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ABSTRACT

Kantarcıoğlu, Murat. Ph.D., Purdue University, August, 2005. Privacy-Preserving
Distributed Data Mining and Processing on Horizontally Partitioned Data. Major
Professor: Christopher W. Clifton.

Data mining can extract important knowledge from large data collections, but

sometimes these collections are split among various parties. Data warehousing, bring-

ing data from multiple sources under a single authority, increases risk of privacy vio-

lations. Furthermore, privacy concerns may prevent the parties from directly sharing

even some meta-data.

Distributed data mining and processing provide a means to address this issue,

particularly if queries are processed in a way that avoids the disclosure of any infor-

mation beyond the final result. This thesis presents methods to mine horizontally

partitioned data without violating privacy and shows how to use the data mining

results in a privacy-preserving way. The methods incorporate cryptographic tech-

niques to minimize the information shared, while adding as little as possible overhead

to the mining and processing task.
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1 INTRODUCTION

Data mining technology has emerged as a means of identifying patterns and trends

from large quantities of data. Recently, there has been growing concern over the

privacy implications of data mining. Some of this is public perception: The “Data

Mining Moratorium Act of 2003” introduced in the U.S. Senate [36] was based on a

fear of government searches of private data for individual information, rather than

what the technical community views as Data Mining. However, concerns remain.

While data mining is generally aimed at producing general models rather than learn-

ing about specific individuals, the process of data mining creates integrated data

warehouses that pose real privacy issues. Data that is of limited sensitivity by itself

becomes highly sensitive when integrated, and gathering the data under a single roof

greatly increases the opportunity for misuse. Even though some of the distributed

data mining tasks protect individual data privacy, they still require that each site

reveals some partial information about the local data. What if even this information

is sensitive?

For example, suppose the Centers for Disease Control (CDC), a public agency,

would like to mine health records to try to find ways to reduce the proliferation of

antibiotic resistant bacteria. Insurance companies have data on patient diseases and

prescriptions. CDC may try to mine association rules of the form X ⇒ Y such that

the Pr(X&Y ) and Pr(Y |X) are above some certain thresholds. Mining this data for

association rules would allow the discovery of rules such as Augmentin&Summer ⇒

Infection&Fall, i.e., people taking Augmentin in the summer seem to have recurring

infections.

The problem is that insurance companies will be concerned about sharing this

data. Not only must the privacy of patient records be maintained, but insurers will

be unwilling to release rules pertaining only to them. Imagine a rule indicating a
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high rate of complications with a particular medical procedure. If this rule doesn’t

hold globally, the insurer would like to know this; they can then try to pinpoint the

problem with their policies and improve patient care. If the fact that the insurer’s

data supports this rule is revealed (say, under a Freedom of Information Act request

to the CDC), the insurer could be exposed to significant public relations or liability

problems. This potential risk could exceed their own perception of the benefit of

participating in the CDC study.

Our solution to this problem is to avoid disclosing data beyond its source, while

still constructing data mining models equivalent to those that would have been

learned on an integrated data set. Since we prove that data is not disclosed be-

yond its original source, the opportunity for misuse is not increased by the process

of data mining.

The definition of privacy followed in this line of research is conceptually simple:

no site should learn anything new from the process of data mining. Specifically,

anything learned during the data mining process must be derivable given one’s own

data and the final result. In other words, nothing is learned about any other site’s

data that isn’t inherently obvious from the data mining result. The approach followed

in this research has been to select a type of data mining model to be learned and

develop a protocol to learn the model while meeting this definition of privacy.

In addition to the type of data mining model to be learned, the different types

of data distribution result in a need for different protocols. For example, the first

paper in this area proposed a solution for learning decision trees on horizontally

partitioned data: each site has complete information on a distinct set of entities, and

an integrated dataset consists of the union of these datasets. In contrast, vertically

partitioned data has different types of information at each site; each has partial

information on the same set of entities. In this case an integrated dataset would

be produced by joining the data from the sites. While [53] showed how to generate

ID3 decision trees on horizontally partitioned data, a completely new method was

needed for vertically partitioned data [28].
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This thesis presents solutions such that the parties learn (almost) nothing beyond

the global results. We assume homogeneous databases and horizontally partitioned

data: All sites have the same schema, but each site has information on different

entities. Given solutions are relatively efficient and proved to preserve privacy under

some reasonable assumptions. Specifically, in Chapter 4, we show how to mine

distributed association rules without revealing anything other than the rules. We

address the privacy issues in distributed k-nearest neighbor classification methods

in Chapter 5. Privacy preserving distributed Näıve Bayes classifier is discussed in

Chapter 6.

The techniques mentioned above reveal almost nothing other than the final data

mining result. This may not be enough to guarantee privacy. The data mining

results may reveal some sensitive information about the original data sources. In

Chapter 7, we provide a framework to analyze whether the resulting data mining

models inherently violate privacy. We also provide techniques for computing a lower

bound on the privacy loss due to data mining results.

Even if the mining process and the resulting model does not violate privacy, usage

of the mined model may be a threat to privacy. Consider the following example:

A U.S. government initiative plans to classify each airline passenger with a green,

yellow or red risk level. Passengers classified as green will be subject to only nor-

mal checks, while yellow will get extra screening and red won’t fly. [13] Although

government agencies guarantee that no discriminatory rules will be used in the clas-

sification and that the privacy of the data will be maintained, this is not enough for

many privacy advocates. In Chapter 8 we show that if such a system must exist,

it is possible to do so while achieving significant levels of privacy and guaranteeing

that rules meet certain constraints without disclosing them.

There exists a false assumption that we have to sacrifice privacy to perform

data mining. In this thesis, we show that many data mining tasks on horizontally

partitioned data can be performed without sacrificing the privacy. Even more, we

show that those mined models can be used in a privacy preserving manner.
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2 PRIVACY-PRESERVING DATA MINING: STATE-OF-THE-ART AND

RELATED ISSUES

2.1 Introduction

Cheap data storage and abundant network capacity have revolutionized the data

collection and data dissemination. At the same time, advances in data mining have

made it possible to learn previously unknown and interesting knowledge from the

collected data [41]. These developments have caused serious concerns related to

privacy implications of data mining. In [22], Clifton et al. identify two possible

privacy drawbacks:

• Inference problems due to mining published data,

• Privacy issues in sharing data for data mining.

The first drawback refers to the fact that some private information can be inferred

from mining public data. Follow up work described in [21] analyzes the disclosure due

to building a classifier from the released data. Similar work has been done to limit

disclosure due to association rule mining. The basic idea in that work is to modify

the released data so that the association rules deemed to be “private” may not be

learned by using data mining. It is shown that finding the best data modification

for limiting the sensitive association rules is a NP-Hard problem [5]. The work given

in [74] describes heuristics to modify the 0/1 binary database to hide the “sensitive”

association rules. The site effect of this approach is the introduction of “ghost”

association rules which are not supported by the original database. In order to solve

the above problem and to prevent the problems due to modified data in some fields

(i.e, health care), blocking some entries of the binary database by replacing the 0/1

value with “?” is suggested [68]. The authors of that work also gave a modified
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association rule mining algorithm to handle unknown values. A detailed survey of

association rule hiding can be found in [75].

The second drawback refers to privacy issues arise in data collection and data

sharing for data mining. Due to privacy concerns, individuals and organizations may

not be willing to share their data. For example, individuals may not be willing to

tell their incomes or companies may not be willing to reveal statistics related to their

core businesses. Fortunately, in many cases, the information aggregated over many

individuals may not be considered a privacy problem. Therefore, it can be assumed

that the data mining result itself are not a privacy violation. The goal is to learn

the data mining results by disclosing as little as possible about the data sources.

Many different solutions suggested for addressing this privacy challenge. Since most

of the work in this dissertation fall under this category, we describe these solutions

in detail.

Some of the techniques used for data mining have their roots in the statistical

database security work. We briefly give an overview of the field in Chapter 2.2. In

Chapter 2.3, we describe the data perturbation techniques used in data mining. In

Chapter 2.4, we focus on the privacy-preserving distributed data mining. We con-

clude this chapter by discussing the contributions of this thesis to privacy-preserving

data mining.

2.2 Statistical Database Security

The database community has long been concerned with privacy issues. An early

example is work in statistical queries: Given queries that return aggregate values,

can we be certain that the individual values used to compute the aggregates are

not revealed? The work of Dobkin, Jones, and Lipton in query set overlap control

[26], as well as work by Denning [24], showed that we can determine when a set

of queries do not reveal individual values. For a survey of this area see [1]. The

database security community has also addressed inference problems on a broader
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scale: how do we guarantee that a value in a collection of “high” data cannot be

inferred from a collection of “low” data? [42, 43, 55, 78] One common feature of

this work is the emphasis on learning private values exactly ; the ability to obtain

probabilistic estimates on private data has received less work.

2.3 Data Perturbation Approach for Privacy-preserving Data Mining

The key idea of data perturbation is to modify the individual values such that

the real values cannot be reconstructed, while the statistical summaries needed for

data mining can be deduced. Since the individual values are modified, the privacy

can be preserved to some extent. Another advantage of this approach is that it

enables individuals to modify their own private data according to some guidelines

before it is revealed. Data perturbation approach have been used extensively by the

U.S. Census Bureau for protecting public use microdata sets. Data perturbation

techniques can be categorized into two broad categories:

• Data Swapping: Data values are swapped between records without changing

some certain statistics. For example, the age field of two patient records can

be swapped without changing the average age statistics [57].

• Randomization: Data values are modified by adding some kind of random

noise. For example, all the age values can be modified by adding a random

value drawn from a normal distribution with mean 0, variance 1 [70].

The challenge is to obtain valid data mining results from the perturbed data while

giving reasonable guarantees about the privacy.

In [4], an initial solution for privacy-preserving data mining is given. The key

result is that the perturbed data, and information on the distribution of the random

data used to perturb the data, can be used to generate an approximation to the orig-

inal data distribution, without revealing the original data values. The distribution

is used to improve mining results over mining the perturbed data directly, primarily
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through selection of split points to “bin” continuous data. Later refinement of this

approach tightened the bounds on what private information is disclosed, by showing

that the ability to reconstruct the distribution can be used to tighten estimates of

original values based on the distorted data [2]. In [62], similar techniques were used

for doing collaborative filtering.

More recently, the data perturbation approach has been applied to boolean asso-

ciation rules [34, 67]. Again, the idea is to modify data values such that reconstruc-

tion of the values for any individual transaction is difficult, but the rules learned on

the distorted data are still valid. One interesting feature of this work is a flexible

definition of privacy; e.g., the ability to correctly guess a value of ‘1’ from the dis-

torted data can be considered a greater threat to privacy than correctly learning a

‘0’. Methods for limiting privacy breaches for perturbed boolean attributes are given

in [33].

Although data perturbation approaches are simple to implement, the privacy

guarantees provided by these approaches are not clear. For example, In [49], it is

shown that some of the suggested perturbation approaches do not protect privacy

as intended.

The data distortion approach addresses a different problem from our work. The

assumption with perturbation is that the values must be kept private from whoever

is doing the mining. We instead assume that some parties are allowed to see some

of the data, just that nobody is allowed to see all the data. In return, we are able

to get exact, rather than approximate, results with provable security properties.

2.4 Privacy-preserving Distributed Data Mining

Imagine the case where different drug companies want to combine their clinical

trial databases for doing data mining to discover new drugs. Although each company

can access its own database, due to privacy concerns and regulations, it cannot

access the data in other drug companies. Even more, they may not want to reveal
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some certain statistics for competition reasons. Privacy-preserving distributed data

mining (PPDDM) tries to address this problem. In this line of work, the goal is to

learn the data mining results without revealing anything other than the result itself.

The solutions suggested for this problem treat privacy-preserving distributed data

mining as a special case of secure multi-party computation (Chapter 3.2) and not

only aims for preserving individual privacy but also tries to preserve leakage of any

information other than the final result. Recently, a different framework for PPDDM

has been suggested [29]. In that work, perturbation techniques are combined with

query restrictions to give very limited but provably secure solutions.

Usually PPDDM solutions are given under two different data partition assump-

tions:

• Vertical Partitioning: This model assumes that different sites collect informa-

tion about the same set of entities but they collect different feature sets. For

example, both a university and a hospital may collect information about a

student. The university may keep some information related to the student’s

academic success and the hospital may keep some information related to the

student’s physical condition. The hospital and the university may want to do

data mining to reveal the relationship between physical health and academic

success.

• Horizontal Partitioning: This model assumes that different sites collect the

same set of information about different entities. For example, different credit

card companies may collect credit card transactions of different individuals.

In relational terms, with horizontal partitioning the relation to be mined is the

union of the relations at the sites. In vertical partitioning, the relations at the

individual sites must be joined to get the relation to be mined. The change in the

way the data is partitioned makes it a much different problem and requires a very

different set of solutions. We describe the solutions provided for these two different

data partition models below.
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2.4.1 Privacy-preserving Distributed Data Mining on Vertically Partitioned Data

Many solutions are suggested for PPDDM on vertically partitioned data. The

problem of privately computing association rules on vertically partitioned distributed

data has been addressed in [72]. A solution is given for ID3 tree based classification

in [28]. In [71], a detailed survey of PPDDM over vertically partitioned data is given.

2.4.2 Privacy-preserving Distributed Data Mining on Horizontally Partitioned Data

In the first work on PPDDM [53], the goal is to securely build an ID3 decision

tree where the training set is distributed between two parties (i.e, data is horizontally

partitioned). The basic idea is that finding the attribute that maximizes information

gain is equivalent to finding the attribute that minimizes the conditional entropy.

The conditional entropy for an attribute for two parties can be written as a sum

of the expression of the form (v1 + v2) × log(v1 + v2). The authors give a way to

securely calculate the expression (v1 + v2) × log(v1 + v2) and show how to use this

function for building the ID3 securely. (Details are given in Chapter 3.5.4 ) In [52],

secure clustering using the expectation maximization method is given for horizontally

partitioned data.

2.5 Our Contribution

This thesis significantly expands the available algorithms for privacy-preserving

data mining on horizontally partitioned data. We provide privacy-preserving solu-

tions for:

• association rule mining (Chapter 4),

• k-nn methods (Chapter 5), and

• Näıve Bayes classification (Chapter 6).
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We also addressed the issues in privacy-preserving data mining that were not

considered at all prior to our work. We provide solutions so that the use of data

mining results do not violate privacy (Chapter 7 and Chapter 8).
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3 GENERAL SECURE MULTI-PARTY COMPUTATION AND

CRYPTOGRAPHIC TOOLS

3.1 Introduction

One of the goals of this dissertation is to provide efficient solutions for mining

horizontally partitioned data without disclosing anything other than the result itself.

A closely related question that comes to mind is: what kind of functions can be

evaluated without revealing anything other than the function result? The answer

shown by Yao [77] is: any function that can be represented as a polynomial-size

circuit. This result indicates that almost any data mining task can be done without

violating privacy. Although this generic result is too inefficient to be used for data

mining, it provides a framework and a general methodology to prove security of the

proposed solutions. In this dissertation, we use the above framework to provide

provably secure (i.e., nothing is revealed other than the result itself) and efficient

solutions.

Strong theoretical foundations for secure multi-party computation and many

cryptographic protocols already exist. To enhance the understanding of this dis-

sertation, we review these concepts in this chapter.

3.2 Secure Multi-party Computation

Imagine the case, where two millionaires want to learn who is richer. (Yao’s

Millionaire problem [77]) Also, due to privacy reasons, they do not want to disclose

their net worth to each other. We can easily solve this problem using a trusted

third party. Each millionaire can send his or her input to the trusted party. Later,

the trusted party can send the final result back to the millionaires. Assuming the
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communication between the trusted party and the millionaires is secure, millionaires

only learn who is richer. The obvious question is what happens if the millionaires

do not trust any one. The goal of secure multi-party computation is to come up

with solutions where we can reach the privacy level of having a third trusted party

without actually having one.

Substantial work has been done on secure multi-party computation (SMC). The

key result is that a wide class of computations can be computed securely under

reasonable assumptions. We give a brief overview of this work, concentrating on

material that is used later in the thesis. The definitions given here are from Goldreich

[39]. For simplicity, we concentrate on the two party case. Extending the definitions

to the multi-party case is straightforward.

3.2.1 Security in Semi-honest model

A semi-honest party follows the rules of the protocol using its correct input,

but is free to later use what it sees during execution of the protocol to compromise

security. This is somewhat realistic in the real world because parties who want to

mine data for their mutual benefit will follow the protocol to get correct results. In

some cases, parties may only want to learn the results but not the data itself. For

example, recently one credit card transaction processing company was hacked and

the credit card transactions that involve 40 million credit card numbers were stolen.

Apparently, the transaction data was stored only to do data mining. On the other

hand, the loss of the data made the company vulnerable to potential law suits [11].

Similar examples can be also given for health care data. Clearly such companies

may follow the protocol to just learn the data mining results and nothing else. Also

a protocol that is buried in a complex software may be difficult to alter.

