh retangle Rj of R exists for Ri, then theray goes leftwards to in�nity, a fat that we denote by saying that Parent(i) isempty. Note that the retangles in R and their Parent information together de-
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Figure 4: Illustrating the tree T of the retangles in R.�ne a forest of these retangles. The trapezoidal deomposition algorithm33 alsoprodues a sorted list of eah subset of retangles having the same Parent (inlud-ing the \empty" parent). Every retangle Rj maintains an adjaeny list of allthe retangles whose Parent is Rj , sorted by the dereasing y-oordinates of theirleftwards-moving horizontal rays. For example, the sorted adjaeny list of R4 inFigure 4 is fR5; R6g.The seond step of the preproessing algorithm is now given. To simplify thepresentation, we assume that we have added to the given olletion R of inputretangles an extra \dummy" retangle R0 whih is to the left of all other retanglesin R suh that the horizontal projetion of R0 on the y-axis properly ontains thehorizontal projetions of all other retangles of R (see Figure 4). This amounts toreplaing every empty Parent(i) by R0, e�etively making R0 the root of a treeeah of whose nodes orresponds to exatly one retangle in R. We use T to denotethis tree. Figure 4 shows an example of suh a tree T . The preproessing algorithmthen omputes the preorder numbers of the nodes of T in O(n) time,1 and re-labelsthe retangles of R (whih are the nodes of T ) so that retangle Ri now denotesthe one whose preorder number in T is i. The preorder numbers of T start from0. Hene the dummy retangle, the root, retains the name R0. This ompletes thedesription of the preproessing.This preproessing algorithm learly takes altogether O(n logn) time and O(n)spae. In the rest of this setion, we assume that the retangles of R have beenre-labeled as explained above.3.2. The Stairase Separator TheoremFor every point p in the plane that is to the right of the root retangle R0 and isnot in the interior of any obstale, we de�ne a path Q(p) from p to R0, as follows:Q(p) starts at p and follows the leftwards-moving horizontal ray r(p)from p; if the ray r(p) �rst hits a retangle Ri 6= R0, then Q(p) goesdownwards along the boundary of Ri to its bottom-right vertex and thenleftwards to its bottom-left vertex, from whih Q(p) ontinues as it didat p, until it reahes R0.Note that for every suh point p, the path Q(p) is uniquely de�ned, and in fat is
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R0Figure 5: An example of the paths Q(p) and Q(q).always an inreasing obstale-avoiding stairase hain. Also, note that every vertialsegment of Q(p) is ompletely on the right edge of a retangle and the lower vertexof suh a vertial segment is at the bottom-right vertex of that retangle. Hene, itis not possible for any obstale-avoiding path to ross Q(p) at an interior point ofa vertial segment of Q(p). Figure 5 gives an example of suh paths.The following lemmas are useful to proving the theorem on stairase separators.Lemma 1 Let p and q be two points in the plane suh that they both are to theright of R0, and x(p) � x(q). If p is below (resp., above) some point of Q(q), thenno point of Q(p) is stritly above (resp., below) any point of Q(q) (Figure 5).Proof. Beause x(p) � x(q) and beause both Q(p) and Q(q) are planar pathsthat are inreasing obstale-avoiding stairases, assuming that p is below Q(q) and apoint of Q(p) is stritly aboveQ(q) implies that Q(p) andQ(q) must ross eah otherat a ertain plae. Further, suh a rossing an our only when a horizontal segmentsh (say, from Q(p)) and a vertial segment sv (say, from Q(q)) ross eah other. Butif the horizontal segment sh rosses the vertial segment sv , then beause sh annotinterset the interior of the retangle whose right edge ontains sv, Q(q) must joininto Q(p) starting from the intersetion of sh and sv. Hene the intersetion of shand sv would not be a real rossing between Q(p) and Q(q), a ontradition. Thease in whih p is above Q(q) is proved similarly. 2Lemma 2 Let p and q be two points in the plane suh that they both are to theright of R0 and that x(p) � x(q). Let u (resp., v) be the bottom-left vertex of aretangle Ra (resp., Rb), suh that u (resp., v) is on Q(p) (resp., Q(q)) but not onQ(q) (resp., Q(p)). If p is stritly below (resp., above) some point of Q(q), thenthe preorder number of Ra in the tree T of retangles is larger (resp., smaller) thanthat of Rb, i.e., a > b (resp., a < b).Proof. This follows from Lemma 1 and from the de�nition of the tree T . Anexample illustrating the lemma is given in Figure 5. 2Reall that for any set R0 of disjoint retilinear retangles in the plane, we useCR(R0) to denote a onneted smallest-area onvex region that ontains R0, andCR(R0) = CH(R0) whenever the onvex hull CH(R0) of R0 exists. Further, when R0is ontained by (say) an inreasing sequene (P1, P2, : : : ; Pm) of multiple pairwisedisjoint smallest-area retilinear onvex polygons, CRUP (R0) (resp., CRLO(R0)) is



the onvex region de�ned by the four stairase hains DCUPNW (R0), DCUPSE (R0) (resp.,DCLONW (R0), DCLOSE(R0)), DCSW (P1), and DCNE(Pm).We are now ready to present the stairase separator theorem.Theorem 1 (Stairase Separator Theorem) Given a preproessed set R of 2ndisjoint retilinear retangles, the subsets fR1, R2, : : : ; Rkg and fRk+1, Rk+2, : : : ;R2ng, for any integer k with 1 � k < 2n, form a partition of the set R that hasthe desired property, that is, there exists a retangle-avoiding inreasing stairase ofsize O(n) that separates these two subsets. Furthermore, suh a stairase separatoran be omputed in O(minfk; 2n� kg) time.Proof. Let R(a; b) denote the subset fRa, Ra+1, : : : ; Rbg of R. WLOG, we assumethat any set R(a; b) whih we onsider in this proof is ontained by an inreasingsequene of one or more pairwise disjoint smallest-area retilinear onvex polygons(the ase involving dereasing sequenes of suh onvex polygons is symmetri).For the existene of suh a stairase separator, we �rst show that for any twointegers i and j with 1 � i < j � n, the following holds: (1) CRUP (R(1; i)) doesnot interset Rj , and (2) CRLO(R(j; 2n)) does not interset Ri. We only give theproof for (1), that for (2) being similar. We prove (1) by ontradition: Suppose tothe ontrary that for some j > i, Rj intersets CRUP (R(1; i)). We onsider the twopossible ases below.1. CRUP (R(1; i)) = CH(R(1; i)). This ase onsists of two subases. That is,one of the following two possibilities must hold:(1.a) CH(R(1; i)) ontains some point p on the bottom edge of Rj (it ispossible that CH(R(1; i)) ontains Rj ompletely). Note that there anbe no retangles Rs and Rl of R suh that s � i < l and the leftwards-moving horizontal ray from the bottom-left vertex of Rs �rst hits Rl(otherwise, this would make Rl the parent of Rs, ontraditing the fatthat Rl has a larger preorder number than Rs in the tree T ). Sine thepoint p of Rj is inside CH(R(1; i)), there must be a retangle Rs suhthat s � i < j and the bottom edge of Rs ontains a point q that satis�esboth x(p) � x(q) and y(p) > y(q) (see Figure 6(a)). But then the pathQ(p) (resp., Q(q)) ontains the bottom-left vertex of Rj (resp., Rs) andby Lemma 2, the preorder number of Rj in T is smaller than that of Rs,a ontradition.(1.b) CH(R(1; i)) ontains some point of Rj but the bottom edge of Rj isompletely outside CH(R(1; i)). Then Rj must interset the lower hullof CH(R(1; i)) (see Figure 6(b)). Again there an be no retangles Rsand Rl of R suh that s � i < l and the leftwards-moving horizontalray from the bottom-left vertex of Rs �rst hits Rl. But then, theremust be a point q on the bottom edge of a ertain retangle Rs of Rsuh that s � i < j and for some point p on the bottom edge of Rj ,x(p) � x(q) and y(p) > y(q) both hold (Figure 6(b)). Again by Lemma2, this implies that the preorder number of Rj in T is smaller than thatof Rs, a ontradition.
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Figure 6: Illustrating the proof of the stairase separator theorem.2. CRUP (R(1; i)) 6= CH(R(1; i)). This ase also onsists of several subases.Let (P1, P2, : : : ; Pm) be the inreasing sequene of m > 1 pairwise disjointsmallest-area retilinear onvex polygons that together ontain R(1; i). If Rjintersets any onvex polygon Ph in the sequene, then the proof is similarto Subases (1.a) and (1.b), a ontradition. Suppose that Rj intersets avertial (resp., horizontal) segment e on the boundary of CRUP (R(1; i)) bute is not on the boundary of any polygon Ph. Then the situation is similar tothe one in Figure 6(a) (resp., Figure 6(b)), and it implies that the preordernumber of Rj in T is smaller than that of a ertain retangle Rs of R withs � i < j, a ontradition.We an now let suh a desired stairase separator S for the subsets R(1; k) andR(k + 1; 2n) onsist of (say) the portion of the boundary of CRUP (R(1; k)) fromits rightmost edge lokwise to its lowest edge (i.e., DCUPSE (R(1; k))), augmentedby two semi-in�nite segments, one extended leftwards horizontally from its lowestedge and the other extended upwards vertially from its rightmost edge. By usingthe same arguments as above, we an show that for every j with k < j � n, thestairase separator S is above or to the left of Rj . Hene S so onstruted is anobstale-avoiding inreasing stairase and onsists of O(k) segments.Perhaps we should point out that in general, the stairase separator S that weobtained above is not equal to any path Q(p) or its relatives. Although they areboth stairase hains, it is usually not possible to obtain S from a single path Q(p)or a variation of Q(p) (see Figure 2(b) for an example).WLOG, assume k = minfk; 2n � kg. We now show how to ompute suh astairase separator S in O(k) time. In fat, we will ompute CRUP (R(1; k)), whihis a little more than the above stairase S, in O(k) time. Note that the boundaryof CRUP (R(1; k)) an be obtained from four stairase paths, eah of whih an beeasily onstruted from an ordered sequene of the maximal elements of one of thefour types (as de�ned in Setion 2) for the 4k retangle verties of R(1; k). WLOG,we only show the proedure for omputing one suh sequene of maximal elements.Our proedure is based on a simple divide-and-onquer strategy. First, partitionthe set R(1; k) into two subsets R(1; k=2) and R(k=2; k) (WLOG, assume k is aneven integer greater than 1). Then, reursively ompute the sequene of maximalelements for eah suh subset, represented by a balaned searh tree, suh as a



2-3 tree.1 Finally, ompute the sequene of maximal elements for the verties ofR(1; k) from the two sequenes for the two subsets. By the above disussion, thesetwo sequenes are respetively ontiguous portions of the boundaries of two disjointonneted onvex enlosing regions. Hene by performing a onstant number ofstandard 2-3 tree operations, the sequene of maximal elements for R(1; k) anbe obtained, also maintained by a 2-3 tree. The reurrene relation for the timeomplexity of this divide-and-onquer proedure isT (k) = 2T (k=2) +O(log k), for k > 1T (1) = O(1)Thus it follows that T (k) = O(k). After the above divide-and-onquer proedureterminates, it is easy to obtain the ordered sequene of maximal elements for R(1; k)from its 2-3 tree again in O(k) time. The spae used for omputing CRUP (R(1; k))is learly O(k).This ompletes the proof of the stairase separator theorem. 24. Data StruturesIn this setion, we desribe the data strutures that the algorithm in the nextsetion will use. Sine that algorithm from time to time will delete some retanglesfrom the olletion R = fR1, R2, : : : ; R2ng, we use L+ to denote the urrent listof retangles sorted by their preorder numbers in T . The list L+ is initially fR1,R2, : : :, R2ng, but will hange as the algorithm proeeds. However, the followinginvariants must hold by L+:1. The list L+ must ontain as many red as blue retangles.2. There is a onneted smallest-area onvex enlosing region CR(L+) that doesnot interset any of the retangles in R � L+. This invariant ensures thatwe an solve the problem on L+ without having to worry about interferingwith the solution for R � L+, so long as our solution paths for L+ (resp.,R � L+) do not wander outside (resp., inside) of CR(L+). Note that if thealgorithm deides to math a pair of retangles R0 and R00 in L+ and thusdelete R0 and R00 from L+, then this invariant requires that the resulted newlist L+�fR0; R00g should also satisfy the invariant, i.e., that CR(L+�fR0; R00g)must interset neither R0 nor R00.Remark: To avoid luttering the exposition of our algorithm with too manytedious details, in the rest of the paper we assume that CR(L0) = CH(L0) for anyretangle list L0 that satis�es both of the above invariants (thus we heneforth useonly CH(L0) instead of CR(L0) in our disussions). The algorithm for the generalsituation is similar with only minor di�erenes.We de�ne another list L� whih ontains exatly the same set of retangles asL+ but is ordered di�erently from L+ (as explained next). L� initially ontains allthe input retangles of R, but they are sorted aording to their preorder numbersin a tree T 0 rather than T , where T 0 is de�ned just like T exept for the followingdi�erenes:
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Figure 7: Illustrating the de�nition of the tree T 0.� Instead of the \leftwards-shooting horizontal ray emanating from the bottom-left orner of eah retangle" that we used in the de�nition of T , in T 0 weuse the \downwards-shooting vertial ray emanating from the bottom-rightorner of eah retangle" (see Figure 7).� Instead of sorting the adjaeny lists by the dereasing y-oordinates of thehorizontal shooting rays, in T 0 the adjaeny lists are sorted by the inreasingx-oordinates of the vertial shooting rays.� The \dummy" retangle orresponding to the root of T 0 is below all the inputretangles (whereas for T it was to their left).Figure 7 illustrates the tree T 0 in whih the retangles are named Bi's (for boxes)instead of Ri's.Note that the L� list is not expliitly maintained by our algorithm. But, theorder in whih the elements of L+ would appear in this hypothetial list L� isoneptually important, and will be exploited by our algorithm. We heneforth usethe shorthand \T 0 preorder" to refer to this order.Beause L+ (hene L�) satis�es Invariant 2 above, the proofs of the followinglemmas are very similar to the proof of Theorem 1 and hene are omitted. (Notehow the proof falls apart without Invariant 2, spei�ally at the plaes where wededue that Rl must be the parent of Rs | this need not hold if Invariant 2 isviolated, and indeed we annot even laim that Rl is an anestor of Rs.)Lemma 3 Let P+ be a pre�x of the list L+, and S+ be the remaining suÆx of L+,i.e., S+ = L+ � P+. Then the inreasing stairase de�ned by the South-East por-tion DCSE(CH(P+)) of the boundary of CH(P+) is (geometrially) above all of theretangles in S+. Equivalently, the inreasing stairase de�ned by the North-Westportion DCNW (CH(S+)) of the boundary of CH(S+) is below all of the retanglesin P+.Figure 8 illustrates Lemma 3.Lemma 4 Let P� be a pre�x of the list L�, and S� be the remaining suÆx ofL�, i.e., S� = L� � P�. Then the dereasing stairase de�ned by the North-East portion DCNE(CH(P�)) of the boundary of CH(P�) is (geometrially) below
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Figure 9: An example for Lemma 4, with P� = fB1; B2, : : : ; B5g and S� =fB6; B7; B8g.all of the retangles in S�. Equivalently, the dereasing stairase de�ned by theSouth-West portion DCSW (CH(S�)) of the boundary of CH(S�) is above all of theretangles in P�.Figure 9 illustrates Lemma 4.Our algorithm in the next setion always operates on the kind of retangle listL+ that satis�es both Invariants 1 and 2. It ahieves this by handling two ases: (i)Partition the list L+ into two onseutive sublists L0 and L00 that also satisfy bothInvariants 1 and 2, and reurse on L0 and L00 respetively; (ii) identify a red/bluepair of retangles Ra and Rb from L+ suh that L+ � fRa; Rbg still satis�es bothInvariants 1 and 2, math Ra and Rb, and reurse on L+�fRa; Rbg. Observe thatit is possible that Case (i) does not hold for some retangle lists that satisfy bothInvariants 1 and 2 (e.g., when the �rst n retangles of L+ are all red and the seondn retangles are all blue). Hene we also need to math red/blue retangle pair inL+ (Case (ii)). By Lemma 3, it would be ideal to math the �rst and last retanglesRa and Rb in the list L+ (if they are of di�erent olors), by using a monotone pathalong the boundary of CH(L+ � fRa; Rbg). But, suh a monotone path betweenRa and Rb does not always exist (see Figure 10(a)). To resolve this diÆulty, wepik the �rst retangle R from the list L�, and math R with either Ra or Rb (iftheir olors are right). Note that by Lemmas 3 and 4, a monotone path along theboundary of (say) CH(L+�fRa; Rg) onneting the mathed pair (Ra; R) always
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(b)(a)Figure 10: (a) No monotone path exists betweenR1 andR8 alongCH(R�fR1, R8g);(b) there are monotone paths between B1 = R5 and B6 = R1 along CH(R � fR1,R5g), and between B1 = R5 and B3 = R8 along CH(R� fR5, R8g).exists (see Figure 10(b)).By Lemma 3, one may also hoose to math the �rst (or last) two retangles inthe list L+ if they happen to have di�erent olors. Although this strategy may pro-due a somewhat more pratially desirable solution, it nevertheless is of a heuristinature (see more disussion on this in Setion 9).When the algorithm to be desribed in the next setion is solving a problemon the retangles in L+, it is given as input not just the list L+ but rather a treestruture S(L+) built \on top" of L+. Spei�ally, S(L+) is a 2-3 tree1 eah ofwhose leaves, from left to right, ontains exatly one retangle in L+, in the sameorder as in L+; these leaves are doubly linked together. Eah internal node v ofS(L+) ontains a label equal to the smallest T 0 preorder number (i.e., aordingto the L� ordering) of the retangles stored in the subtree of S(L+) rooted at v.In addition, there are ross-links between every internal node v of S(L+) and theleaf in the subtree of S(L+) rooted at v orresponding to the label of v. We willneed to perform only the deletion and split operations on S(L+), both of whih anbe done in logarithmi time using standard tehniques.1 The deletions take plaeafter we have mathed a pair of retangles | we then delete them from S(L+) andreurse on the resulted S(L+). The split operations take plae when we proess L+by solving reursively two piees of L+: A pre�x L0 of L+ and the remaining suÆxL00 = L+ � L0 (of ourse, L0 and L00 must satisfy the required invariants mentionedearlier). Splitting S(L+) allows us to reate S(L0) and S(L00) in logarithmi time.5. The Mathing Algorithm for RetanglesThe goal of this proedure is to ompute a desired mathing for the retanglesin R without worrying about desribing the atual paths that join the mathedpairs of red/blue retangles (the next setion explains how this proedure an bemodi�ed to also produe the atual paths onneting the mathed pairs).The proedure is reursive, and takes as input the 2-3 tree data struture S(L+)