A formal definition of private two party computation in the semi-honest model

is given below. Computing a function privately is equivalent to computing it in the

ideal model where we can use a third trusted party [39].
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Definition 3.2.1 (privacy w.r.t. semi-honest behavior): [39]

Let f : {0, 1}∗ × {0, 1}∗ 7−→ {0, 1}∗ × {0, 1}∗ be probabilistic, polynomial-time

functionality, where f1 (x, y)(resp., f2 (x, y)) denotes the first (resp., second) element

of f (x, y)) and let Π be two-party protocol for computing f .

Let the view of the first (resp. second) party during an execution of Π on (x, y),

denoted viewΠ
1 (x, y) (resp., viewΠ

2 (x, y)) is (x, r1, m1, . . . , mt) (resp., (y, r2, m1, . . . , mt))

where r1 represents the outcome of the first (resp., r2 second) party’s internal coin

tosses, and mi represents the ith message it has received.

The output of the first (resp., second) party during an execution of Π on (x, y)

is denoted outputΠ1 (x, y) (resp., outputΠ2 (x, y)) and is implicit in the party’s view of

the execution.

Π privately computes f if there exist probabilistic polynomial time algorithms,

denoted S1, S2 such that

{(S1 (x, f1 (x, y)) , f2 (x, y))}x,y∈{0,1}∗ ≡
C
{(

viewΠ
1 (x, y) , outputΠ2 (x, y)

)}

x,y∈{0,1}∗

(3.1)

{(f1 (x, y) , S2 (x, f1 (x, y)))}x,y∈{0,1}∗ ≡
C
{(

outputΠ1 (x, y) , viewΠ
2 (x, y)

)}

x,y∈{0,1}∗

(3.2)

where ≡C denotes computational indistinguishability.

The above definition says that a computation is secure if the view of each party

during the execution of the protocol can be effectively simulated by the input and

the output of the party. This is not quite the same as saying that private information

is protected. For example, if two parties use a secure protocol to mine distributed

association rules, a secure protocol still reveals that if a particular rule is not sup-

ported by particular site and that rule appears in the globally supported rule set

then it must be supported by the other site. A site can deduce this information by

solely looking at its locally supported rules and the globally supported rules. On

the other hand, there is no way to deduce the exact support count of some itemset

by looking at the globally supported rules. With three or more parties, knowing
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a rule holds globally reveals that at least one site supports it, but no site knows

which site (other than, obviously, itself). In summary, secure multi-party protocol

will not reveal more information to a particular party than the information that can

be induced by looking at that party’s input and the output.

We also use a key result from the Secure Multi-party Computation literature, the

composition theorem. We state it for the semi-honest model. A detailed discussion

of this theorem, as well as the proof, can be found in [39].

Theorem 3.2.1 (Composition Theorem for the semi-honest model) [39]: Suppose

that g is privately reducible to f and that there exists a protocol for privately com-

puting f . Then there exists a protocol for privately computing g.

This allows us to use existing secure protocols as components in a black-box

fashion.

3.2.2 Yao’s General Two Party Secure Function Evaluation

Yao’s general secure two party evaluation is based on expressing the function

f(x, y) as a circuit and encrypting the gates for secure evaluation [77]. With this

protocol any two party function can be evaluated securely in semi-honest model but

the functions that can be efficiently evaluated must have small circuit representation.

We will not give details of this generic method here. In some of our protocols, we

will use this generic result for finding out whether a ≥ b for arbitrary a, b (Yao’s

millionaire problem). For comparing any two integers securely, Yao’s generic method

is one of the most efficient methods known, although other asymptotically equivalent

but practically more efficient algorithms could be used as well [45].

3.2.3 Commutative Encryption

Commutative encryption is an important tool that can be used in many privacy-

preserving protocols. An encryption algorithm is commutative if the following two



15

equations hold for any given feasible encryption keys K1, . . . , Kn ∈ K, any m in

items domain M , and any permutations of i, j.

EKi1
(. . . EKin

(M) . . . ) = EKj1
(. . . EKjn

(M) . . . ) (3.3)

∀M1,M2 ∈M such that M1 6= M2 and for given k, ǫ < 1
2k

Pr(EKi1
(. . . EKin

(M1) . . . ) = EKj1
(. . . EKjn

(M2) . . . )) < ǫ (3.4)

These properties of commutative encryption can be used to check whether two

items are equal without revealing them. For example, assume that party A has item

iA and party B has item iB. To check if the items are equal, each party encrypts its

item and sends it to the other party: Party A sends EKA
(iA) to B and party B sends

EKB
(iB) to A. Each party encrypts the received item with its own key, giving party

A EKA
(EKB

(iB)) and party B EKB
(EKA

(iA)). At this point, they can compare the

encrypted data. If the original items are the same, Equation 3.3 ensures that they

have the same encrypted value. If they are different, Equation 3.4 ensure that with

high probability they do not have the same encrypted value. During this comparison,

each site sees only the other site’s values in encrypted form.

In addition to meeting the above requirements, we require that the encryption

be secure. Specifically, the encrypted values of a set of items should reveal no

information about the items themselves. Consider the following experiment. For any

two sets of items, we encrypt each item of one randomly chosen set with the same key

and present the resulting encrypted set and the initial two sets to a polynomial-time

adversary. Loosely speaking, our security assumption implies that this polynomial-

time adversary will not be able to predict which of the two sets were encrypted with

a probability better than a random guess. Under this security assumption, it can be

shown that the resulting encrypted set is indistinguishable by a polynomial adversary

from a set of items that are randomly chosen from the domain of the encryption;

this fact is used in the proof of the privacy-preserving properties of our protocol.

The formal definition of multiple-message semantic security can be found in [40].
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There are several examples of commutative encryption, perhaps the most famous

being RSA [66] (if keys are not shared). The following part describes a how Pohlig-

Hellman encryption [61] can be used to fulfill our requirements, as well as further

discussion of relevant cryptographic details.

Pohlig-Hellman Encryption Scheme

The Pohlig-Hellman encryption scheme [61] can be used for a commutative en-

cryption scheme meeting the requirements of Chapter 3.2.3. Pohlig-Hellman works as

follows. Given a large prime p with no small factors of p−1, each party chooses a ran-

dom e, d pair such that e∗d = 1 (mod p−1). The encryption of a given message M is

Me (mod p). Decryption of a given ciphertext C is done by evaluating Cd (mod p).

Cd = Med (mod p), and due to Fermat’s little theorem, Med = M1+k(p−1) = M

(mod p).

It is easy to see that Pohlig-Hellman with shared p satisfies equation 3.3. Let us

assume that there are n different encryption and decryption pairs ((e1, d1), . . . , (en, dn)).

For any permutation function i, j and E = e1 ∗ e2 ∗ · · · ∗ en = ei1 ∗ ei2 . . . ein =

ei1 ∗ ei2 . . . ein (mod p− 1):

Eei1
(. . . Eein

(M) . . . ) = (. . . ((Mein (mod p))ein−1 (mod p)) . . . )ei1 (mod p))

= Mein∗ein−1
···∗ei1 (mod p)

= ME (mod p)

= Mejn∗ejn−1
···∗ej1 (mod p)

= Eej1
(. . . Eejn

(M) . . . )

Equation 3.4 is also satisfied by the Pohlig-Hellman encryption scheme. Let

M1,M2 ∈ GF (p) such that M1 6= M2. Any order of encryption by all parties is

equal to evaluating Eth power mod p of the plain text. Let us assume that after

encryptions M1 and M2 are mapped to the same value. This implies that ME
1 = ME

2

(mod p). By exponentiating both sides with D = d1∗d2∗· · ·∗dn (mod p−1), we get
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M1 = M2 (mod p), a contradiction. (Note thatE∗D = e1∗e2∗· · ·∗en∗d1∗d2∗. . . dn =

e1 ∗ d1 . . . en ∗ dn = 1 (mod p − 1).) Therefore, the probability that two different

elements map to the same value is zero.

Direct implementation of Pohlig-Hellman is not secure. Consider the following

example, encrypting two values a and b, where b = a2. Ee(b) = Ee(a
2) = (a2)

e

(mod p) = (ae)2 (mod p) = (Ee(a))
2 (mod p). This shows that given two encrypted

values, it is possible to determine if one is the square of the other (even though the

base values are not revealed.) This violates the security requirement of Chapter3.2.3.

Huberman et al. provide a solution [44]. Rather than encrypting items directly,

a hash of the items is encrypted. The hash occurs only at the initial site, the second

and later encryption of items can use Pohlig-Hellman directly. Under the random

oracle assumption (i.e., the output of the hash function looks like random), the hash

breaks the relationship revealed by the encryption (e.g., a = b2). After decryption,

the hashed values must be mapped back to the original values. This can be done by

hashing the original items to build a lookup table.

We present the approach from [44] as an example; any secure encryption scheme

that satisfies Equations 3.3 and 3.4 can be used in our protocols. Other approaches,

and further definitions and discussion of their security, can be found in [8,25,31,69].

3.3 Third Untrusted Non-colluding Site

In order to achieve solutions that are both secure and efficient, we sometimes

make use of an untrusted, non-colluding site. Use of such a site was first suggested

in [35]. Application to privacy-preserving data mining was discussed in [48]. The key

to such a site is that it learns nothing, however by colluding with other sites it may be

able to obtain information that should not be revealed. Thus, the only trust placed

in the site is that it will not collude with any of the other sites to violate privacy.

Although this seems like a strong assumption, this non-colluding assumption often

occurs in real life. For example, bidders or sellers on e-bay assume that e-bay is not
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colluding with other bidders or sellers against them. We stress that the untrusted

site learns nothing except the information already available publicly available. On

the other hand, the site described in Chapter 3.2 is trusted with all the information.

3.4 Probabilistic Public-Key Encryption

Although RSA style public key encryption is an useful tool for many crypto-

graphic protocols, the problem with deterministic public key algorithm is that two

items corresponding to the same plaintext map to the same ciphertext. This may

reveal the entropy of the input of each site as well as some other information re-

lated to the site. Even if no site may learn what the result is, but something of the

distribution is revealed.

Fortunately, the cryptography community has developed a solution: probabilistic

public-key encryption. The idea behind probabilistic public-key encryption is that

the same plaintext may map to different ciphertexts, but these will all map back to

the same plaintext when decrypted. We will briefly describe the Blum-Goldwasser

[10] probabilistic encryption scheme as an example.

3.4.1 Blum-Goldwasser Probabilistic Encryption Scheme

Let n = pq where p and q are the same size and p, q ≡ 7 mod 8. n is the public

key and p, q are the secret key. Given the message m and key n encryption proceeds

as follows:

1. Choose r randomly such that r = x2 (mod n) for some x

2. Compute r2, r4, . . . , r2|m|
(mod n)

3. Generate an |m| bit number t such that the ith bit of t (0 ≤ i ≤ |m| − 1) is

the least significant bit of r2i

(mod n)

4. Set ciphertext c = m⊕ t, r2|m|
(mod n) where ⊕ is the xor operation
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Given ciphertext c = (m′, r′), decryption is performed by:

1. Compute r such that r2|m
′|

= r′ (mod n) (This can be done easily if the fac-

torization of n is known.)

2. Compute r, r2, . . . , r2|m
′|−1

(mod n)

3. Generate an |m′| bit number t′ such that the ith bit of t′ (0 ≤ i ≤ |m′| − 1) is

the least significant bit of r2i

(mod n)

4. Set m = m′ ⊕ t′ where ⊕ is the xor operation

Under the assumption that factoring is hard, it can be shown that the above en-

cryption is secure and that the output of the encryption is computationally indis-

tinguishable from a randomly generated string. The details of this method can be

found in [10].

3.5 Secure Algebraic Calculations

Some of the privacy-preserving algorithms developed later are based on the sev-

eral secure two-party computation protocols. While most have either been previously

published, or are straightforward given previously published work, we summarize

them here for completeness.

3.5.1 Secure Sum

One building block frequently required is a way to securely calculate the sum of

values from individual sites. Assuming three or more parties and no collusion, the

following method from [46] securely computes such a sum.

Assume that the value v =
∑k

i=1 vi to be computed is known to lie in the range

[0..n− 1] where vi denotes the share of the ith.

One site is designated the master site, numbered 1. The remaining sites are

numbered 2..k. Site 1 generates a random number R, uniformly chosen from [0..n−1].
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Site 1 adds this to its local value v1, and sends the sum R+v1 mod n to site 2. Since

the value R is chosen uniformly from [0..n − 1], the number R + v1 mod n is also

distributed uniformly across this region, so site 2 learns nothing about the actual

value of v1.

For the remaining sites i = 2..k − 1, the algorithm is as follows. Site i receives

V = R +

i−1
∑

j=1

vj mod n.

Since this value is uniformly distributed across [0..n − 1], i learns nothing. Site i

then computes

R +

i
∑

j=1

vi mod n = (vi + V ) mod n

and passes it to site i+ 1.

Site k performs the above step, and sends the result to site 1. Site 1, knowing

R, can subtract R to get the actual result. Note that site 1 can also determine
∑k

i=2 vi by subtracting v1. This is possible from the global result regardless of how

it is computed, so site 1 has not learned anything from the computation.

This method faces an obvious problem if sites collude. Sites i − 1 and i + 1

can compare the values they send/receive to determine the exact value for vi. The

method can be extended to work for an honest majority. Each site divides vi into

shares. The sum for each share is computed individually. However, the path used

is permuted for each share, such that no site has the same neighbor twice. To

compute vi, the neighbors of i from each iteration would have to collude. Varying

the number of shares varies the number of dishonest (colluding) parties required to

violate security.

3.5.2 1-out-of-N Oblivious Transfer

The 1-out-of-N Oblivious Transfer protocol involves two parties, Alice and Bob.

Alice has an input σ, 1 ≤ σ ≤ N , while Bob has N inputs X1, . . . , Xn. At the end of

the protocol, Alice learns only Xσ and nothing else while Bob learns nothing at all.
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The 1-out-of-2 Oblivious Transfer (OT 2
1 ) was suggested by Even, Goldreich and Lem-

pel [32] as a generalization of Rabin’s “oblivious transfer” [64]. Naor and Pinkas [59]

provide efficient protocols for 1-out-of-N Oblivious Transfer. For completeness, we

now describe a very simple (though inefficient) method for doing Oblivious Transfer

for semi-honest parties.

Bob generates N public key pairs E1, D1, . . . , EN , DN

Bob sends E1, . . . , EN to Alice.

Alice generates an asymmetric key K.

Alice forms the vector ~V : if i = σ, Vi = Ei(K), otherwise Vi = (a random) Rj.

Alice sends the N -dimensional vector ~V to Bob

Bob decrypts ~V to form the vector ~K where Ki = Di(Vi)

Bob encrypts his data items with the keys in ~K ands sends them to Alice (i.e.

Bob sends Ki(Xi), i = 1 . . .N to Alice)

Since Kσ = Dσ(Eσ(K)) = K, Alice decrypts the σ row with K to get Xσ

Clearly this protocol reveals nothing to Bob [39]. In the semi-honest model, as

long as Alice acts exactly according to the protocol, she too does not learn anything

since all the other values are encrypted with random keys unknown to her. Though

it is easy to break this protocol when parties are allowed to be malicious, better

protocols (more secure and efficient) can easily be found in the literature.

3.5.3 Oblivious Evaluation of Polynomials

Alice has a polynomial P of degree k over some finite field F . Bob has an element

x ∈ F and also knows k. Alice would like to let Bob compute the value P (x) in such

a way that Alice does not learn x and Bob does not gain any additional information

about P (except P (x)). This problem was first investigated by [58]. Subsequently,

there have been more protocols improving the communication and computation ef-

ficiency [23] as well as extending the problem to floating point numbers [16]. For

our protocols, we use the protocol given in [23] since it requires only O(k) exponen-
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tiations in order to evaluate a polynomial of degree k (where the constant is very

small). This works well since we only require evaluation of low-degree polynomials.

We now briefly describe the protocol used for oblivious polynomial evaluation.

This description is excerpted from [53]: Let P (y) =
∑k

i=0 aiy
i be Alice’s input and x

be Bob’s input. The following protocol enables Bob to compute gP (x), where g is a

generator of a group in which the Decisional Diffie-Hellman assumption holds. The

protocol can be converted to one computing P (x) using the methods of Paillier [60],

who presented a trapdoor for computing discrete logs. The protocol is quite simple

since the parties are assumed to be semi-honest. Bit-commitment and zero knowledge

proofs can be used to achieve security against malicious parties. The protocol consists

of the following steps:

Bob chooses a secret key s, and sends gs to Alice.

for i = 0 . . . k do

Bob generates a random ri.

Bob computes ci = (gri, gsrigxi

).

end for

Bob sends c0, . . . , ck to Alice.

Alice computes C =
∏k

i=0 (ci)
ai = (gR, gsRgP (x)), where R =

∑k
i=0 riai.

Alice chooses a random value r and computes C ′ = (gRgr, gsRgP (x)gsr).

Alice sends C ′ to Bob.

Bob divides the second element of C ′ by the first element of C ′ raised to the power

of s, and obtains gP (x).

By the DDH assumption, Alice learns nothing of xi from the messages c0, . . . , ck

sent by Bob to her. On the other hand, Bob learns nothing of P from C ′.