desribed in the previous setion.Proedure MATCH(L+)Input: S(L+), where L+ = (R01, R02, : : : ; R0m).Output: A mathing of the red and blue retangles in L+.1. If m = 2, then the only two retangles in L+ surely have di�erent olors (byInvariant 1). Math these two retangles and return. If m > 2, then proeedto the next step.Comment: The path that will join the pair just mathed will be along theboundary of CH(L+).2. Find the �rst leaf (R01) and the last leaf (R0m) of S(L+), in O(logm) time. IfR01 and R0m have di�erent olors, then proeed to the next step. Otherwise,R01 and R0m have the same olor (say, it is red). For eah integer s = 1, 2, : : : ;m, let f(s) be the number of red elements minus the number of blue elementsin the pre�x subset fR01, R02, : : : ; R0sg of L+. Observe that jf(s+1)�f(s)j = 1and that in this ase f(1) = 1 whereas f(m � 1) = �1. This implies, by asimple \ontinuity" argument, that there is some integer `, 1 < ` < m � 1,for whih f(`) = 0. (A somewhat similar ontinuity argument was used inthe ontext of mathing points.3) Next, we will searh for suh an ` in timeO(minf`;m� `g) rather than in time O(m), as follows. We linearly searh forit along the leaf sequene of S(L+), by two interleaved searhes: one startingfrom the beginning of L+, from R01 up, and the other starting from the end ofL+, from R0m�1 down, where we alternate between the two searhes until oneof them �rst hits a desired value ` whih we know must exist. Hene, we �ndan ` value for whih f(`) = 0 in O(minf`;m� `g) time, rather than in O(m)time. This de�nes two subproblems L0 and L00: L0 = fR01, R02, : : : ; R0̀g andL00 = fR0̀+1, R0̀+2, : : : ; R0mg. In O(logm) time, we split S(L+) into S(L0)and S(L00). Then we reursively all MATCH(L0) and MATCH(L00).Analysis: This step has a umulative total ost of O(n logn) time rather thanO(n2) even though the two subproblems so generated and solved reursivelyan be very \unbalaned", e.g., jL0j ould be O(1). The analysis is as fol-lows: We spend only O(logm + minf`;m � `g) time in generating the twosubproblems; we an \harge" the logm term of this ost to the reursive allitself (i.e., to the node for that reursive all in the reursion tree), and theminf`;m � `g term to the retangles of the smaller subproblem (O(1) timeper retangle). A retangle that is so \harged" ends up in a subproblem ofno more than half the size of its previous subproblem, and hene annot beharged more than logn times, for a total (over all the 2n retangles of R)of O(n logn). The total number of nodes in the reursion tree is O(n), andhene the overall ost of the harges to the nodes of that reursion tree (logmper node) is O(n logm) = O(n logn).3. R01 and R0m have di�erent olors. Obtain, from the label at the root of S(L+),the smallest retangle in L+ aording to the L� ordering. Let R00 be this



retangle. Retangle R00 must have the same olor as one of fR01; R0mg, sosuppose WLOG that R00 has the same olor as R01. Then we (i) math R0m andR00, (ii) delete R0m and R00 from S(L+) in O(logm) time, and (iii) reursivelysolve the problem on the resulted L+.Comment: The path that will join the pair just mathed will be along theboundary of CH(L+ � fR0m; R00g). The justi�ation for the monotoniity ofthis path follows from Lemmas 3 and 4, whih ensure that the path from R0mto R00 along the boundary of CH(L+ � fR0m; R00g) onsists of at most twosubpaths: An inreasing stairase followed by a dereasing stairase. Thisstep also has a umulative total ost of O(n logn) time, beause eah of then mathed pairs is harged a ost of O(logn) time by the step.As analyzed above, algorithm MATCH orretly omputes n mathed pairs ofred/blue retangles of R in O(n logn) time and O(n) spae.6. Reporting the Atual PathsThis setion shows how to output the atual monotone paths between all the nmathed red/blue retangle pairs in O(n logn+�) time, where � is the total numberof segments that make up these n paths.Reall the omments we made after a retangle pair was mathed by the algo-rithm of the previous setion (spei�ally, following Steps 1 and 3). These ommentsdesribed the desired path between the pair just mathed in terms of a retilinearonvex hull CH(v) of a subproblem assoiated with a partiular plae (i.e., a node)v in the reursion tree of algorithm MATCH at whih this subproblem ourred.We postponed the atual omputation of these CH(v) onvex hulls, beause onewe have the overall struture of the reursion tree, we an traverse it and omputethese CH(v) hulls bottom up, with insertion operations only (sine the subproblemof a hild node in the reursion tree is that of its parent node minus some ret-angles). Thus, this enables us to use the fat that maintaining retilinear onvexhulls, in the fae of insertions only, is possible in logarithmi time per insertion.31Hene, the idea is to run the mathing algorithm of Setion 5 and make sure that,after that algorithm has exeuted, it leaves behind the skeleton of its reursion tree,whih we all ReTree, together with ertain information desribing how a pathbetween a mathed retangle pair is related to CH(v) (i.e., the desription in the\omments" of algorithmMATCH). This desription information uses O(1) spaeper mathed pair. This skeleton just gives the overall struture of ReTree. It doesnot store diretly the retangles of the subproblem assoiated with eah node v ofReTree (that would be too expensive in terms of the spae omplexity), but ratherhow the retangles of v are related to those of v's hildren:1. If v has only one hild in ReTree, then its assoiated retangles are those ofits only hild plus two retangles that are mathed by algorithmMATCH atv: It is these two retangles that are expliitly stored at v in ReTree.2. If v has two hildren in ReTree, then its assoiated retangles are the unionof the retangles of both its hildren.