3.5.4 Privately Computing lnx

In classifying an instance, we need to be able to privately compute lnx, where

x = x1 +x2 with x1 known to P1 and x2 known to P2. Thus, P1 should get y1 and P2
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should get y2 such that y1 +y2 = ln x = ln(x1 +x2). One of the key results presented

in [54] was a cryptographic protocol for this computation. We now describe the

protocol in brief: Note that lnx is Real while general cryptographic tools work over

finite fields. We multiply the ln x with a known constant to make it integral.

The basic idea behind computing random shares of ln(x1+x2) is to use the Taylor

approximation for lnx. Remember that the Taylor approximation gives us:

ln(1 + ǫ)

=

∞
∑

i=1

(−1)i−1ǫi

i

= ǫ−
ǫ2

2
+
ǫ3

3
−
ǫ4

4
+ . . . for − 1 < ǫ < 1

For an input x, let n = ⌊log2 x⌋. Then 2n represents the closest power of 2 to x.

Therefore, x = x1 + x2 = 2n(1 + ǫ) where −1/2 ≤ ǫ ≤ 1/2. Consequently,

ln(x) = ln(2n(1 + ǫ))

= ln 2n + ln(1 + ǫ)

≈ ln 2n +
∑

i=1...k

(−1)i−1ǫi/i

= ln 2n + T (ǫ)

where T (ǫ) is a polynomial of degree k. This error is exponentially small in k.

There are two phases to the protocol. Phase 1 finds an appropriate n and ǫ. Let

N be a predetermined (public) upper-bound on the value of n. First, Yao’s circuit

evaluation is applied to the following small circuit which takes x1 and x2 as input

and outputs random shares of ǫ2N and 2Nn ln 2. Note that ǫ2n = x − 2n, where n

can be determined by simply looking at the two most significant bits of x and ǫ2N

is obtained simply by shifting the result by N − n bits to the left. Thus, the circuit

outputs random α1 and α2 such that α1 + α2 = ǫ2N , and also outputs random β1

and β2 such that β1 +β2 = 2Nn ln 2. This circuit can be easily constructed. Random

shares are obtained by having one of the parties input random values α1, β1 ∈R F

into the circuit and having the circuit output α2 = ǫ2N − α1 and β2 = 2Nn ln 2− β1

to the other party.
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Phase 2 of the protocol involves computing shares of the Taylor series approxi-

mation, T (ǫ). This is done as follows: P1 chooses a random w1 ∈ F and defines a

polynomial Q(x) such that w1 +Q(α2) = T (ǫ). Thus Q(·) is defined as

Q(x) = lcm(2, . . . , k)

k
∑

i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− w1

P1 and P2 then execute an oblivious polynomial evaluation with P1 inputting Q(·)

and P2 inputting α2, in which P2 obtains w2 = Q(α2). P1 and P2 define u1 =

lcm(2, . . . , k)β1 + w1 and u2 = lcm(2, . . . , k)β2 + w2. We have that u1 + u2 ≈

2N lcm(2, . . . , k) lnx

Further detail on the protocol, as well as the proof of security, can be found

in [54].

3.5.5 Secure Set Intersection

There are many different secure set intersection protocols. [37,73]. Here, we give

a brief description of a protocol based on [37].

Assume that each site has n elements, where Site S1 has a1 . . . an and Site S2

has b1 . . . bn. Using a homomorphic public key encryption (i.e., secure encryption

that satisfies E(a).E(b) = E(a+ b), (E(a))c = E(ca)), S1 can generate a polynomial

P (y) = Πn
i=1(ai − y) =

∑n
i=0(ci ∗ y

i) with n+1 coefficient and encrypt each coeffi-

cient with homomorphic public key encryption. Note that if any of the bi is in the

intersection then P (bi) will be zero. Since the coefficients are encrypted, there is no

way that site S2 can learn the polynomial P but can calculate the encrypted polyno-

mial result multiplied with a random number using the above mentioned properties

of the homomorphic encryption. Therefore S2 computes E(rP (bi) + rbi
) for every

element bi, where rbi
is a unique random number for bi. If bi is in the intersection

set then S1 will get rbi
. Now S1 and S2 can use a small secure circuit evaluation to

check whether the intersection size is bigger than the threshold. The circuit basically

checks whether the ith result retrieved by the S1 after decryption is equal to rbi
and
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then checks the threshold. At the end of the protocol each site (or even only one of

the sites) learns only if the threshold is exceeded or not.

3.5.6 Connections Between Secure Computation Methods

We have utilized many different secure computation subroutines in our proto-

cols. In an actual implementation, a few well implemented secure protocols suffice.

The rest can be easily built from those basic few protocols: secure summation and

polynomial evaluation. Secure ln(x) (Chapter 3.5.4) is already defined using secure

polynomial evaluation. We can also give a simple protocol for secure dot product

using polynomial evaluation. Assume Alice has A = a1, a2, . . . , ak and Bob has

B = b1, b2, . . . , bk.

Alice chooses k randoms r1, r2, . . . , rk.

Alice forms k degree 1 polynomials Bob forms

~U =

















P1(y) = a1y + r1

P2(y) = a2y + r2
...

Pk(y) = aky + rk

















~V =

















b1

b2
...

bk

















Alice and Bob engage in k degree 1-polynomial evaluation in parallel so that (only)

Bob gets Pk(bk) for all k:

~X =

















P1(b1)

P2(b2)
...

Pk(bk)

















Alice forms Bob forms

Ra =
∑k

i=1 ri Rb =
∑k

i=1
~X(i)

Clearly Rb+(−Ra) is the desired dot product result. Also given a dot product proto-

col, we can easily create a protocol for polynomial evaluation. Let P (y) =
∑k

i=0 aiy
i
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be Alice’s input and x be Bob’s input, using secure dot product, Bob can evaluate

the P (x) as follows

Alice forms Bob forms

~U =

















a0

a1

...

ak

















~V =

















1

x
...

xk

















Alice and Bob engage in secure dot product so that (only) Bob gets r = ~U.~V

Clearly r =
∑k

i=0 aix
i = P (x).

The above simple and efficient conversions indicate that a toolbox with imple-

mentation of few protocols may be sufficient for implementing a complex privacy-

preserving data mining algorithms.
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4 PRIVACY-PRESERVING DISTRIBUTED ASSOCIATION RULE MINING

4.1 Introduction

This chapter addresses the problem of efficiently computing association rules

when the goal is to reveal only the association rules and nothing else. We assume

homogeneous databases: All sites have the same schema, but each site has informa-

tion on different entities. The goal is to produce association rules that hold globally,

while limiting the information shared about each site.

Computing association rules without disclosing individual transactions is straight-

forward. We can compute the global support and confidence of an association rule

AB ⇒ C knowing only the local supports of AB and ABC, and the size of each

database:

supportAB⇒C =

∑sites
i=1 support countABC(i)
∑sites

i=1 database size(i)

supportAB =

∑sites
i=1 support countAB(i)

∑sites
i=1 database size(i)

confidenceAB⇒C =
supportAB⇒C

supportAB

Note that this doesn’t require sharing any individual transactions. We can easily

extend an algorithm such as a-priori [3] to the distributed case using the following

lemma: If a rule has support > k% globally, it must have support > k% on at

least one of the individual sites. A distributed algorithm for this would work as

follows: Request that each site send all rules with support at least k. For each rule

returned, request that all sites send the count of their transactions that support the

rule, and the total count of all transactions at the site. From this, we can compute

the global support of each rule, and (from the above lemma) be certain that all
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rules with support at least k have been found. More thorough studies of distributed

association rule mining can be found in [17, 18].

The above approach protects individual data privacy, but it does require that

each site disclose what rules it supports, and how much it supports each potential

global rule. What if this information is sensitive? For example, suppose that a trade

association of steel mini-mills would like to help members improve their ability to

compete with large integrated mills in producing high-grade steel. The members

have tried to produce high-grade steels, but the products produced have a much

higher defect rate than those from the integrated mills. It appears that certain

combinations of raw materials are not suitable for producing the high-grade steels,

but the number of types of materials (recycled steel, purchased slab, etc.) make

it cost-prohibitive for an individual mill to experiment sufficiently to determine the

offending combinations. Instead, they agree to a common representation for raw

materials and defect rates, and to share information to produce globally valid as-

sociation rules linking raw materials and defects. From this, they produce a rule

scrap iron&high carbon steel ⇒ Stress fractures.

Suppose that one mini-mill has developed a process that allows them to produce

high-grade steel using a combination of scrap iron and high carbon steel but still

wants to improve its process by using others experience. This new process is a trade

secret, allowing them to be more profitable than their competitors. Sharing their

support for the above rule and the antecedent gives the other mini-mills the knowl-

edge that such a process is possible – and they will increase research (or corporate

spying), erasing advantage of the secret.

We present a solution that preserves such secrets – the parties learn (almost)

nothing beyond the global results. The solution is efficient: The additional cost rela-

tive to previous non-secure techniques is O(candidate itemsets ∗ sites) encryptions,

and a constant increase in the number of messages.

The method presented here assumes three or more parties. In the two party case,

knowing a rule is supported globally and not supported at one’s own site reveals that
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E1(ABC)

E3(E1(ABC))E2(E3(E1(ABC))) 2
ABD

1
ABC

3
ABC

E2(E3(ABC))
E2(E3(ABD))

E3(ABC)
E3(ABD)

ABC
ABD

Figure 4.1. Determining global candidate itemsets

the other site supports the rule. Thus, much of the knowledge we try to protect is

revealed even with a completely secure method for computing the global results. We

discuss the two party case further in Chapter 4.5. By the same argument, we assume

no collusion, as colluding parties can reduce this to the two party case.

4.1.1 Private Association Rule Mining Overview

Our method follows the basic approach outlined on Page 27 except that values

are passed between the local data mining sites rather than to a centralized combiner.

The two phases are discovering candidate itemsets (those that are frequent on one

or more sites), and determining which of the candidate itemsets meet the global

support/confidence thresholds.

The first phase (Figure 4.1) uses commutative encryption. Each party encrypts

its own itemsets, then the (already encrypted) itemsets of every other party. These

are passed around, with each site decrypting, to obtain the complete set.
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2
ABC=9

DBSize=200

1
ABC=18

DBSize=300

3
ABC=5

DBSize=100

ABC: R+count-freq.*DBSize

R=17

ABC: 17+9-.05*200

ABC: 12+18-.05*300

ABC: 19 ≥ R?

ABC: YES!

Figure 4.2. Determining if itemset support exceeds threshold

In the second phase (Figure 4.2), an initiating party passes its support count,

plus a random value, to its neighbor. The neighbor adds its support count and passes

it on. The final party then engages in a secure comparison with the initiating party

to determine if the final result is greater than the threshold plus the random value.

This gives a brief, oversimplified idea of how the method works. Chapter 4.3

gives full details. Before going into the details, we give relevant background and

definitions.

4.2 Background

There are several bodies of work that serve as a basis for our work. This section

summarizes association rule mining and related concepts used in our solution.
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4.2.1 Mining of Association Rules

The association rules mining problem can be defined as follows: [3] Let I =

{i1, i2, . . . , in} be a set of items. Let DB be a set of transactions, where each trans-

action T is an itemset such that T ⊆ I. Given an itemset X ⊆ I, a transaction

T contains X if and only if X ⊆ T . An association rule is an implication of the

form X ⇒ Y where X ⊆ I, Y ⊆ I and X ∩ Y = ∅. The rule X ⇒ Y has sup-

port s in the transaction database DB if s% of transactions in DB contain X ∪ Y .

The association rule holds in the transaction database DB with confidence c if c%

of transactions in DB that contain X also contains Y. An itemset X with k items

called k-itemset. The problem of mining association rules is to find all rules whose

support and confidence are higher than certain user specified minimum support and

confidence.

In this simplified definition of association rules, missing items, negatives and

quantities are not considered. In this respect, transaction database DB can be seen

as a 0/1 matrix where each column is an item and each row is a transaction. In this

work, we use this view of association rules.

Distributed Mining of Association Rules

The above problem of mining association rules can be extended to distributed

environments. Let us assume that a transaction database DB is horizontally parti-

tioned among n sites (namely S1, S2, . . . , Sn) where DB = DB1 ∪DB2 ∪ · · · ∪DBn

and DBi resides at site Si (1 ≤ i ≤ n). The itemset X has local support count

of X.supi at site Si if X.supi of the transactions contains X. The global support

count of X is given as X.sup =
∑n

i=1X.supi. An itemset X is globally supported

if X.sup ≥ s × (
∑n

i=1 |DBi|). Global confidence of a rule X ⇒ Y can be given as

{X ∪ Y } .sup/X.sup.

The set of large itemsets L(k) consists of all k-itemsets that are globally supported.

The set of locally large itemsets LLi(k) consists of all k-itemsets supported locally at
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site Si. GLi(k) = L(k)∩LLi(k) is the set of globally large k-itemsets locally supported

at site Si. The aim of distributed association rule mining is to find the sets L(k) for all

k > 1 and the support counts for these itemsets, and from this compute association

rules with the specified minimum support and confidence.

A fast algorithm for distributed association rule mining is given in Cheung et.

al. [17]. Their procedure for fast distributed mining of association rules (FDM) is

summarized below.

1. Candidate Sets Generation: Generate candidate sets CGi(k) based on

GLi(k−1), itemsets that are supported by the Si at the (k-1)-th iteration, using

the classic a-priori candidate generation algorithm. Each site generates can-

didates based on the intersection of globally large (k-1) itemsets and locally

large (k-1) itemsets.

2. Local Pruning: For eachX ∈ CGi(k), scan the databaseDBi at Si to compute

X.supi. If X is locally large Si, it is included in the LLi(k) set. It is clear that

if X is supported globally, it will be supported in one site.

3. Support Count Exchange: LLi(k) are broadcast, and each site computes

the local support for the items in ∪iLLi(k).

4. Broadcast Mining Results: Each site broadcasts the local support for item-

sets in ∪iLLi(k). From this, each site is able to compute L(k).

The details of the above algorithm can be found in [17].

4.3 Secure Association Rule Mining

We will now use the tools described in Chapter 3 to construct a distributed

association rule mining algorithm that preserves the privacy of individual site results.

The algorithm given is for three or more parties – the difficulty with the two party

case is discussed in Chapter 4.5.
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4.3.1 Problem Definition

Let i ≥ 3 be the number of sites. Each site has a private transaction database

DBi. We are given support threshold s and confidence c as percentages. The goal

is to discover all association rules satisfying the thresholds, as defined in Chapter

4.2.1. We further desire that disclosure be limited: No site should be able to learn

contents of a transaction at any other site, what rules are supported by any other

site, or the specific value of support/confidence for any rule at any other site, unless

that information is revealed by knowledge of one’s own data and the final result.

(e.g., if a rule is supported globally but not at one’s own site, we can deduce that at

least one other site support the rule.) Here we assume no collusion (this is discussed

further in Chapter 4.4.)

4.3.2 Method

Our method follows the general approach of the FDM algorithm [17], with special

protocols replacing the broadcasts of LLi(k) and the support count of items in LL(k).

We first give a method for finding the union of locally supported itemsets without

revealing the originator of the particular itemset. We then provide a method for

securely testing if the support count exceeds the threshold.

Secure union of locally large itemsets

In the FDM algorithm (Chapter 4.2.1), step 3 reveals the large itemsets supported

by each site. To accomplish this without revealing what each site supports, we

instead exchange locally large itemsets in a way that obscures the source of each

itemset. We assume a commutative encryption algorithm with negligible collision

probability (Chapter 3.2.3).

The main idea is that each site encrypts the locally supported itemsets, along

with enough “fake” itemsets to hide the actual number supported. Each site then
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encrypts the itemsets from other sites. Since Equation 3.3 holds, duplicates in the

locally supported itemsets will be duplicates in the encrypted itemsets, and can be

deleted. In addition, the decryption can occur in any order, so by permuting the

encrypted itemsets we prevent sites from tracking the source of each itemset. The

algorithm is given in Protocol 4.1. In the protocol F represents the data that can

be used as fake itemsets. |LLei(k)| represents the set of the encrypted k itemsets at

site i. Ei is the encryption and Di is the decryption by site i. Clearly, Protocol

4.1 finds the union without revealing which itemset belongs to which site. It is not,

however, secure under the definitions of secure multi-party computation. It reveals

the number of itemsets having common support between sites, e.g., sites 3, 5, and

9 all support some itemset. It does not reveal which itemsets these are, but a truly

secure computation (as good as each site giving its input to a “trusted party”) could

not reveal even this count. Allowing innocuous information leakage (the number of

itemsets having common support) allows an algorithm that is sufficiently secure with

much lower cost than a fully secure approach. (Though this leakage is not acceptable

for steel mill example given in the introduction)

Even the number of jointly supported itemsets can be masked by allowing sites to

inject itemsets that aren’t really supported locally (i.e, steel mills may include fake

large itemsets to prevent disclosures); if not globally supported they will be filtered

from the final result when global support is calculated. The commonly supported

itemsets “leak” then becomes an upper bound rather than exact, at an increased

cost in the number of candidates that must be checked for global support. This

is still not truly zero-knowledge, but does limit confidence in the common support

information leaked.

If we deem leakage of the number of commonly supported itemsets as acceptable,

we can prove that this method is secure under the definitions of secure multi-party

computation. We do this by augmenting the result with the leaked information, and

proving that everything else seen during the protocol can be simulated. This tech-

nique can be quite powerful for generating reasonably secure and efficient protocols.
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Protocol 4.1 Finding secure union of large itemsets of size k
Require: N ≥ 3 sites numbered 0..N − 1, set F of non-itemsets.