R"

R’Figure 11: A path with two y-monotone subpaths among retilinear xy-monotoneobstales.In either ase, we store O(1) information at eah node v, so that ReTree usesaltogether O(n) spae. The problem of omputing the atual monotone path (ifany) assoiated with eah node v in ReTree learly redues to omputing CH(v)in turn and using it to print that path. The omputation of the CH(v)'s assoiatedwith all the nodes v of ReTree is done by a simple traversal of ReTree duringwhih the CH(v)'s are omputed aording to the postorder numbers1 of the nodes vin ReTree. Of ourse, at a node v of ReTree that has two hildren (say, u and w),we do not reate CH(v) by individually inserting the verties of CH(u) into CH(w),but rather we obtain CH(v) by \merging" CH(u) and CH(w) in logarithmi time.31After CH(v) is omputed, the atual path between the mathed retangle pair ofnode v is omputed by walking along CH(v), in time proportional to the size of thepath plus a logarithmi additive term. We assume that if two suh mathing pathsshare some ommon portions on ertain onvex hulls so omputed, then the twopaths are apart by at least a positive distane that an be made arbitrarily small.The overall time of this algorithm is therefore O(n logn) plus the time needed toprint all the output paths, i.e., O(�).7. Extensions to Monotone Polygonal ObstalesIn this setion, we extend our tehniques for mathing red/blue retilinear ret-angle obstales to mathing red/blue polygonal obstales in the plane that are allmonotone with respet to a oordinate axis (say, the y-axis). Let W be a set of rred and r blue disjoint polygonal obstales in the plane, with a total of n verties.We assume that all the polygonal obstales in W are monotone to the y-axis, andall them y-monotone polygons. We show that it is possible to math all the red andblue polygons inW , by onneting the r mathed red/blue polygon pairs with r mu-tually disjoint paths. The properties of the mathing paths are similar to those forretilinear retangles, exept for the monotoniity: In this ase, a path an be usedfor the mathing if it an be partitioned into at most two subpaths, eah of whihis monotone to the y-axis. Our algorithms for omputing suh a mathing have thesame omplexity bounds as the mathing algorithms for retilinear retangles in theprevious setions.One onsequene of onsidering y-monotone polygonal obstales (whose stru-tures are less nie than those of retilinear retangles) is that we must use a weaker



(b)(a)Figure 12: There is no stairase separator for retilinear and non-retilinear onvexobstales.monotoniity onstraint on the mathing paths. This is beause even with a geo-metri setting onsisting of disjoint onvex polygonal obstales in the plane, there isin general no obstale-avoiding path between two arbitrary points that is monotoneto the x-axis or to the y-axis. But in suh a setting, a path onsisting of at mosttwo y-monotone subpaths always exists between any two points (see Figure 11 foran example). Another onsequene of onsidering y-monotone polygonal obstalesis that there is in general no stairase separator for partitioning suh geometriobjet sets. In the two examples of Figure 12, there exists no stairase (even withrespet to any two orthogonal lines) that partitions eah onvex obstale set intotwo subsets, suh that every subset ontains more than one obstale. However, aswe will show, there exist y-monotone paths that partition y-monotone polygons.Note that a key di�erene between stairases and y-monotone paths is that stair-ases are monotone to both the x-axis and y-axis, while y-monotone paths need notbe monotone to the x-axis.It turns out that the mathing algorithms based on the geometri strutures ofy-monotone polygonal obstales are similar to and in fat simpler than the mathingalgorithms for retilinear retangles. Also, although we have hosen in this setionto fous our disussion on retilinear geometri objets (obstales, paths, et), itis atually not diÆult to modify our algorithms so that they will work with non-retilinear objets under the y-monotoniity onstraint.Let the obstale set W = fW0;W1, : : : ; W2rg, where W0 is the extra \dummy"retangle R0 to the left of all the other obstales in W (as introdued in Setion 3).We �rst preproess W as in Setion 3. From the left vertex of the lowest edge ofeveryWi, shoot a leftwards-moving horizontal ray ri; let Parent(i) beWj , whereWjis the �rst obstale in W hit by the ray ri. Maintain for every Wj an adjaeny listof all the obstales inW whose Parent isWj , sorted by the dereasing y-oordinatesof their leftwards-moving horizontal rays. This gives a tree struture whose nodesare the obstales in W (as the tree T in Setion 3) and whih we again denote by T .Label the nodes of T by their preorder numbers in T , and re-label the obstales inW by their orresponding preorder numbers in T . This preproessing an be doneby a horizontal trapezoidal deomposition33 of W and a preorder traversal of T ,1 inaltogether O(n logn) time and O(n) spae. WLOG, let i be the label of Wi in the



y−monotone hull