Phase 0: Encryption of all the rules by all sites
for each site i do

generate LLi(k) as in steps 1 and 2 of the FDM algorithm
LLei(k) = ∅
for each X ∈ LLi(k) do

LLei(k) = LLei(k) ∪ {Ei(X)}
end for

for j = |LLei(k)| + 1 to ⌊ 1
minimum support⌋ do

LLei(k) = LLei(k) ∪ {Ei(random selection from F )}
end for

end for

Phase 1: Encryption by all sites
for Round j = 0 to N − 1 do

if Round j= 0 then

Each site i sends LLei(k) to site (i + 1) mod N
else

Each site i encrypts all items in LLe(i−j mod N)(k) with Ei and sends it to site
(i + 1) mod N

end if

end for{At the end of Phase 1, site i has the itemsets of site (i + 1) mod N encrypted
by every site}

Phase 2: Merge odd/even itemsets
Each site i sends LLei+1 mod N to site 1 − (((i + 1) mod N) mod 2)

Site 0 sets RuleSet1 = ∪
⌈(N−1)/2⌉
j=1 LLe(2j−1)(k)

Site 1 sets RuleSet0 = ∪
⌊(N−1)/2⌋
j=0 LLe(2j)(k)

Phase 3: Merge all itemsets
Site 1 sends RuleSet1 to site 0
Site 0 sets RuleSet = RuleSet0 ∪ RuleSet1

Phase 4: Decryption
for i = 0 to N − 1 do

Site i decrypts items in RuleSet using Di

Site i sends RuleSet to site i + 1 mod N
end for

Site N − 1 decrypts items in RuleSet using DN−1

RuleSet(k) = RuleSet − F
Site N − 1 broadcasts RuleSet(k) to sites 0..N − 2
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A protocol that is proved not to reveal anything other than the required result and

information deemed not privacy threatening could be sufficient for many practical

purposes. We use this approach to prove that Protocol 4.1 reveals only the union of

locally large itemsets and a clearly bounded set of innocuous information.

Theorem 4.3.1 Protocol 4.1 privately computes the union of the locally large item-

sets assuming no collusion, revealing at most the result ∪N
i=1LLi(k) and:

1. Size of intersection of locally supported itemsets between any subset of odd

numbered sites,

2. Size of intersection of locally supported itemsets between any subset of even

numbered sites, and

3. Number of itemsets supported by at least one odd and one even site.

Proof Phase 0: Since no communication occurs in Phase 0, each site can simulate

its view by running the algorithm on its own input.

Phase 1: At the first step, each site sees LLei−1(k). The size of this set is

⌊1/minimum support⌋. Assuming the security of encryption, each item in this

set is computationally indistinguishable from a number chosen from a uniform dis-

tribution. A site can therefore simulate the set using a uniform random number

generator. This same argument holds for each subsequent round.

Phase 2: In Phase 2, site 0 gets the fully encrypted sets of itemsets from the

other even sites. Assuming that each site knows the source of a received message,

site 0 will know which fully encrypted set LLe(k) contains encrypted itemsets from

which (odd) site. Equal itemsets will now be equal in encrypted form. Thus, site

0 learns if any odd sites had locally supported itemsets in common. We can still

build a simulator for this view, using the information in point 1 above. If there are k

itemsets known to be common among all ⌊N/2⌋ odd sites (from point 1), generate k

random numbers and put them into the simulated LLei(k). Repeat for each ⌊N/2⌋−1

subset, etc., down to 2 subsets of the odd sites. Then fill each LLei(k) with randomly
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chosen values until it reaches size ⌊1/minimum support⌋. The generated sets will

have exactly the same combinations of common items as the real sets, and since

the values of the items in the real sets are computationally indistinguishable from a

uniform distribution, they simulation matches the real values.

The same argument holds for site 1, using information from point 2 to generate

the simulator.

Phase 3: Site 1 eliminates duplicates from the LLei(k) to generate RuleSet1. We

now demonstrate that Site 0 can simulate RuleSet1. First, the size of RuleSet1 can

be simulated knowing point 2. There may be itemsets in common between RuleSet0

and RuleSet1. These can be simulated using point 3: If there are k items in common

between even and odd sites, site 0 selects k random items from RuleSet0 and inserts

them into RuleSet1. RuleSet1 is then filled with randomly generated values. Since

the encryption guarantees that the values are computationally indistinguishable from

a uniform distribution, and the set sizes |RuleSet0|, |RuleSet1|, and |RuleSet0 ∩

RuleSet1| (and thus |RuleSet|) are identical in the simulation and real execution,

this phase is secure.

Phase 4: Each site sees only the encrypted items after decryption by the pre-

ceding site. Some of these may be identical to items seen in Phase 2, but since all

items must be in the union, this reveals nothing. The simulator for site i is built as

follows: take the values generated in Phase 2 step N − 1 − i, and place them in the

RuleSet. Then insert random values in RuleSet up to the proper size (calculated

as in the simulator for Phase 3). The values we have not seen before are computa-

tionally indistinguishable from data from a uniform distribution, and the simulator

includes the values we have seen (and knew would be there), so the simulated view

is computationally indistinguishable from the real values.

The simulator for site N − 1 is different, since it learns RuleSet(k). To simulate

what it sees in Phase 4, site N − 1 takes each item in RuleSet(k), the final result,

and encrypts it with EN−1. These are placed in RuleSet. RuleSet is then filled

with items chosen from F , also encrypted with EN−1. Since the choice of items from



38

F is random in both the real and simulated execution, and the real items exactly

match in the real and simulation, the RuleSet site N − 1 receives in Phase 4 is

computationally indistinguishable from the real execution.

Therefore, we can conclude that above protocol is privacy preserving in the semi-

honest model with the stated assumptions.

The information disclosed by points 1-3 could be relaxed to the number of item-

sets support by 1 site, 2 sites, ..., N sites if we assume anonymous message transmis-

sion (e.g., Crowds [65]), however this raises other security issues and increases the

communication cost for little increased privacy.

Testing support threshold without revealing support count

Protocol 4.1 gives the full set of locally large itemsets LL(k). We still need

to determine which of these itemsets are supported globally. Step 4 of the FDM

algorithm forces each site to reveal its own support count for every itemset in LL(k).

All we need to know is for each itemset X ∈ LL(k), is X.sup ≥ s% × |DB|? The

following allows us to reduce this to a comparison against a sum of local values (the

excess support at each site):

X.sup ≥ s ∗ |DB| = s ∗ (

n
∑

i=1

|DBi|)

n
∑

i=1

X.supi ≥ s ∗ (
n
∑

i=1

|DBi|)

n
∑

i=1

(X.supi − s ∗ |DBi|) ≥ 0

Therefore, checking for support is equivalent to checking if
∑n

i=1(X.supi − s ∗

|DBi|) ≥ 0. The challenge is to do this without revealing X.supi or |DBi|. An

algorithm for this is given in Protocol 4.2. The first site generates a random

number xr for each itemset X, adds that number to its (X.supi−s∗|DBi|), and sends

it to the next site. (All arithmetic is (mod m) where m ≥ 2 ∗ |DB|, for reasons
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Protocol 4.2 Finding the global support counts securely
Require: N ≥ 3 sites numbered 0..N − 1, m ≥ 2 ∗ |DB|

rule set = ∅
at site 0:
for each r ∈ candidate set do

choose random integer xr from a uniform distribution over 0..m − 1;
t = r.supi − s ∗ |DBi| + xr (mod m);
rule set = rule set ∪ {(r, t)};

end for

send rule set to site 1 ;
for i = 1 to N − 2 do

for each (r, t) ∈ rule set do

t̄ = r.supi − s ∗ |DBi| + t (mod m);
rule set = rule set − {(r, t)} ∪ {(r, t̄)} ;

end for

send rule set to site i + 1 ;
end for

at site N-1:
for each (r, t) ∈ rule set do

t̄ = r.supi − s ∗ |DBi| + t (mod m);
securely compute if (t̄ − xr) (mod m) < m/2 with the site 0; { Site 0 knows xr }
if (t̄ − xr) (mod m) < m/2 then

multi-cast r as a globally large itemset.
end if

end for
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that will become apparent later.) The random number masks the actual excess

support, so the second site learns nothing about the first site’s actual database size

or support. The second site adds its excess support and sends the value on. The

random value now hides both support counts. The last site in the change now has
∑n

i=1(X.supi − s ∗ |DBi|)+ xr (mod m). Since the total database size |DB| ≤ m/2,

negative summation will be mapped to some number that is bigger then or equal to

m/2. (−k = m−k mod m.) The last site needs to test if this sum minus xr (mod m)

is less then m/2. This can be done securely using Yao’s generic method [77]. Clearly

this algorithm is secure as long as there is no collusion, as no site can distinguish

what it receives from a random number. Alternatively, the first site can simply send

xr to the last site. The last site learns the actual excess support, but does not learn

the support values for any single site. In addition, if we consider the excess support

to be a valid part of the global result, this method is still secure.

Theorem 4.3.2 Protocol 4.2 privately computes globally supported itemsets in the

semi-honest model.

Proof To show that Protocol 4.2 is secure under the semi-honest model, we have

to show that a polynomial time simulator can simulate the view of the parties during

the execution of the protocol, based on their local inputs and the global result. We

also need to use the general composition theorem for semi-honest computation. [39]

The theorem says that if g securely reduces to f and f is computed f securely then

the computation of f(g) is secure. In our context, f is the secure comparison of two

integers, and g is Protocol 4.2. First, we show that the view of any site during the

addition phase can efficiently simulated given the input of that site and the global

output. Site i uniformly chooses a random integer sr, 0 ≤ sr < m. Next, we show

that view and the output of the simulator are computationally indistinguishable by

showing that the probability of seeing a given x in both is equal. In the following

equations, xr is the random number added at the beginning of Protocol 4.2, 0 ≤

Xr < m. The arithmetic is assumed to be (mod m). Also note that X.supi is fixed

for each site.
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Pr
[

V IEW Protocol4.2
i = x

]

= Pr xr = x−
k=i−1
∑

k=1

X.supi

]

=
1

m

= Pr [sr = x]

= Pr [Simulatori = x]

Therefore, what each site sees during the addition phase is indistinguishable from

that simulated with a random number generator. During the comparison phase we

can use the generic secure method, so from the composition theorem we conclude

that Protocol 4.2 is secure in the semi-honest model.

4.3.3 Securely Finding Confidence of a Rule

To find if the confidence of a rule X ⇒ Y is higher than the given confidence

threshold c, we have to check if {X∪Y }.sup
Y.sup

≥ c. We will denote the support of

{X ∪ Y } .supi as XY.supi in the following equations.

{X ∪ Y } .sup

Y.sup
≥ c ⇒

∑i=n
i=1 XY.supi

∑i=n
i=1 X.supi

≥ c

⇒
i=n
∑

i=1

XY.supi ≥ c ∗ (

i=n
∑

i=1

X.supi)

⇒
i=n
∑

i=1

(XY.supi − c ∗ X.supi) ≥ 0

Since each site knows XY.supi and X.supi, we can easily use Protocol 4.2 to securely

calculate the confidence of a rule.

4.4 Security Against Collusion

Collusion in Protocol 4.1 could allow a site to know its own frequent itemsets after

encryption by all parties. Using this it can learn the size of the intersection between

its own itemsets and those of another party. Specifically, if site i colludes with site
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i−1, it can learn the size of its intersection with site i+1. Collusion between sites 0

and 1 exacerbates the problem, as they know encrypted values of itemsets for all odd

(even) sites. This may reveal the actual itemsets; if |LLi(k) ∩ LLi+1(k)| = |LLi(k)|,

then site i has learned a subset of the itemsets at site i + 1. Noise addition (fake

itemsets) limits the damage.

Collusion can be a problem for our second protocol, because site i + 1 and site

i− 1 can collude to reveal site i’s excess support value. This protocol can be made

resilient against collusions using a straightforward technique from the cryptographic

community. The basic idea is each party divides its input into n parts, and send the

n− 1 pieces to different sites. To reveal any parties input, n− 1 party must collude.

The following is a brief summary of the protocol, details can be found in [7]. (A

slightly more efficient version can be found in [19].)

1. Each site i randomly chooses n elements such that xi =
∑n

j=1 zi,j mod m where

xi is the input of site i. Site i sends zi,j to site j.

2. Every site i computes wi =
∑n

j=1 zj,i mod m and sends wi to site n.

3. Site n computes the final result
∑n

i=1wi mod m

The above protocol can be easily used to improve our second protocol. Assume

site 0 is the starting site in our protocol and site N − 1 is the last site. Choose

m such that 2 ∗ |DB| ≤ m. Set x1 = X.sup1 − s ∗ d1 + xr mod m and xi =

X.supi−s∗di mod m, i 6= 1. After this point, the above protocol can be used to find
∑n

i=1(X.supi − s ∗ di) + xr mod m. At the end, one secure addition and comparison

is done as in Protocol 4.2 to check if itemset X is globally supported.

4.5 Two Party Case

The two party case is problematic. First, globally supported itemsets that are not

supported at one site are known to be supported at the other site – this is an artifact

of the result. Protocol 4.1 is worse yet, as itemsets that are supported at one site but
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not supported globally will become known to the other site. To retain any privacy,

we must dispense with local pruning entirely (steps 1 and 2 of the FDM algorithm)

and compute support for all candidates in CG(k) (as computed from L(k−1)). Second,

the secure comparison phase at the end of the protocol 4.2 cannot be removed, as

otherwise the support of one site is disclosed to the other. It is difficult to improve

on this, as evidenced by the following theorem.

Theorem 4.5.1 For itemset X, to check whether X.sup1+X.sup2

d1+d2
≥ k can be securely

computed if and only if Yao’s millionaire problem can be securely solved for arbitrary

a and b.

Proof Checking X.sup1+X.sup2

d1+d2
≥ k is equivalent to checking (X.sup1 − k ∗ d1) ≥

(k ∗d2−X.sup2). If we have a = X.sup1−k ∗d1 and b = k ∗d2−X.sup2, we have an

instance of Yao’s millionaire problem for a and b. Assume we have a secure protocol

that computes whether X is supported globally or not for arbitrary X.sup1, X.sup2,

d1, d2 and k. Take X.sup1 = 3a, d1 = 4a,X.sup2 = b, d2 = 4 ∗ b and k = 0.5. This is

equivalent to checking whether a ≥ b.

The above theorem implies that if we develop a method that can check securely

if an itemset is globally supported for the two party case in semi-honest model, it is

equivalent to finding a new solution to Yao’s millionaire problem. This problem is

well studied in cryptography and to our knowledge, there is no significantly faster

way for arbitrary a and b than using the generic circuit evaluation solution.

It is worth noting that eliminating local pruning and using Protocol 4.2 to com-

pute the global support of all candidates in CG(k) is secure under the definitions

of secure multi-party computation, for two or more parties. The problem with the

two-party case is that knowing a rule is supported globally that is not supported at

one’s own site reveals that the other site supports that rule. This is true no matter

how secure computation, it is an artifact of the result. Thus, extending to secure

computation in the two party case is unlikely to be of use.
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4.6 Communication and Computation Costs

We now give cost estimates for association rule mining using the method we have

presented. The number of sites is N . Let the total number of locally large candidate

itemsets be |CGi(k)|, and the number of candidates that can be directly generated

by the globally large (k-1) itemsets be |CG(k)| (= apriori gen(L(k−1))). The excess

support X.supi − |DBi| of an itemset X can be represented in m = ⌈log2(2 ∗ |DB|)⌉
bits. Let t be the number of bits in the output of the encryption of an itemset. A

lower bound on t is log2(|CG(k)|); based on current encryption standards t = 512 is

an appropriate value.1

The total bit-communication cost for Protocol 4.1 is O(t∗ |CG(k)| ∗N2), however,

as much of this happens in parallel we can divide by N to get an estimate of the

communication time. For comparison, the FDM algorithm requires O(t∗|∪iLLi(k)|∗
N) for the corresponding steps, with effectively the same reduction in time due to

parallelism (achieved through broadcast as opposed to simultaneous point-to-point

transmissions). The added cost of Protocol 4.1 is due to padding LLei(k) to hide

the actual number of local itemsets supported, and the increase in bits required to

represent encrypted itemsets. The worst-case value for |CG(k)| is
(

item domain size

k

)

,

however, the optimizations that make the a-priori algorithm effective in practice

would fail for such large |CG(k)|. In practice, only in the first round (k = 1) will

this padding pose a high cost; |CG(1)| = the size of the domain of items. In later

iterations, the size of |CG(k)| will be much closer to |LLei(k)|. The computation cost

increase due to encryption is O(t3 ∗ |CG(k)| ∗N2), where t is the number of bits in

the encryption key. Here t3 represents the bit-wise cost of modular exponentiation.

Protocol 4.2 requires O(m ∗ | ∪i LLi(k)| ∗ (N + t)) bits of communication. The

t factor is for the secure circuit evaluations between sites N − 1 and 0 required to

determine if each itemset is supported. FDM actually requires an additional factor

of N due to the broadcast of local support instead of point-to-point communication.

1The worst-case bound on |CG(k)| is
(

item domain size

k

)

. t = 512 can represent such worst-case
itemsets for 50 million possible items and k = 20, adequate for most practical cases.
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However, the broadcast results in a single round instead of N rounds of our method.

The final secure comparison requires a computation cost of O(| ∪i LLi(k)| ∗m ∗ t3).
As discussed in Chapter 4.5, using only Protocol 4.2 directly on CG(k) is fully

secure assuming the desired result includes all globally large itemsets. The communi-

cation costs becomes O(m∗|CG(k)|∗N), but because the communication in Protocol

4.2 is sequential the communication time is roughly the same as the full protocol.

The encryption portion of the computation cost becomes O(|CG(k)| ∗m ∗ t3) for the

secure comparison at the end of the protocol. However, there is a substantial added

cost in computing the support, as we must compute support for all |CG(k)| itemsets.

This is generally much greater than the |CGi(k) ∪ (∪iLLi(k))| required under the full

algorithm (or FDM), as shown in [18]. It is reasonable to expect that this cost will

dominate the other costs, as it is linear in |DB|.

4.6.1 Optimizations and Further Discussion

The cost of “padding” LLei(k) from F to avoid disclosing the number of local

itemsets supported can add significantly to the communication and encryption costs.

In practice, for k > 1, |CG(k)| is likely to be of reasonable size. However, |CG(1)|
could be very large, as it is dependent only on the size of the domain of items, and

is not limited by already discovered frequent itemsets. If the participants can agree

on an upper bound on the number of frequent items supported at any one site that

is tighter than “every item may be frequent” without inspecting the data, we can

achieve a corresponding decrease in the costs with no loss of security. This is likely

to be feasible in practice; the very success of the a-priori algorithm is based on the

assumption that relatively few items are frequent. Alternatively, if we are willing

to leak an upper bound on the number of itemsets supported at each site, each site

can set its own upper bound and pad only to that bound. This can be done for

every round, not just k = 1. As a practical matter, such an approach would achieve

acceptable security and would change the |CG(k)| factor in the communication and
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encryption costs of Protocol 4.1 to O(| ∪i LLi(k)|), equivalent to FDM.

Another way to limit the encryption cost of padding is to pad randomly from the

domain of the encryption output rather than encrypting items from F . Assuming

|domain ofEi| >> |domain of itemsets|, the probability of padding with a value that

decrypts to a real itemset is small, and even if this occurs it will only result in

additional itemset being tested for support in Protocol 4.2. When the support count

is tested, such “false hits” will be filtered out, and the final result will be correct.

The comparison phase at the end of protocol 4.2 can be also removed, eliminating

the O(m∗ |∪iLLi(k)| ∗ t) bits of communication and O(|∪iLLi(k)| ∗m∗ t3) encryption

cost. This reveals the excess support for each itemset. Practical applications may

demand this count as part of the result for globally supported itemsets, so the only

information leaked is the support counts for itemsets in ∪iLLi(k) − L(k). As these

cannot be traced to an individual site, this will generally be acceptable in practice.

The cost estimates are based on the assumption that all frequent itemsets (even

1-itemsets) are part of the result. If exposing the globally frequent 1-itemsets is a

problem, the algorithm could easily begin with 2-itemsets (or larger). While the

worst-case cost would be unchanged, there would be an impact in practical terms.

Eliminating the pruning of globally infrequent 1-itemsets would increase the size

of CGi(2) and thus LLi(2), however, local pruning of infrequent 1-itemsets should

make the sizes manageable. More critical is the impact on |CG(2)|, and thus the

cost of padding to hide the number of locally large itemsets. In practice, the size

of CG(2) will rarely be the theoretical limit of
(

item domain size

2

)

, but this worst-case

bound would need to be used if the algorithm began with finding 2-itemsets (the

problem is worse for k > 2). A practical solution would again be to have sites agree

on a reasonable upper bound for the number of locally supported k-itemsets for the

initial k, revealing some information to substantially decrease the amount of padding

needed.
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4.6.2 Practical Cost of Encryption

While achieving privacy comes at a reasonable increase in communication cost,

what about the cost of encryption? As a test of this, we implemented Pohlig-

Hellman, described in Chapter 3.2.3. The encryption time per itemset represented

with t = 512 bits was 0.00428 seconds on a 700MHz Pentium 3 under Linux. Using

this, and the results for distributed association rule mining reported in [18], we can

estimate the cost of privacy-preserving association rule mining on the tests in [18].

The first set of experiments described in [18] contain sufficient detail for us to

estimate the cost of encryption. These experiments used three sites, an item domain

size of 1000, and a total database size of 500k transactions.

The encryption cost for the initial round (k = 1) would be 4.28 seconds at each

site, as the padding need only be to the domain size of 1000. While finding two-

itemsets could potentially be much worse (
(

1000
2

)

= 499500), in practice |CG(2)| is

much smaller. The experiment in [18] reports a total number of candidate sets

(
∑

k>1 |CG(k)|) of just over 100,000 at 1% support. This gives a total encryption

cost of around 430 seconds per site, with all sites encrypting simultaneously. This

assumes none of the optimizations of Chapter 4.6.1; if the encryption cost at each

site could be cut to |LLi(k)| by eliminating the cost of encrypting the padding items,

the encryption cost would be cut to 5% to 35% of the above on the datasets used

in [18].

There is also the encryption cost of the secure comparison at the end of Protocol

4.2. Although the data reported in [18] does not give us the exact size of ∪iLLi(k), it

appears to be on the order of 2000. Based on this, the cost of the secure comparison,

O(| ∪i LLi(k)| ∗m ∗ t3), would be about 170 seconds.

The total execution time for the experiment reported in [18] was approximately

800 seconds. Similar numbers hold at different support levels; the added cost of

encryption would at worst increase the total run time by roughly 75%.
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4.7 Conclusions

Cryptographic tools can be used to do data mining that would otherwise be pre-

vented due to security concerns. In this chapter, we have given procedures to mine

distributed association rules on horizontally partitioned data. We showed that dis-

tributed association rule mining can be done efficiently and securely under reasonable

assumptions.
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5 PRIVACY-PRESERVING DISTRIBUTED K-NEAREST NEIGHBOR

CLASSIFICATION

This chapter presents a method for privately computing k-nn classification from

distributed sources without revealing any information about the sources or their

data, other than that revealed by the final classification result.

Consider the case of a physician who wants to learn the most likely diagnosis for

a patient by looking at diagnoses of similar symptoms at other hospitals. Specif-

ically, the physician wants to use a k-nearest neighbor (k-nn) classifier to predict

the disease of the patient. Revealing the patient’s particular test results may not

be a threat to privacy (if only the physician knows the identity of the patient) but

privacy of the different hospitals may be at risk. If this procedure is implemented

näıvely, the researcher may learn that two patients with the same medical test results

are diagnosed with different diseases in different hospitals. This could damage the

reputations of the hospitals. The possibility of such incidents may prevent hospitals

from participating in such a diagnostic tool. The obvious question is, can this be

done without revealing anything other than the final classification? The answer is

yes: Here we present an efficient method with provable privacy properties for k-nn

classification.

We assume that each database is able to construct its own k-nearest neighbors

independently (This is possible because of the horizontally partitioned data assump-

tion). The distributed problems are determining which of the local results are the

closest globally, and finding the majority class of the global k-nearest neighbors. We

assume that attributes of the instance that needs to be classified are not private (i.e.,

we do not try to protect the privacy of the query issuer); we want to protect the

privacy of the data sources. The approach makes use of an untrusted, non-colluding

party (Chapter 3.3): a party that is not allowed to learn anything about any of the
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data, but is trusted not to collude with other parties to reveal information about the

data.

The basic idea is that each site finds its own k-nearest neighbors, and encrypts the

class with the public key of the site that sent the instance for classification (querying

site). The parties compare their k-nearest neighbors with those of all other sites

– except that the comparison gives each site a random share of the result, so no

party learns the result of the comparison. The results from all sites are combined,

scrambled, and given to the untrusted, non-colluding site. This site combines the

random shares to get a comparison result for each pair, enabling it to sort and

select the global k-nearest neighbors (but without learning the source or values of

the items). The querying site and the untrusted, non-colluding site then engage in

a protocol to find the class value. Each site learns nothing about other sites. (the

comparison results appears to be randomly chosen bits.) The untrusted site sees k∗n
encrypted results. It is able to totally order the results, but since it knows nothing

about what each means or where it comes from, it learns nothing. The querying site

only sees the final result.

Details of the algorithm are given in Chapter 5.2, along with a discussion of the

privacy of the method. Computation and communication costs are given in Chapter

5.3. First, we discuss related work and relevant background.

5.1 Related Work

Finding the k-nearest neighbors of a multidimensional data point q [50] and

building k-nn classifiers [38] have been well studied.

There has also been work in evaluating distributed top-k queries over remote

sources [12] and continuous top-k queries over distributed data streams [6]. As far

as we know, none of the previous work dealt with security issues.

Another closely related problem is private information retrieval [20]. The key

difference between this work and private information retrieval is that we do not
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view the query as private information, only the data. This enables solutions where

the communication cost is independent of the size of the database; a difficulty with

private information retrieval is that any solution that does not transfer the entire

database cannot be secure in an information theoretic sense. This can be improved

somewhat under computationally secure private information retrieval (cPIR); the

best known cPIR method for database of n bits needs at least O(nc) bit communi-

cation for any given c > 0 [51]. For many applications including homeland security,

we believe maintaining secrecy of the query point is not critical, it is the data that

must be protected.

5.2 Secure k-nn Classification

We first formally define the problem. Let R be the domain of the attributes and

C be the domain of the class values. Let Di denote the database of instances at site

Si. Let (x, d, k) be the query originated by site O, where x ∈ R is the instance to be

classified, and d : R × R → [0, 1] is a distance function used to determine which k

items are closest to x (e.g., Euclidean distance, although any metric could be used

provided each site can compute d(x, xj) for every xj in its database.) Given the

data instance x, our goal is to find the k nearest neighbors of x in the union of the

databases and return the class of the majority of those neighbors as the predicted

class of x:

Cx = Maj

(

∏

c

(

argmink
(xi,ci)∈D1∪D2···∪Dn

(d(xi, x))

))

where
∏

is the projection function and Maj is the majority function.

The security/privacy goal is to find Cx while meeting the following criteria:

• No site except O will be able to predict Cx better than looking at (x, d, k) and

its own database Di (E.g., if Site Si has k points xi such that d(x, xi) = 0, it

is likely that the majority class of the xi will be the result); and
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Figure 5.1. Information flow in secure k-nn classification

• No site learns anything about the source of xi except its own.

Theorem 5.2.1 shows this by proving what is disclosed. Assuming the number of

sites n and the query (x, d, k) are public, site O learns only the result Cx. The other

sites learn only what they can infer from their own data and the query.

We emphasize that the untrusted site learns nothing except the public values k

and n. A diagram showing the information flow is given in Figure 5.1.

5.2.1 The Algorithm

Given the query, each site can find its own closest k items without exchanging

information. These n ∗ k candidate items must contain the k nearest neighbors of x;

what remains is to find the closest k among the candidates and return the majority

class of those k instances to site O. This poses two security challenges:

1. Determining which of the n ∗ k items are the k nearest neighbors without

revealing anything about the items, where they come from, or their distance

to the instance that needs to be classified; and

2. Learning the class value while disclosing it to only the originating site.
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At first glance, this appears simple – have each site send their local k-nn distances

and classes to a third party C. C learns the result, but also learns distances and

the sites that contributes to the global k-nn result. A slightly more sophisticated

approach is for C to publish a candidate distance value, and have local sites return

the number of items within that distance, refining the value until k items are within

the distance. Then the class value can be computed. This still reveals the sites

that contribute to the global result, the distances to the queried instance, the final

classification result to C, and more. To ensure privacy concerns are met, we provide

a solution that (under the non-collusion assumption) reveals nothing to any site

that cannot be inferred by looking at its own data and the instance, except that O

learns the final result.

The use of an untrusted third party, along with public-key encryption, makes it

easy to solve challenge 2. Each site encrypts the class value with the public key of

O before passing it to the non-colluding site C. The data source sites are then left

out of the loop – since they never see the data again, they can learn nothing after

passing their data to C (e.g., they cannot test to see if their own encrypted values

match those selected for the result.) C and O will participate in a special protocol

to reveal only the majority class (explained later.)

Meeting challenge 1 is more difficult. Sending the distance d(xi, x) = di to C,

even with encrypted results, reveals information about the location of the points.

Instead site C is sent an n ∗ k − 1 length vector for each point xi, containing the

results of comparing xi with all other points. This enables C to order the points

and select the k nearest neighbors. Since the existence of a distance metric implies

a total ordering exists, and the number of points is fixed, C learns nothing.

Two problems remain. The first is that we must prevent C from learning which

point comes from which site, or it can learn the source of the k nearest neighbors

(among other things.) This is easily addressed – all points and their associated

comparison vectors are sent to one of the data sites Ss, which combines them and

scrambles the order before passing them on to C. Public key encryption, using C’s
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public key, prevents Ss from learning anything. The second issue is more challenging:

How do we build the comparison vectors at site Si without Si learning about values

at other sites? If two sites just compare items, they both learn something about the

data at the other site (e.g., if Si’s items are all closer to x than Sj’s items, both learn

that Sj does not have an item that contributes to the result.) For this we use the

share-splitting idea from secure multi-party computation. Instead of containing the

results of comparing xi with other items, the vector contains a random share of the

comparison result. E.g., if di for xi is smaller than dj for xj , then the comparison

di < dj should return 0. Either the element of the di vector corresponding to dj

and the element of the dj vector corresponding to di both contain 0, or they both

contain 1 – 0 ⊕ 0 = 1 ⊕ 1 = 0. However, knowing only one share tells nothing: a

share 0 could mean either 0 ⊕ 0 = 0 or 0 ⊕ 1 = 1. From di’s view, the share has

equal probability of being 0 or 1 (a random choice), so it learns nothing.

To generate random shares of the comparison, we return to secure multi-party

computation. We stop the generic circuit comparison method before combining

shares to learn the final result. In other words, given two integers a and b, secure

comparison of a, b (f : {0, 1}∗ × {0, 1}∗ 7−→ {0, 1} × {0, 1}) is defined as follows:

f(a, b) =







(1 ⊕ r, r) if a > b

(0 ⊕ r, r) if a < b

where each site sees only one component of the function output. This states that if

a > b the xor of the shares of the participating sites will be 1, otherwise the xor of

the shares will be 0. Using this function, each site can compare its elements with all

other elements and learn nothing about the result of the comparisons.

Two additional details. First, the identifiers used to track the dj in the compar-

ison share vector for di must not disclose anything. One option would be for the

combining site Ss to assign identifiers, but this would require independent encryption

of the single bits of the comparison shares, and single bit encryption is problematic.

Instead, each site generates pseudo-random unique identifiers site C cannot distin-

guish from random. One simple and secure way to handle this problem is using a
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pseudo-random permutation function. With a fixed key, DES is assumed to be such

a function. The sites agree on a key K, and each site Si generates k identifiers by

evaluating EK(ik), EK(ik+1), . . . , EK(ik+k−1). Since encryption is assumed to be

secure and a permutation, each site will get non-intersecting identifiers that appear

random to any (polynomial time) adversary not knowing K (in particular, C). The

identifiers are also used to determine which of a comparison pair will be the left-hand

side in a comparison: The item with the smaller identifier corresponds to x in the

comparison function f(x, y).

The second detail is equality. Identifying that two items are at equal distances

reveals information. We must disambiguate consistently, without giving even a prob-

abilistic estimate on the likelihood of equality. The solution is to add extra low-order

bits to each distance, based on a unique mapping from the identifier that appears

random to C - the same trick used to generate identifiers. The distance used for

comparison is actually d||Eu(ik + j), where the encryption function E is as above,

but with a different key. This ensures that distances are unique, guaranteeing a total

ordering of distances.

Protocol 5.1 gives the algorithm details. Note that at the end of the k-nearest

neighbor selection phase, C has the class of the k-nearest neighbors encrypted with

Eo. Assuming the usage of Blum-Goldwasser encryption, described in Chapter 3.4,

each class value classi will have ciphertext of the form (ŕ, classi ⊕ r), where O has

enough information to determine r given ŕ, enabling decryption to get classi. Instead

of sending these values to O, C will xor each of these values with a random value

ri. C then sends (ŕ, classi ⊕ r ⊕ ri) to O. O decrypts to get class′i = classi ⊕ ri,

indistinguishable (to O) from a random value. O and C now use the generic secure

circuit evaluation approach to evaluate the majority function:

Maj(class′1 ⊕ r1, . . . , class
′
k ⊕ rk).

This is a simple circuit with size complexity dependent on k and the number of

distinct classes. The cost is dominated by the k-nearest neighbor selection phase.