Figure 13: An example of the y-monotone hull of a set of obstales.preproessed form. In addition, we also onstrut, as part of the preproessing, theplanar subdivision33 that is de�ned by the horizontal trapezoidal deomposition ofW . The onstrution of this planar subdivision also takes O(n logn) time and O(n)spae.For any onseutive subset W 0 = fWi, Wi+1, : : : ; Wjg of W , where i > 0, wede�ne the y-monotone hull of W 0, denoted by CHy(W 0), to be the region withthe smallest area that ontains all the obstales in W 0 and that is y-monotone(see Figure 13 for an example). Note that the region CHy(W 0) so de�ned may bedisonneted. If this is the ase, we assume that we link the onneted omponentsof CHy(W 0) together with some paths of zero width, so that CHy(W 0) beomesonneted and is still y-monotone.Note that the boundary of every y-monotone polygon an be easily partitionedinto two y-monotone paths, whih we all the left boundary and right boundary ofsuh a polygon. For every point p in the plane that is to the right of the rootobstale W0 of T and is not in the interior of any obstale, we de�ne the pathQ(p) from p to W0 as in Setion 3, with one small exeption: When Q(p) follows aleftwards-moving horizontal ray and hits an obstaleWi 6=W0, Q(p) goes to the leftvertex of the lowest edge of Wi along a downwards y-monotone path on the rightboundary of Wi. Q(p) so de�ned is learly a unique y-monotone path, although itneed not be x-monotone simultaneously.The following observations are analogous to those of Lemmas 1 and 2 and The-orem 1. The di�erenes in these observations and their proof arguments stem fromthe strutural di�erenes between the onvex hulls of retilinear retangles and they-monotone hulls of y-monotone polygons in our mathing problems.Lemma 5 For an obstale Wi in W � fW0g, let p and q be two points suh that pis on the left boundary of Wi and q is on the right boundary of Wi. Then no pointof Q(p) is stritly below any point of Q(q).Proof. A ruial fat to the proof is that both Q(p) andQ(q) are planar y-monotonepaths. The proof argument is similar to that of Lemma 1. 2Lemma 6 Let p and q be two points in the plane suh that p is on the left boundaryof an obstale Wi and q is on the right boundary of Wi, with i > 0. Let u (resp.,v) be the left vertex of the lowest edge of an obstale Wa (resp., Wb), suh that u



(resp., v) is on Q(p) (resp., Q(q)) but not on Q(q) (resp., Q(p)). Then the preordernumber of Wa in the tree T of obstales is smaller than that of Wb, i.e., a < b.Proof. This follows from Lemma 5 and from the de�nition of the tree T . 2Theorem 2 Given a preproessed set W of 2r disjoint y-monotone polygonal ob-stales with n verties in total, the subsets fW1, W2, : : : ; Wkg and fWk+1, Wk+2,: : : ; W2rg, for any integer k with 1 � k < 2r, form a partition of the set W thathas the desired property, that is, there exists an obstale-avoiding y-monotone pathof size O(n) that separates these two subsets. Furthermore, suh a y-monotone pathan be omputed in O(n) time.Proof. LetW (a; b) denote the subset fWa, Wa+1, : : : ; Wbg ofW . For the existeneof suh a y-monotone path, we �rst show that for any i < j, the following holds:(1) CHy(W (1; i)) does not interset Wj , and (2) CHy(W (j; 2r)) does not intersetWi. We give the proof only for (1), that for (2) being similar.We prove (1) by ontradition: Suppose to the ontrary that for some j > i, Wjintersets CHy(W (1; i)). Then for a point w 2 CHy(W (1; i)) \ Wj , there must bea point z of a Ws, s � i < j, suh that y(w) = y(z) and x(w) < x(z), (i.e., z isstritly to the right of w). (If suh a point z did not exist, then w would have notbelonged to CHy(W (1; i)) by the de�nition of y-monotone hulls, a ontradition.)WLOG, let z 2Ws be the leftmost suh point. Then z must be on the left boundaryof Ws and the leftwards-moving horizontal ray from the left vertex of the lowestedge of Ws annot �rst hit Wj (otherwise, we would have a ontradition). Let z0be a point on the right boundary of Ws suh that y(z) > y(z0). Then by Lemma 6,the preorder number of Wj in T is smaller than that of Ws, a ontradition.We an ompute a desired y-monotone path by letting the path �rst go along theright boundary of CHy(W (1; k)) as muh as possible, then along the left boundaryof CHy(W (k + 1; 2r)) (if neessary), and �nally extend vertially upwards anddownwards to in�nity. The y-monotone path so obtained learly has a size of O(n).Given the planar subdivision based on the horizontal trapezoidal deomposition ofthe obstale setW (this subdivision is part of the preproessing result), it is possibleto obtain suh a y-monotone path in O(n) time. This is done by examining the O(n)ells of the planar subdivision to identify those ells that separate the two subsetsW (1; k) and W (k + 1; 2r), i.e., the ells whose left (resp., right) boundaries are onthe right (resp., left) boundaries of the polygons in W (1; k) (resp., W (k + 1; 2r)).2Note that in a fashion similar to Theorem 2, we an also partition the prepro-essed setW into two subsets based on the total sizes of the polygons in the resultedsubsets. That is, for an integer j with 1 � j < n, we an partition the preproessedobstale set W into two subsets W (1; k) and W (k+1; 2r) with a y-monotone path,suh that the total number of polygon verties of W (1; k) is no bigger than j butthe total number of polygon verties of W (1; k + 1) is stritly larger than j. Thispartitioning an also be done in O(n) time.Theorem 2 enables us to obtain eÆient algorithms for omputing a desiredmathing for y-monotone polygons, as did Theorem 1 for retilinear retangles. Infat, the mathing algorithms for y-monotone polygons are similar to and atually