To clarify, we give an example for k = 1 and n = 3.
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Protocol 5.1 Privacy-preserving k-nn classification algorithm
Require: n sites Si, 1 ≤ i ≤ n, each with a database Di; permuting site Ss (where s

may be in 1, . . . , n); and untrusted non-colluding site C (distinct from Si or Ss). Query
(x, d, k) generated by originating site O. Public encryption keys Ec for site C and Eo

for site O, key generation function EK and Eu known only to the Si.
for all sites Si, in parallel do

{Build vector of random key, distance, and result for local closest k}
Select k items (d(xi, x),

∏

ci
(xi, ci)) with smallest d(xi, x) from Di into Ni

Ri = ∅
for j = 0..k − 1 {Compute identifiers and “extended” local distances} do

Ri = Ri ∪{(EK(ik + j), Ni[j].d||Eu(ik + j), Eo(Ni[j].result))} {|| is string concate-
nation}

end for

ERi = ∅
for each (id, d,Eo(c)) ∈ Ri {Comparison phase} do

v = ∅
for each site h = i . . . n {If i = h, just generate values locally.} do

for j = 0 . . . k − 1 do

if id < Rh[j].id then

v = v ∪ {(Rh[j].id, Si’s share of f(d,Rh[j].d)}
vhj = vhj ∪ {(id, Sj ’s share of f(d,Rh[j].d)}

else if id > Rh[j].id then

v = v ∪ {(Rh[j].id, Si’s share of f(Rh[j].d, d)}
vhj = vhj ∪ {(id, Sj ’s share of f(Rh[j].d, d)}

end if

end for

end for

ERi = ERi ∪ (id,Ec(v), Eo(c))
end for

send ERi to Ss

end for

{At site Ss: Permutation phase}
set ER = ∪n

i=1(ERi), permute it and send it to C
{At site C: k nearest neighbor selection phase}
Decrypt the encrypted shares of the comparison results
Use the pairwise comparisons to find the global k nearest neighbors
Let R be the set of encrypted class values(Eo(c)) of the global k nearest neighbor
for all R.Eo(ci) {encrypted as (ŕ, ci ⊕ r)} do

NR[i] = R.Eo(ci) ⊕ random ri

end for

Site C sends NR to O
{At site O:}
for all NR[i] {= (ŕ, ci ⊕ r ⊕ ri)} do

Find r using ŕ and the private key, set NRd[i] = ci ⊕ r ⊕ ri ⊕ r
end for

Find Maj from the random shares of C and NRd using secure circuit evaluation.
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Example 5.2.1 Given (x, d, 1), each site finds its 1-nearest neighbor. Assume that

site S1 has (d(x, x1),
∏

c(x1, c1) = (0.1, c1), site S2 has (x2, c2) at distance 0.2, and

site S3 has (x3, c3) at 0.15. After generating random identifiers, S1 has (3, 0.1, c1),

S2 has (1, 0.2, c2), and S3 has (2, 0.15, c3). (For simplicity we omit the low-order bit

disambiguation.) In generating the comparison vector for c1 and c2, S1 notes that

c1.id = 3 > 1, so it has the right argument of f(a, b) and generates a random bit

(say 0) as its share of the output. Since 0.2 ≥ 0.1, S2 learns that its share should be

1⊕0 = 1. (Neither S2 or S1 learns the other’s share, or the comparison result.) Secure

comparisons with the other sites are performed, giving each site tuples containing its

share of the comparison with all other items. These are encrypted with C’s public

key to give:

S1 : (3, Ec((1, 1), (2, 0)), Eo(c1))

S2 : (1, Ec((2, 1), (3, 0)), Eo(c2))

S3 : (2, Ec((1, 1), (3, 1)), Eo(c3))

The above are sent to S3, which permutes the set, strips source information, and

sends it to C. Site C decrypts the comparison share vectors to get:

(2, ((1, 1), (3, 1)), Eo(c3))

(3, ((1, 1), (2, 0)), Eo(c1))

(1, ((2, 1), (3, 0)), Eo(c2))

C now compares the items to find the nearest neighbor. As an example, to compare

items 2 and 3, we take the pair (3, 1) from the first (2) row and the pair (2, 0) from

the second (3) row. Combining the share portions of these pairs gives 1 ⊕ 0 = 1,

so d(x, x2) ≥ d(x, x3). Likewise, comparing 1 and 3 gives 0 ⊕ 1 = 1, so d(x, x1) ≥
d(x, x3). Therefore, x1 is closest to x. C sends Eo(c1) to O, which decrypts to get c1,

the correct result. (With k > 1, C and O would engage in a protocol to determine

which ci was in the majority, and send Eo(ci) to O.)
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5.2.2 Security of the Protocol

We now prove that Protocol 5.1 is secure. We assume that sites O and C are not

among the Si. We have discussed the need for C being a separate site. O cannot

be a data source, as it would be able to recognize its own Eo(x) among the results,

thus knowing if it was the source of some of the k nearest neighbors.

To define security we use definitions from the Secure Multi-party Computation

community (discussed in Chapter 3.2).

We need one additional tool to prove the security of the protocol. The encrypted

items seen by Ss and C during execution of the protocol may disclose some informa-

tion. The problem is that two items corresponding to the same plaintext map to the

same ciphertext. If multiple items are of the same class (as would be expected in

k-nn classification), the permuting site Ss would learn the class entropy in the k-nn

of each site as well as the number of identical results between sites. The compari-

son site C would learn this for the data as a whole. Neither learns the result, but

something of the distribution is revealed.

Fortunately, the cryptography community has a solution: probabilistic public-

key encryption (discussed in Chapter 3.4). The idea is that the same plaintext

may map to different ciphertexts, but these will all map back to the same plaintext

when decrypted. Using probabilistic public-key encryption for Eo allows us to show

Protocol 5.1 is secure. The Blum-Goldwasser probabilistic encryption scheme [10],

with a cipher text of the form (ŕ,M⊕r) for message M , is one example. In this, given

ŕ and the private key, it is possible to compute r to recover the original message.

Theorem 5.2.1 Protocol 5.1 privately computes the k-nn classification in the semi-

honest model where there is no collusion; only site O learns the result.

Proof To show that Protocol 5.1 is secure under the semi-honest model, we must

demonstrate that what each site sees during the execution of the protocol can be

simulated in polynomial time using only its own input and output. Specifically,
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the output of the simulation and the view seen during the execution must be com-

putationally indistinguishable. We also use the general composition theorem for

semi-honest computation: if g securely reduces to f and there is a way to compute

f securely, then there is a way to compute g securely. In our context, f is the secure

comparison of distances, and g is Protocol 5.1. We show that our protocol uses

comparison in a way that reveals nothing.

We first define the simulator for the view of site Si. Before the comparison

phase, Si can compute its view from its own input. The comparison phase involves

communication, so simulation is more difficult. If we look at a single comparison,

Si sees several things. First, it sees the identifier Rh[j].id. Since Si knows EK ,

h, and j; the simulator can generate the exact identifier, so the simulator view is

identical to the actual view. It also sees a share of the comparison result. If i = h,

Si generates the values locally, and the simulator does the same. If not local, there

are two possibilities. If id > Rh[j].id, it holds the second argument, and generates

a random bit as its share of the comparison result. The simulator does the same.

Otherwise, the secure comparison will generate Si’s share of the comparison. Assume

d < Rh[j].d: Si’s share is 0⊕ r, where r is Sh’s randomly chosen share. Assuming Sh

is equally likely to generate a 1 or 0, the probability that Si’s share is 1 is 0.5. This

is independent of the input – thus, a simulator that generates a random bit has the

same likelihood of generating a 1 as Si’s view in the real protocol. The composition

theorem (and prior work on secure comparison) shows the algorithm so far is privacy

preserving.

We can extend this argument to the entire set of comparisons seen by Si during

execution of the protocol. The probability that the simulator will output a particular

binary string x for a given sequence of comparisons is 1
2nk−1 . Since actual shares of

the comparison result are chosen randomly from a uniform distribution, the same

probability holds for seeing x during actual execution:

Pr
[

V IEW
vj

Si
= x

]

=
1

2nk−1

= Pr [Simulatori = x]
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Therefore, the distribution of the simulator and the view is the same for the entire

result vectors. Everything else is simulated exactly, so the views are computationally

indistinguishable. Nothing is learned during the comparison phase.

The sites Si now encrypt the result vectors; again the simulator mimics the actual

protocol. Since the sources were indistinguishable, the results are as well.

The next step is to show that Ss learns nothing from receiving ERi. Site Ss

can generate the identifiers ERi[j].id it will receive, as in simulating the comparison

phase. By the security definitions of encryption, the Ec(v) must be computation-

ally indistinguishable from randomly generated strings of the same length as the

encrypted values, provided no two v are equal (which they cannot be, as discussed

above.) Likewise, the definition of probabilistic encryption ensures that the Eo(x)

are computationally indistinguishable from randomly generated strings of the same

length. Since Ec and Eo are public, Ss knows the length of the generated strings.

The simulator chooses a random string from the domain of Ec and Eo; the result is

computationally indistinguishable from the view seen during execution of the proto-

col. (If Ss is one of the Si, the simulator must reuse the ERs generated during the

comparison simulation instead of generating a new one.)

C receives n ∗ k tuples consisting of an identifier, an encrypted comparison set v,

and encrypted class value Eo(c). Since the identifiers are created with an encryption

key unknown to C, the values are computationally indistinguishable from random

values. The simulator for C randomly selects k ∗ n identifiers from a uniform dis-

tribution on the domain of ERi. The outcomes Eo(c) are simulated the same as by

Ss above. The hardest part to simulate is the comparison set. Since the comparison

produces a total ordering, C cannot simply generate random comparison results.

Instead, the simulator for C picks an identifier i1 to be the closest, and generates a

comparison set consisting of all the other identifiers and randomly chosen bits corre-

sponding to the result shares. It then inserts into the comparison set for each other

identifier ik the tuple consisting of i1 and the appropriate bit so that the comparison

of i1 with ik will show i1 as closest to q. For example, if i1 ≥ ik, then f(ik, i1) should
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be 1. If the bit for i1’s share is chosen to be 0, the tuple (i1, 1) is placed in ik’s

comparison set. By the same argument used in the comparison phase, this simula-

tor generates comparison values that are computationally indistinguishable from the

view seen by C. Since the actual identifiers are computationally indistinguishable,

and the value of the comparison is independent of the identifier value, the order

of identifiers generated by C is computationally indistinguishable from the order in

the real execution. The simulator encrypts these sets with Ec to simulate the data

received.

In the final stage, O sees the NR[i]. The simulator for O starts with NRd[i] =

ci ⊕ ri. The one-time pad ri (unknown to O) ensures NRd can be simulated by

random strings of the length of NRd[i]. Xor-ing the NRd[i] with r simulates NRd.

The final step reveals Eo(c) to O, where c is the majority class. Since O knows the

result c, the simulator generates Eo(c) directly. Applying the composition theorem

shows that the combination of the above simulation with the secure circuit evaluation

is secure.

We have shown that there is a simulator for each site whose output is compu-

tationally indistinguishable from the view seen by that site during execution of the

protocol. Therefore, the protocol is secure in the semi-honest model.

The algorithm actually protects privacy in the presence of malicious parties,

providing O and C do not collude. Note that since each site holds a random share

of each of the comparison of its own items, and that random share is not disclosed

to any site but C, even if all the other Si collude against a site S1 they can still

simulate their comparison shares for S1. Collusion of the Si and O could reveal S1’s

k nearest neighbors, as the other Si could simply state their k-nn were farther from

x that S1’s, giving O S1’s k nearest neighbor. The same argument allows O and

any subset of the Si to collude against the honest subset of Si as a group. However,

assuming no collusion involving O and C, no data traceable to any honest Si can be

revealed even in the presence of malicious parties.
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5.3 Communication and Computation Cost Analysis

Privacy is not free. Assume m is the size required to represent the distance,

and q bits are required to represent the result. A simple insecure distributed k-nn

protocol would have the Si send their k nearest neighbor distances/results to O, for

O(nk(m+ q)) bit communication cost. The computation by O could easily be done

in O(nk log(k)) comparisons. (One pass through the data, inserting each item into

the appropriate place in the running list of the k nearest neighbors.) Although we

do not claim this is optimal, it makes an interesting reference point.

In the secure protocol 5.1, each site performs k2 comparisons with every other site.

Since there are (n−1)n
2

different site combinations, this gives O(n2k2) comparisons.

Each m bit secure comparison has communication cost O(mt), where t is a security

parameter, i.e., the key size used for encryption. Therefore, the total communication

cost of the comparison phase in protocol 5.1 is O(n2k2mt) bits. Assuming the Blum-

Goldwasser encryption scheme, each site then sends O(nk + t) bits of encrypted

comparison shares for each item, plus the O(q + t) result, to Ss and on to C. This

gives O(n2k2 + nkq + nkt) bits, which sends O(k(q + t)) bits of encrypted result

to O. The dominating factor is the secure comparisons, O(n2k2mt); asymptotically

greater than the simple method.

To evaluate the computation cost, we count the number of oblivious transfers

(the dominating factor of the cost for secure circuit evaluation) and the number of

encryptions. There are total O(nk) encryptions of the query results, each of size

q, and O(nk) encryptions of comparison sets of size O(nk). The dominating factor

is again the O(n2k2) secure comparisons. Each of these requires O(m) 1 out of 2

oblivious transfers. An oblivious transfer requires a constant number of encryptions,

giving O(n2k2m) encryptions as the dominating computation cost. Assuming RSA

public-key encryption for the oblivious transfer, the bitwise computation cost is

O(n2k2mt3).

The parallelism inherent in a distributed system has a strong impact on the
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execution time. Since the secure comparisons may proceed in parallel, the time

complexity is O(nk2mt3). Batching the comparisons between each pair of sites allows

all comparisons to be done in a constant number of rounds. Thus, the dominating

time factor would appear to be decryption of the nk comparison sets, each of size

O(nk). Note that m must be greater than log(nk) to ensure no equality in distances,

so unless n is large relative to the other values the comparisons are still likely to

dominate. Once decrypted, efficient indexing of the comparison vectors allows the

same O(nk log(k)) cost to determine the k nearest neighbor as in the simple insecure

protocol described above.

A more interesting comparison is with a fully secure k-nn algorithm based directly

on secure circuit evaluation. The generic method for evaluating a circuit with n

parties requires O(n2C) 1 out of 2 oblivious transfers, where C is the size of the

circuit. This gives a communication complexity O(n2Ct). To compare our result

with the generic method, we would need a lower bound on the size of a circuit that

evaluates k-nn classification on nk (m + q)-bit inputs. An obvious lower bound for

the circuit size is Ω(nk(m+ q)): the circuit must (at least) be capable of processing

all data. The generic method has a bit complexity of at least O(n2nk(m+ q)t). Our

method clearly wins if n > k and is asymptotically superior for fixed k; for n ≤ k

the question rests on the complexity of an optimal circuit for k-nn classification.

5.4 Conclusions

We have presented a provably secure algorithm for computing k-nn classification

from distributed sources. The method we have presented is not cheap – O(n2k2)

where n is the number of sites – but when the alternative is not performing the task

at all due to privacy concerns, this cost is probably acceptable.
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6 PRIVACY-PRESERVING DISTRIBUTED NÄıVE BAYES CLASSIFIER

.

6.1 Introduction

Näıve Bayes is a simple but highly effective classifier. This combination of sim-

plicity and effectiveness has led to its use as a baseline standard by which other

classifiers are measured. With various enhancements it is highly effective, and re-

ceives practical use in many applications (e.g., text classification [56]). This chapter

extends the portfolio of privacy-preserving distributed data mining to include this

standard classifier.

In Chapter 6.2, we briefly describe the Näıve Bayes classifier. We then present the

model, algorithm and proof of security for horizontally partitioned data in Chapter

6.3.

6.2 The Näıve Bayes Classifier

The Näıve Bayes classifier is a highly practical Bayesian learning method. The

following description is based on the discussion in Mitchell [56]. The Näıve Bayes

classifier applies to learning tasks where each instance x is described by a conjunction

of attribute values and the target function f(x) can take on any value from some

finite set C. A set of training examples of the target function is provided, and a new

instance is presented, described by the tuple of attribute values < a1, a2, . . . , an >.

The learner is asked to predict the target value, or classification, for this new instance.
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The Bayesian approach to classifying the new instance is to assign the most prob-

able target value, cMAP , given the attribute values < a1, a2, . . . , an > that describe

the instance.

cMAP = argmax
cj∈C

(P (cj|a1, a2, . . . , an)) (6.1)

Using Bayes theorem,

cMAP = argmax
cj∈C

(

P (a1, a2, . . . , an|cj)P (cj)

P (a1, a2, . . . , an)

)

= argmax
cj∈C

(P (a1, a2, . . . , an|cj)P (cj)) (6.2)

The Näıve Bayes classifier makes the further simplifying assumption that the

attribute values are conditionally independent given the target value. Therefore,

cNB = argmax
cj∈C

(

P (cj)
∏

i

P (ai|cj) (6.3)

where cNB denotes the target value output by the Näıve Bayes classifier.

The conditional probabilities P (ai|cj) need to be estimated from the training

set. The prior probabilities P (cj) also need to be fixed in some fashion (typically by

simply counting the frequencies from the training set). The probabilities for differing

hypotheses (classes) can also be computed by normalizing the values received for each

hypothesis (class).

Probabilities are computed differently for nominal and numeric attributes.