simpler than the ones for retilinear retangles.Like the mathing algorithms for retilinear retangles, the algorithms here alsomaintain the list L+. However, unlike the algorithms for retilinear retangles, L+here is always a onseutive sublist of the original list W (1; 2r) and is maintainedonly as a doubly linked list. Further, the algorithms here do not need to use thetree T 0 and hene the list L�, and do not use the 2-3 tree S(L+). We only skethbelow the omputation of these algorithms, sine they are very similar to those ofSetions 5 and 6.To speify the mathing pairs of the red/blue polygons in a list L+ = (W 01,W 02, : : : ; W 0m) (without omputing the atual paths), the algorithm simply does thefollowing:IfW 01 andW 0m are of di�erent olors, then mathW 01 andW 0m (by lettingthe W 01-to-W 0m path go along �rst the left boundary of CHy(L+) andthen the right boundary of CHy(L+)), and reursively solve the problemon L+�fW 01;W 0mg if L+ � fW 01;W 0mg is non-empty; otherwise, partitionL+ into two onseutive sublists (as in Step 2 of algorithm MATCH)and reursively solve the two subproblems.A mathing path so spei�ed onsists of at most two y-monotone subpaths beauseit follows �rst the left boundary and then the right boundary of a y-monotone hull.As analyzed in Setion 5 for algorithmMATCH, the mathing algorithm here takesO(r log r) time after the ordered list W (1; 2r) is made available by the O(n logn)time preproessing.The algorithm for omputing the r atual paths of a mathing here is simi-lar to the one for retilinear retangles in Setion 6: It maintains the reursiontree ReTree of the above mathing algorithm, and omputes the y-monotone hullCHy(v) for the subproblem on every node v of ReTree. Eah of the left and rightboundaries of CHy(v) an be maintained by a 2-3 tree. The geometri struturesof the y-monotone hulls of the input polygons in ReTree an be exploited by ouromputation in the following way: When we need to \merge" two y-monotone hullsCHy(u) and CHy(w) to obtain CHy(v) (with u and w being the left and righthildren of v, respetively), we replae the orresponding portions of the (say) leftboundary of CHy(w) by the left boundary of eah onneted omponent of CHy(u)(if CHy(u) indeed onsists of more than one onneted omponent). This an bedone by using O(1) split and onatenation operations of 2-3 trees for eah ompo-nent of CHy(u), in logarithmi time. Sine we an harge the time for \merging"eah suh onneted omponent to a horizontal line segment of the horizontal trape-zoidal deomposition and sine there are O(n) suh line segments in the trapezoidaldeomposition, the total time for our algorithm to output all the r atual pathsbetween the mathed red/blue polygon pairs is O(n logn+ �), where � is the totalnumber of segments that make up these r paths. The spae bounds of the mathingalgorithms in this setion are O(n).8. Lower Bounds for the Mathing Problems
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Figure 14: Illustrating the redution of the lower bound proofs.In this setion, we prove 
(n logn) lower bounds in the algebrai omputationtree model8 for the mathing problems studied in this paper.First, we show that the problem of mathing 2n disjoint red/blue retilinearretangles with noninterseting monotone retilinear paths in the plane requires
(n logn) time in the worst ase. Atually, we will show an 
(n logn) lower boundfor the following (simpler) problem P: Giving n red and n blue disjoint retilinearretangles in the plane, �nd a monotone retilinear obstale-avoiding path froma spei�ed red retangle (say, R1) to some (unspei�ed) blue retangle Vi. Thereason for onsidering problem P is that this problem an be easily redued to ourmathing problem sine any solution to the mathing problem de�nitely ontainssuh a monotone path between the red retangle R1 and some blue retangle Vi.The key to our proof is a redution from the problem of sorting O(n) pairwisedistint positive integers (in an arbitrary range) to problem P. Note that basedon Yao's 
(n logn) lower bound result for the element uniqueness problem on narbitrary integers,42 Chen, Das, and Smid10 showed that sorting O(n) pairwisedistint positive integers in the worst ase requires 
(n logn) time in the algebraiomputation tree model.The redution goes as follows. Consider a set K of n pairwise distint positiveintegers I1, I2, : : : ; In. Let Ia (resp., Ib) be the smallest (resp., largest) integer inthe set K (it is easy to �nd Ia and Ib in O(n) time). WLOG, assume that Ia > 2.For every integer Ij 2 K, map Ij to a set Uj of four red retilinear retangles Rjl ,Rjr, Rju, and Rjd in the plane, as follows (see Figure 14): The shorter edges of all thefour red retangles in Uj have the same length of 0:5 units; the right (resp., left)edge of Rjr (resp., Rjl ) has the point (Ij ; 0) (resp., (�Ij ; 0)) as its middle point andhas a length of 2Ij , while the top (resp., bottom) edge of Rju (resp., Rjd) has thepoint (0; Ij) (resp., (0;�Ij)) as its middle point and has a length of 2Ij �1�2�, fora very small �xed � > 0. Let R1 be a red retilinear unit box whose enter is at theorigin of the oordinate system. We then have 4n+1 red retangles. We next reate4n+1 retilinear blue retangles Vl's in the following way: These blue retangles areall retilinear unit boxes whose enters are all on the x-axis; every two onseutiveblue boxes are one unit distane apart, and the leftmost blue box is at least one