6.2.1 Nominal Attributes

For a nominal attribute X with r possible attributes values x1, . . . , xr, the proba-

bility P (X = xk|cj) =
nj

n
where n is the total number of training examples for which

C = cj , and nj is the number of those training examples that also have X = xk.

6.2.2 Numeric Attributes

In the simplest case, numeric attributes are assumed to have a “normal” or

“Gaussian” probability distribution.
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The probability density function for a normal distribution with mean µ and

variance σ2 is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (6.4)

The mean µ and variance σ2 are calculated for each class and each numeric attribute

from the training set. Now the required probability that the instance is of the class

cj , P (X = x′|cj), can be estimated by substituting x = x′ in equation 6.4.

6.3 Privacy-preserving Distributed Näıve Bayes Classification

In this Chapter, we will focus on securely learning a Naive Bayesian Classifier

on horizontally partitioned data. Records of different patients that are treated by

different hospitals can be seen as an example of horizontally partitioned data. All

of the information for a given patient is contained at one hospital, but different

hospitals have different patients.

In order to see how a privacy-preserving Naive Bayesian classifier is constructed,

we need to address two issues: How to select the model parameters and how to

classify a new instance. The following discussion provide details on both issues. We

first give a simple and very efficient protocol that compromise slightly on security. At

the end of the protocol, all parties learn the total number of instances. In effect, they

learn the numerator and denominator for all the fractions computed. For multiple

parties, this may not be a serious privacy concern. However, we also present a

technical solution to this problem. Thus, in Chapter 6.3.3, we present methods

which do not reveal anything except the class of an instance to be classified.

6.3.1 Building the classifier model

The procedures for calculating the parameters are different for nominal attributes

and numeric attributes. They are described below.



67

Nominal attributes

For a nominal attribute, the conditional probability that an instance belongs to

class c given that the instance has an attribute value A = a, P (C = c|A = a), is

given by

P (C = c|A = a) =
P (C = c ∩ A = a)

P (A = a)
=
nac

na
. (6.5)

nac is the number of instances in the (global) training set that have the class value c

and an attribute value of a, while na is the (global) number of instances which sim-

ply have an attribute value of a. The necessary parameters are simply the counts of

instances, nac and na. Due to horizontal partitioning of data, each party has partial

information about every attribute. Each party can locally compute the local count

of instances. The global count is given by the sum of the local counts. Securely com-

puting a global count is straight forward. (See secure summation in Chapter 3.5.1.)

Assuming that the total number of instances is public, the required probability can

be computed by dividing the appropriate global sums. Note that the local number

of instances is not revealed. Protocol 6.1 formally defines the protocol.

For an attribute a with l different attribute values, and a total of r distinct

classes, l ∗ r different counts need to be computed for each combination of attribute

value and class value. For each attribute value a total instance count also needs to

be computed, which gives l additional counts.

Numeric attributes

For a numeric attribute, the necessary parameters are the mean µ and variance

σ2 for each class. Again, the necessary information is split between the parties. To

compute the mean, each party needs to sum the attribute values of the appropriate

instances having the same class value. These local sums are added together and

divided by the total number of instances having that same class to get the mean for

that class value. Once all of the means µy are known, it is quite easy to compute
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Protocol 6.1 Nominal attributes
Require: k parties, r class values, l attribute values
1: {cx

yz represents #instances with party Px having class y and attribute value z}
2: {nx

y represents #instances with party Px having class y}
3: {pyz represents the probability of an instance having class y and attribute value z}
4: for all class values y do

5: for i = 1 . . . k do

6: ∀z,Party Pi locally computes ci
yz

7: Party Pi locally computes ni
y

8: end for

9: end for

10: ∀(y, z),All parties calculate using the secure sum
protocol (see chapter 3.5.1), cyz =

∑k
i=1 ci

yz

11: ∀y,All parties calculate using secure sum protocol,
ny =

∑k
i=1 ni

y

12: All parties calculate pyz = cyz/ny
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the variance σ2
y , for all class values. Since each party knows the classification of the

training instances it has, it can subtract the appropriate mean µy from an instance

having class value y, square the value, and sum all such values together. The global

sum divided by the global number of instances having the same class y gives the

required variance σ2
y . Protocol 6.2 formally describes the protocol.

Protocol 6.2 Numeric attributes
1: {xiyj represents the value of instance j from party i having class value y}
2: {si

y represents the sum of instances from party i having class value y}
3: {ni

y represents #instances with party Pi having class value y}
4: for all class values y do

5: for i = 1 . . . k do

6: Party Pi locally computes si
y =

∑

j xiyj

7: Party Pi locally computes ni
y

8: end for

9: All parties calculate using the secure sum protocol (see Chapter 3.5.1), sy =
∑k

i=1 si
y

10: All parties calculate using secure sum protocol, ny =
∑k

i=1 ni
y

11: All parties calculate µy = sy/ny

12: end for

13: {Create ~V = ( ~X − µ)2}
14: for i = 1 . . . k do

15: ∀j, viyj = xiyj − µy

16: ∀j, viy =
∑

j(v
2
iyj)

17: end for

18: ∀y,All parties calculate using secure sum protocol,
vy =

∑k
i=1 viy

19: All parties calculate σ2
y = 1

ny−1 ∗ vy

6.3.2 Proof of Security

Clearly above protocols reveal more than the Näıve Bayes model. For example,

for nominal attributes, Protocol 6.1 reveals ny (number of instances with class value

y). The obvious question is: Do they reveal more? In the following proofs, we

precisely state what is revealed and show that nothing else is revealed by utilizing

the definitions given in Chapter 3.2. (A protocol that reveals nothing other than the

model itself is given in Chapter 6.3.3)
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Theorem 6.3.1 Protocol 6.1 securely computes the probabilities pyz without reveal-

ing anything except the probability pyz, the global count cyz or the global number of

instances ny.

Proof The only communication taking place is at steps 11 and 12. During these

steps, the secure sum algorithm is invoked to compute the global counts cyz and

ny. We apply the Theorem 3.2.1, with g being the nominal attribute computation

algorithm and f being the secure sum algorithm.

Theorem 6.3.2 Protocol 6.2 securely computes the means µy and variance σ2
y with-

out revealing anything except µy, σ
2
y, the global sum of instance values for each class

sy and the global number of instances ny, as also the sum vy.

Proof The only communication takes place at steps 9, 10 and 18. At all three of

these steps the secure sum algorithm is invoked to compute sy, ny and vy. Thus,

again, we simply apply the Theorem 3.2.1, with g being the numeric attribute com-

putation algorithm and f being the secure sum algorithm.

6.3.3 Enhancing Security

The protocols given above are not completely secure in the sense that something

more than just the model parameters are revealed. The true numerators and the

denominators making up the actual parameter values are revealed. For three or

more parties, this allows upper bounds on the number of instances with a party

and upper bounds on the composition of those instances (i.e., upper bound on the

number belonging to a particular class, etc.). Privacy of individual instances is always

preserved. With an increasing number of parties, it is more difficult to get accurate

estimates of the remaining parties. However, with just two parties, this does reveal

quite a bit of extra information. In general, the problem is to calculate the value of

the fraction without knowing the shared numerator and/or shared denominator. For

two parties, Du and Atallah solve exactly this problem under the term of the Division
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protocol [27]. This is based on a secure scalar product protocol for 2 parties. The

protocol is easily extendible to the general case of multiple parties assuming that a

general scalar product protocol for multiple parties is available. However, no such

protocol has yet been developed.

Note that the amount of information revealed for multiple parties is not much

more than what the parameters themselves reveal. However technical solutions (even

with increased cost) are more satisfying as they allow an individual decision of

whether to trade off security for efficiency. In the following subsection, we now

present a secure protocol based on computing the logarithm securely.

6.3.4 Secure Logarithm Based Approach

As mentioned above, to make our algorithm fully secure (i.e., reveal nothing), we

need to evaluate (
∑k

i=1 ci/
∑k

i=1 ni) securely. Here evaluating the division becomes

the main problem. In order to overcome this problem, we can rewrite the above

expression as follows:

exp

[

ln
(

k
∑

i=1

ci
)

− ln
(

k
∑

i=1

ni

)

]

Then evaluating ln(
∑k

i=1 ci)− ln(
∑k

i=1 ni) securely is sufficient. Clearly, this requires

secure evaluation of ln(
∑k

i=1 xi) function. In our work, we will use the secure ln(x)

evaluation method given in Chapter 3.5.4. The one important restriction of their

method is that it only works for two parties. In our case, it is easy to reduce

the k party problem to the two-party case. Note that the last step in the semi-

honest version of the secure summation protocol has the first party subtracting the

random number from the result. So just before this subtraction occurs, no party has

the summation and nothing is revealed. At this point, instead of subtracting the

random number, both parties can use the secure approximate ln(x1 + x2) protocol

given in [54]. Using their protocol, it is easy to get random v1, v2 such that v1 +v2 =

C · ln(x1 + x2) mod p
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Protocol 6.3 Fully secure approach for nominal attributes
Require: k parties, r class values, l attribute values
1: {cx

yz, n
x
y , pyz are defined as in Protocol 6.1}

2: for all class values y do

3: for i = 1 . . . k do

4: ∀z,Party Pi locally computes ci
yz

5: Party Pi locally computes ni
y

6: end for

7: end for

8: ∀(y, z),All parties, use secure sum protocol (see
Chapter 3.5.1) until last step for finding
cyz =

∑k
i=1 ci

yz and ny =
∑k

i=1 ni
y

9: Let party 1 has Rc and Rn

10: Let party k has Rc + cyz mod p and Rn + ny mod p
11: {Note that last step of the summation has not been executed}
12: Using secure ln(x) protocol, party 1 and k gets random v1,vk s.t.,

v1 + vk = C · ln(Rc + cyz − Rc mod p) mod p
13: Using secure ln(x) protocol, party 1 and k gets random u1,uk s.t.,

u1 + uk = C · ln(Rn + ny − Rn mod p) mod p
14: Party k calculates sk = vk − uk mod p and sends it to party 1
15: Party 1 calculates the s1 = sk + v1 − u1 mod p
16: All parties calculate pyz = exp(s1/C)

One important fact about the secure ln(x) evaluation algorithm is that there is a

public constant C used to make all elements integral. The method for determining

C is given in [54]. Also, operations are executed in a field with size p that is capable

of containing the actual results multiplied by the constant. Our reduction requires

us to slightly change the protocol. In [54], protocol x1 + x2 is directly added using a

small addition circuit. In our case we use modular addition. (This does not change

the asymptotic performance of the method.) After using secure logarithm, it is easy

to evaluate our desired function securely. Protocol 6.3 describes how these ideas can

be applied to our problem. Here, we only give the protocol for nominal attributes,

it is straightforward to extend this to continuous attributes.

Theorem 6.3.3 Protocol 6.3 securely evaluates pyz in the semi-honest model.

Proof To show that the above protocol is secure in the semi-honest model, we will

show that each party’s view of the protocol can be simulated based on its input and
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its output. Again, we will use the secure composition theorem to prove the entire

protocol secure since our method securely reduces to the logarithm function.

Parties 2, . . . , k−2 only see a summation added to some random number. There-

fore, as earlier, the simulator for these parties will be a uniform number generator.

Note that the probability that they will see some number x during the execution is

1
p
. The simulator will generate the number with the same probability.

For parties 1 and k, there is the additional step of computing the logarithm.

We have to show that this does not reveal anything either. Assume that logarithm

protocol returns random shares of the result.

Now let us define the simulator for the party k. Clearly, before the logarithm

protocol has started, party k has Rn + ny mod p and Rc + cyz mod p. These are

indistinguishable from a random number drawn from an uniform distribution. The

execution of the logarithm protocol can be simulated by using the simulator for the

logarithm protocol. The details for this simulator can be found in [54]. After the

protocol, party k only sees u2, v2 which are also indistinguishable from uniform dis-

tribution. Therefore the messages it sees during the protocol can be easily generated

by an uniform random number generator.

If we look at the messages received by party 1, one set of messages come from the

execution of logarithm, then it receives random shares of u1, v1. Also it receives (u2−
v2) mod p. We can define the simulator for k as follows: First it runs the simulator

of the logarithm function, then it generates three random numbers uniformly chosen

between 0 and p − 1. Note that u2, v2 are independent and u2 − v2 mod p is also

uniformly distributed, as:

Pr(u2 − v2 = k mod p) =

p−1
∑

v=0

Pr(u2 = k + v mod p|v2 = v) · Pr(v2 = v)

=

p−1
∑

v=0

Pr(u2 = k + v mod p) · Pr(v2 = v)

=

p−1
∑

v=0

1

p2
=

1

p

This concludes the proof.
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Communication and Computation Cost

Privacy is not free. In order to evaluate the secure logarithm, we need to make

O(log(p)) oblivious transfer and total O(log(p) · t) bits must be transferred. (p is

the size of the field used and depends on the range of the variables and the precision

required in calculating the logarithm; t is the security parameter.) Therefore, total

number of bits transferred will be O(log(p) · (t + k)), where k is the number of

parties. Since oblivious transfer is much more expensive then addition, the O(log(p))

oblivious transfers will dominate the computation cost.

6.4 Conclusions

In this chapter, we showed how to create a privacy-preserving distributed Näıve

Bayes Classifier. We gave a new secure division protocol based on the existing secure

logarithm protocol. We analyzed the computation and the communication cost of

the stated protocols.
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7 WHEN DO DATA MINING RESULTS VIOLATE PRIVACY?

7.1 Introduction

In the previous chapters, we gave provably secure distributed data mining proto-

cols that reveal nothing but the resulting data mining model. This work still leaves

a privacy question open: Do the resulting data mining models inherently violate

privacy?

This chapter presents a start on methods and metrics for evaluating the privacy

impact of data mining models. While the methods provide results only for classifica-

tion, they provide a cross-section of what needs to be done, and a demonstration of

techniques to analyze privacy impact. Work in privacy-preserving data mining has

shown how to build models when the training data is kept from view; the full impact

of privacy-preserving data mining will only be realized when we can guarantee that

the resulting models do not violate privacy.

To make this clear, we present a “medical diagnosis” scenario. Suppose we want

to create a “medical diagnosis” model for public use: a classifier that predicts the

likelihood of an individual getting a terminal illness. Most individuals would consider

the classifier output to be sensitive – for example, when applying for life insurance.

The classifier takes some public information (age, address, cause of death of ances-

tors), together with some private information (eating habits, lifestyle), and gives a

probability that the individual will contract the disease at a young age. Since the

classifier requires some information that the insurer is presumed not to know, can

we state that the classifier does not violate privacy?

The answer is not as simple as it seems. Since the classifier uses some public

information as input, it would appear that the insurer could improve an estimate of

the disease probability by repeatedly probing the classifier with the known public
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information and “guesses” for the unknown information. At first glance, this appears

to be a privacy violation. Surprisingly, as we show in Chapter 7.1.1, given reasonable

assumptions on the external knowledge available to an adversary we can prove the

adversary learns nothing new.

In this chapter, we assume that data falls into three classes:

• Public Data:(P ) This data is accessible to every one including the adversary.

• Private/Sensitive Data:(S) We assume that this kind of data must be pro-

tected: The values should remain unknown to the adversary.

• Unknown Data:(U) This is the data that is not known to the adversary, and

is not inherently sensitive. However, before disclosing this data to an adversary

(or enabling an adversary to estimate it, such as by publishing a data mining

model) we must show that it does not enable the adversary to discover sensitive

data.

7.1.1 Example: Classifier Predicting Sensitive Data

The following example shows that for the “medical diagnosis” scenario above, it is

reasonable to expect that publishing the classifier will not cause a privacy violation.

Individuals can use the classifier to predict their own likelihood of disease, but the

adversary (insurer) does not gain any additional ability to estimate the likelihood of

the disease.

To simplify the problem, we assume that the classifier is a “black-box”: the

adversary may probe (use the classifier), but cannot see inside. An individual can use

the classifier without any risk of disclosing either their private data or their private

result.1 This represents a best-case scenario: If this classifier violates privacy, then

no approach (short of limiting the adversary’s access to the classifier) will provide

privacy protection.

1This is feasible as shown in Chapter 8
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Formally, suppose X = (P, U)T is distributed as N(0,Σ) with

Σ =





1 r

r 1



 , (7.1)

where −1 < r < 1 is the correlation between P and U . Assume that for n indepen-

dent samples (x1, x2, . . . , xn) from N(0,Σ), the sensitive data S = (s1, s2, . . . , sn) can

be discovered by a classifier C0 that compares the public data pi and the unknown

data ui:

si = C0(xi) =







1 if pi ≥ ui ,

0 otherwise;
, where: (7.2)

• each pi is a public data item that everyone can access,

• the data items denoted by ui are unknown to the adversary; ui is only know

to the i-th individual,

• each si is sensitive data we need to protect, and

• The adversary knows that X ∼ N(0,Σ), it may or may not know r.

We now study whether publishing the classifier C0 violates privacy, or equivalently,

whether the adversary can get a better estimate of any si by probing C0.