unit distane to the right of Ub (see Figure 14). It is lear that the O(n) red/blueretilinear retangles so obtained are pairwise disjoint (sine the input integers arepairwise distint), and that the onstrution of this retangle set takes O(n) time.Now, it is an easy matter to observe that (1) an R1-to-Vi path in this setting anbe monotone only to the x-axis (but not to the y-axis), and (2) any suh monotoneR1-to-Vi path must get around every red retangle set Uj in the sorted order of theorresponding Ij values of the Uj 's (Figure 14). Let H be a monotone retilinearR1-to-Vi path omputed by any algorithm for problem P, with jH j = O(n). Weassume that when the path H is getting around a partiular retangle set Uj , itpiks up the index j and assoiates j with the horizontal edge of H that ontainsthe x-oordinate of the rightmost edge of Uj . Then given suh a path H , we anoutput the sorted sequene of the input integers in K by traing H and pikingup the indies of the integers Ij from their assoiated horizontal edges of H alongthe path order of H . Suh a traing of H an be easily done in O(n) time. Thisompletes the lower bound proof for problem P.Our lower bound proof for the mathing problem on y-monotone polygons usesthe same redution onstrution as for that on retilinear retangles, exept that wenow ompute a path whih onsists of at most two y-monotone subpaths instead ofone monotone path. That is, we use any algorithm for omputing suh an R1-to-Vipath among y-monotone polygons to build a geometri sorting devie for integerinput; the redution is the same as the one illustrated in Figure 14 and takes O(n)time. This redution works beause any R1-to-Vi obstale-avoiding retilinear pathH 0 that onsists of at most two y-monotone subpaths in the setting of Figure 14must get around every red retangle set Uj in the sorted order of the orrespondingIj values of the Uj 's. Therefore, suh a path H 0 an be used to report the sortedsequene of the input integers in O(n) time, implying an 
(n logn) lower bound forthe mathing problem on y-monotone polygons.9. Further RemarksAs mentioned earlier, Theorem 1 implies an eÆient parallel bound for equipar-titioning a set of disjoint retilinear retangles. This fat is potentially useful inthe parallel algorithmis of other, not neessarily red/blue, retangle problems (asis lear from several known algorithms,4;5 where tremendous simpli�ations followfrom the next theorem). Therefore, this useful side-e�et of Theorem 1 is summa-rized below.Theorem 3 Let R be a set of 2m disjoint retilinear retangles (not given in anypartiular order). Then an m-proessor CREW PRAM an ompute, in O(logm)time, an inreasing stairase S that does not interset the interior of any retanglein R and partitions R into two equal parts, with jSj = O(m).Proof. This follows from Theorem 1 and the fat that a trapezoidal deomposition6as well as the preorder numbers in a tree37 an all be omputed in parallel withinthese bounds. 2In fat, the preproessed form of R required by Theorem 1 an be obtained as



a by-produt of Theorem 3, in O(logm) time using m CREW PRAM proessors.One this form is available, we an do a little more than Theorem 3: We anpartition the set R = fR1, R2, : : : ; R2mg into two subsets fR1, R2, : : : ; Rkg andfRk+1, Rk+2, : : : ; R2mg, for any integer k with 1 � k < 2m, in O(log t) timeusing t= log t proessors in the CREW PRAM or even the EREW PRAM model,22where t = minfk; 2m�kg. This is done by using, instead of the two-way divide-and-onquer algorithm given in the proof of Theorem 1, a many-way divide-and-onquerapproah.9;20 The details of this parallel algorithm are very similar to (and in fateven simpler than) those in Refs. [9,20℄, and hene are omitted.The following partition result may also be useful to designing parallel algorithmsfor ertain geometri problems.Theorem 4 Let W be a set of 2r disjoint y-monotone polygons (not given in anypartiular order) with a total of m verties. Then an m-proessor CREW PRAMan ompute, in O(logm) time, a y-monotone path P that does not interset theinterior of any polygon in W and partitions W into two subsets of r polygons eah,with jP j = O(m).Proof. This follows from Theorem 2 and the fat that a trapezoidal deompositionand the planar subdivision6 based on it as well as the preorder numbers in a tree37an all be omputed in parallel within these bounds. 2Again, we an also preproess W in O(logm) time using m CREW PRAMproessors. After that, suh a y-monotone path P , as de�ned in Theorem 4, anbe obtained in O(logm) time using m= logm CREW PRAM proessors. This isdone by �rst examining the ells of the planar subdivision (to identify those ellsthat separate the two subsets of the polygons in W ) and then using parallel listranking22 to �nd the path P . Note that it is also possible to modify Theorem 4 topartitionW into two subsets based on the total sizes of the polygons in the resultedsubsets.We onlude with an implementation note about our algorithms. If we are toprogram the mathing algorithms for retilinear retangles, we would modify themby reating (in Step 2) S(L0) and S(L00) only as a last resort, by inserting beforeStep 2 a Step 1' in whih we hek whether R01 and R02 are of di�erent olors | ifso we math them, delete them, et, and if not we hek whether R0m�1 and R0mare of di�erent olors | if so we math them, delete them, et, and if not we go toStep 2. Thus, we go to Step 2 only if we are unable to math the pair fR01; R02g andthe pair fR0m�1; R0mg. Performing suh a Step 1' before Step 2 gives preferene toshort paths over long ones, sine an R01-to-R0m path is likely to be longer than anR01-to-R02 (or R0m�1-to-R0m) path. For y-monotone polygons, an eÆient heuristithat may produe short paths for a mathing we desire is to use a modi�ation ofthe so alled red/blue mathing approah2;23 for mathing red/blue elements in anordered list (in our situation, the ordered list is W (1; 2r)). Of ourse, this assumesthat short paths are pratially better than long ones.The above disussion suggests the obvious open problems of �nding mathingsthat satisfy some additional length riteria, suh as:� Minimum sum of lengths of all n paths, or
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