Given the public data pi for an individual i, the adversary could try to probe the

classifier C0 to get an estimate of si as follows. It is reasonable to assume that the

adversary has knowledge of the (marginal) distribution that the ui are sampled from;

we can even assume that the adversary knows the joint distribution that (pi, ui)
T are

sampled from, or equivalently Σ or r. (We will see soon that though the adversary

seems to know a lot, he doesn’t know anything more about the si – this makes our

example more surprising). Thus for each individual or for each pi, the adversary

could sample ũi from the conditional distribution of (U |P ), he then can use the

pairs (pi, ũi)
T to probe C0 and get an estimate s̃i

△
= C0(pi, ũi). Assuming that the

information P was correlated with S, this will give the adversary a better estimate

than simply taking the most likely result in S.
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However, this assumes the adversary has no prior knowledge. In our medical

example, it is likely that the adversary has some knowledge of the relationship be-

tween P and S. For example, cause of death is generally public information, giving

the adversary a training set (Likely as complete as that used to generate C0, as for

some diseases – Creutzfeldt-Jakob, Alzheimer’s until recently – an accurate diagno-

sis required post-mortem examination, so the training data for C0 would likely be

deceased individuals.)

Given that the adversary has this knowledge, what does the adversary know if

we do not publish C0? Notice that

Pr{S = 1|P = p} = Φ(
1 − r√
1 − r2

p) (7.3)

=







≥ 1/2, if p ≥ 0,

< 1/2, otherwise,
(7.4)

where Φ(·) is the cdf ofN(0, 1). According to (7.3), (or even just based on symmetry),

the best classifier the adversary can choose in this situation is:

si =







1 if pi > 0

0 otherwise,
(7.5)

Let C1 denote this classifier.

Next, we study what the adversary knows if we publish the classifier C0. We even

allow the adversary to know r. In this situation, the best classifier the adversary

can use is the Bayesian estimator C2, which is based on the probability of Pr{U ≤
P |P = pi}:

si =







1 if Pr{U ≤ P |P = pi} > 1
2
,

0 otherwise.
(7.6)

However, notice that

Φ(
1 − r√
1 − r2

pi) = Pr{U ≤ P |P = pi}

compare this to (7.3), we conclude that C1 ≡ C2.
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Thus in this situation, publishing C0 or even the key parameter r doesn’t give

the adversary any additional capability, as long as the adversary has no access to

the ui. This enables us to argue that even though C0 apparently reveals sensitive

information, it does not actually violate privacy.

As the above example demonstrates, determining if a data mining model violates

privacy requires knowing many things: What information is sensitive? To whom is

it sensitive? What else is known? Whose privacy is at risk? What is an acceptable

tradeoff between privacy and the benefit of the data mining result, and how do we

measure this tradeoff?

Specifically, in Chapter 7.2, we present a model that enables us to discuss these

issues in the context of classification. Chapter 7.3 presents a metric for privacy loss

for one such situation, including examples of when the metric would be appropri-

ate and how the metric could be calculated (analytically or empirically) in specific

situations.

7.2 The Model for Privacy Implications of Data Mining Results

To understand the privacy implications of data mining results, we first need

to understand how data mining results can be used (and misused). As described

previously, we assume data is either Public, Unknown, or Sensitive. We now discuss

additional background leading toward a model for understanding the impact of data

mining results on privacy.

We assume an adversary with access to Public data, and polynomial-time com-

putational power. The adversary may have some additional knowledge, possibly

including Unknown and Sensitive data for some individuals. We want to analyze

the effect of giving the adversary access to a classifier C; specifically if it will improve

the ability of the adversary to accurately deduce Sensitive data values for individuals

that it doesn’t already have such data for.
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7.2.1 Access to Data Mining Models

If the classifier model C is completely open (e.g., a decision tree, or weights in

a neural network), the model description may reveal sensitive information. This is

highly dependent on the model.

Instead, we model C as a “black box”: The adversary can request that an in-

stance be classified, and obtain the class, but can obtain no other information on the

classifier. This is a reasonable model: We are providing the adversary with access

to C, not C itself. For example, nothing is revealed by the solution provided in

Chapter 8 but the class of an instance [47]. (As shown before, the party holding the

classifier need not even learn attribute values.)

Here, we will only consider the data mining results in the form of classification

models.

7.2.2 Basic Metric for Privacy Loss

While it is nice to show that an adversary gains no privacy-violating information,

in many cases we will not be able to say this. Privacy is not absolute; most privacy

laws provide for cost/benefit tradeoffs when using private information. For example,

many privacy laws include provisions for use of private information “in the public

interest” [30]. To tradeoff the benefit vs. the cost of privacy loss, we need a metric

for privacy loss.

One possible way to define such a metric for classifier accuracy is using the

Bayesian classification error. Suppose for data (x1, x2, . . . , xn), we have classifica-

tion problems in which we try to classify xi’s into m classes which we labeled as

{0, 1, . . . , m− 1}. For any classifier C:

xi 7→ C(xi) ∈ {0, 1, . . . , m− 1}, i = 1, 2, . . . , n,

we define the classifier accuracy for C as:

m−1
∑

i=0

Pr{C(x) 6= i|z = i}Pr{z = i}. (7.7)
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Does this protect the individual? The problem is that some individuals will

be classified correctly: If the adversary can predict which individuals are likely to

be classified correctly, then the privacy loss for those individuals is worse than ex-

pected. Tightening such bounds requires that the adversary have training data, i.e.,

individuals for which it knows the sensitive value.

7.2.3 Possible Ways to Compromise Privacy

The most obvious way a classifier can compromise privacy is by taking Public

data and predicting Sensitive values. However, there are many other ways a classifier

can be misused to violate privacy. We break down the possible forms a classifier that

could be (mis)used by the adversary can take.

1. P → S: Classifier that produces sensitive data given public data. Metric based

on accuracy of classification.

sup
i

(

Pr{C(X) 6= Y |Y = i} −
1

ni

)

(7.8)

2. PU → S: Classifier taking public and unknown data into sensitive data. Metric

same as above.

3. PS → P : Classifier taking public and sensitive data into public data. Can

adversary determine value of sensitive data. (May also involve unknown data,

but this is a straightforward extension.)

4. The adversary has access to Sensitive data for some individuals. What is the

effect on privacy of other individuals of classifiers as follows.

(a) P → S: Can the adversary do better with such a classifier because of

their knowledge, beating the expectations of the metric for 1.

(b) P → U : Can giving the adversary a predictor for Unknown data improve

its ability to build a classifier for Sensitive data?
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We gave a brief example of how we can analyze problem 2 in Chapter 7.1.1.

The rest of the paper looks at item 4b above, giving both analytical and empirical

methods to evaluate the privacy impact of a classifier that enables estimation of

unknown values.

7.3 Classifier Revealing Unknowns

A classifier reveals a relationship between the inputs and the predicted class.

Unfortunately, even if the class value is not sensitive, such a classifier can be used

to create unintended inference channels. Assuming the adversary has t samples

from a distribution (P, S), it can build a classifier C1 using those t samples. Let a1

be the prediction accuracy of the classifier C1. Assume a “non-sensitive” classifier

C : P → U is made available to the adversary. Using C, and the t samples, the

adversary can build a classifier C2 : P,C(P )→ S. Let a2 be the accuracy of the C2.

If a2 is better than a1, then C compromises the privacy of S.

7.3.1 Formal Definition

Given a distribution (P, U, S), with P being public data that everyone including

the adversary can access, S sensitive data we are trying to protect (but known for

some individuals), and U is data not known by the adversary. A “black-box” classifier

C is available to the adversary that can be used to predict U given P . Assume that

t samples ((p1, s1), . . . , (pt, st)) are already available to adversary, our goal is to test

whether revealing C increases the ability of the adversary to predict the S values for

unseen instances.

First, assume attributes P and U are independent, or more generally, though P

and U are dependent, C only contains the marginal information of P . In such cases,

classifier C would not be much help to the adversary: as C contains no valuable

information of U , we expect that C would not be much more accurate than random

guess, and as a result, we expect that the adversary is unable to improve his estimate
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about S by using C, or formally, the Bayes error for all classifiers using P only should

be the same as the Bayes error for all classifiers using (P,C(P )).

However, it is expected that C contains information on the joint distribution of

P and U (or equivalently the conditional information of (U |P )), otherwise C would

be uninteresting (no better than a random guess.) The adversary can thus combine

C or C(P ) with already known information of P to create an inference channel for

S, and the prediction accuracy of the newly learned classifier violates privacy.

Formally, given C and t samples from P, S, letting

ρ(t) = ρ{t;P,S}, ρ(t;C) = ρ{t;P,C(P ),S}

be the Bayes error for classifiers using P only and using P,C(P ) respectively; also,

letting

ρ̄ = lim
t→∞

ρ(t), ρ̄(C) = lim
t→∞

ρ(t;C),

we have the following definition:

Definition 7.3.1 For 0 < p < 1, we call the classifier C (t, p)-privacy violating if

ρ(t;C) ≤ ρ(t)− p, and the classifier C is (∞, p)-privacy violating if ρ̄(C) ≤ ρ̄− p.

The important thing to notice about the above definition is that we measure the

privacy violation with respect to number of available samples t. An adversary with

many training instances will probably learn a better classifier than one with few

training instances.

In this case, the release of the C1 has created a privacy threat. The main difference

between this example and the one given in the Chapter 7.1 is that we put a limitation

on the number of available examples to the adversary.

7.3.2 Analysis for Mixture of Gaussians

We now give a formal analysis of such an inference in the case of Gaussian

mixtures. Although we gave our definitions for a classifier C, in the case of the

Gaussian mixtures, the sensible way to model C is the conditional distribution of
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some particular attribute based on the other attributes. Note that C can also be

viewed as a “black box”.

Suppose X = (P, U)T is distributed as a n-dimensional 2-point mixture (1 −

ǫ)N(0,Σ) + ǫN(µ,Σ), where

µ =





µ1

µ2



 , Σ =





Σ11 Σ12

Σ′
12 Σ22



 . (7.9)

For a set of t realizations X = (x1, x2, . . . , xt) (here xi = (pi, ui)
T ), t sensitive data

S = (s1, s2, . . . , st) are generated according to the rule:

si =







1, if xi is generated from N(0,Σ),

0, if xi is generated from N(µ,Σ).
(7.10)

Assume:

• The adversary has access to pi, and knows the marginal distribution of P in

detail (this is possible for example for sufficiently large sample size t),

• The adversary has no access to ui,

• The adversary knows that xi are from the above 2-point mixture, he knows n,

ǫ, µ1, and Σ11, which can be obtained through the marginal of P , but not µ2

or any other entries in Σ that can not be obtained through the marginal of P .

We are concerned with the following two questions.

1. What is the privacy loss by releasing ui? In other word, what is the Bayes

error when we limit the adversary’s to the knowledge to the above assumption.

2. What is the privacy loss by allowing the adversary to know the conditional

distribution of (U |P )?

Before answering these questions, we work out the Bayes error when only pi are

available and when both pi and ui are available. Notice here that, by symmetry, the

Bayes error for t samples is the same of univariate Bayes error.
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By direct calculation, the Bayes error with only pi’s is:

ρ(ǫ, µ1,Σ11) = (1− ǫ)Pr{CB(pi) = 1|si = 0} (7.11)

+ ǫPr{CB(pi) = 0|si = 1} (7.12)

where CB is the Bayesian classifier. The Bayes error can be rewritten as:

ρ(ǫ, µ1,Σ11) (7.13)

= (1− ǫ)Φ̄

(

a+ µT
1 Σ−1

11 µ1
√

µT
1 Σ−1

11 µ1

+ ǫΦ̄

(

a− µT
1 Σ−1

11 µ1
√

µT
1 Σ−1

11 µ1

(7.14)

where a = log(1−ǫ
ǫ

) and Φ̄(·) is the survival function of N(0, 1).

In comparison, the Bayes error with both pi’s and ui’s is:

ρ(ǫ, µ,Σ) = (1− ǫ)Pr{CB(pi, ui) = 1|si = 0}

+ ǫPr{CB(pi, ui) = 0|si = 1}.

This can be rewritten as:

(1− ǫ)Φ̄

(

a+ µ′Σ−1µ
√

µ′Σ−1µ
+ ǫΦ̄

(

a− µ′Σ−1µ
√

µ′Σ−1µ
.

We can now answer question 1:

Lemma 7.3.1 Let ψ(z)
△
= (1− ǫ)Φ̄(a+z√

z
) + ǫΦ̄(a−z√

z
). Then

1. ψ(z) strictly decreases in z.

2. µT
1 Σ−1

11 µ1 ≤ µT Σ−1µ with equality if and only if µ2 = ΣT
12Σ

−1
11 µ1.

3. As a result, ρ(ǫ, µ,Σ) ≤ ρ(ǫ, µ1,Σ11), with equality if and only if µ2 = ΣT
12Σ

−1
11 µ1.

The proof of Lemma 7.3.1 is omitted. Lemma 7.3.1 tells us that, in general, releasing

ui’s or any classifier that predicts ui’s will compromise privacy. This loss of privacy

can be measured by Bayes error, which has an explicit formula and can be easily

evaluated through the function ψ(z).

Next, for question 2, we claim that from the privacy point of view, telling the

adversary the detailed conditional distribution of (U |P ) is equivalent to telling the



86

adversary all the ui, in other words, the privacy loss for either situation are exactly

the same. To see this, notice that when the adversary knows the conditional distri-

bution of (U |P ), he knows the distribution of S in detail since he already knew the

marginal distribution of P . Furthermore, he can use this conditional distribution

to sample ui based on each pi, the resulting data si = (pi, ũi)
T is distributed as

(1− ǫ)N(0,Σ) + ǫN(µ,Σ); though si’s are not the data on our hand, but in essence

the adversary has successfully constructed an independent copy of our data. In fact,

the best classifier for either case is the Bayesian rule, which classifies si’s to 1 or 0

according to

ǫf(x;µ,Σ) ≥ (1− ǫ)f(x; 0,Σ), (7.15)

here we use f(x;µ,Σ) to denote the density function of N(µ,Σ). Thus there won’t

be any difference if the adversary know any ui’s of our data set, or just know the

conditional distribution of (U |P ). This suggests that when S is highly correlated

with U , revealing any good method to predict U may be problematic.

7.3.3 Practical Use

For most distributions it is difficult to analytically evaluate the impact of a clas-

sifier on creating an inference channel. An alternative heuristic method to test the

impact of a classifier is described in Algorithm 7.1. We now give experiments demon-

strating the use, and results, of this approach.

Algorithm 7.1 Testing a classifier for inference channels
1: Assume that S depends on only P,U , and the adversary has at most t data samples

of the form (pi, si).
2: Build a classifier C1 on t samples (pi, si).
3: To evaluate the impact of releasing C, build a classifier C2 on t samples (pi, C(pi), si).
4: If the accuracy of the classifier C2 is significantly higher than C1, conclude that reveal-

ing C creates a inference channel for S.

We tested this approach on several of the UCI datasets [9]. We assumed that

the class variable of each data set is private, treat one attribute as unknown, and
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simulate the effect of access to a classifier for the unknown. For each nominal valued

attribute of each data set, we ran six experiments. In the first experiment, a classifier

was built without using the attribute in question. We then build a classifier with the

unknown attribute correctly revealed with probability 0.6, 0.7, 0.8, 0.9, and 1.0. For

example, for each instance, if 0.8 is used, the attribute value is kept the same with

probability 0.8, otherwise it is randomly assigned to an incorrect value. The other

attributes are unchanged.

In each experiment, we used C4.5 with default options given in the Weka pack-

age [76]. Before running the experiments, we filtered the instances with unknown

attributes from the training data set. Ten-fold cross validation was used in reporting

each result.

Most of the experiments look like the one shown in Figure 7.1 (the credit-g

dataset). Giving an adversary the ability to predict unknown attributes does not

significantly alter classification accuracy (at most 2%). In such situations, access to

the public data may be enough to build a good classifier for the secret attribute;

disclosing the unknown values to the adversary (e.g., by providing a “black box”

classifier to predict unknowns) does not really increase the accuracy of the inference

channel.

In a few data sets (credit-a, kr-vs-kp, primary-tumor, splice, and vote) the effect

of providing a classifier on some attribute increased the prediction accuracy signifi-

cantly. We discuss the “credit-a” data set as an example of these. If the adversary

does not have an access to the 9th(A9) attribute (a binary attribute), it can build

a decision tree that infers the secret (class) attribute with 72% accuracy – versus

86% if given all data. This holds even if the adversary is given a classifier (C) that

predicts A9 with 60% accuracy. However, as shown in Figure 7.2, if C has accuracy

80% or greater, the adversary can do a significantly better job of predicting the secret

(class) attribute.
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attribute on “credit-g” data (representative of most UCI data sets.)
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7.4 Conclusions

Increases in the power and ubiquity of computing resources pose a constant threat

to individual privacy. Tools from privacy-preserving data mining and secure multi-

party computation make it possible to process the data without disclosure, but do

not address the privacy implication of the results. We define this problem and

explored ways that data mining results can be used to compromise privacy. We give

definitions to model the effect of the data mining results on privacy, analyze our

definitions for a Mixture of Gaussians for two class problems, and give a heuristic

example that can be applied to more general scenarios.
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8 USING DECISION RULES FOR PRIVATE CLASSIFICATION

8.1 Introduction

The new U.S. government CAPPS II initiative plans to classify each airline pas-

senger with a green, yellow or red risk level. Passengers classified as green will be

subject to only normal checks, while yellow will get extra screening and red won’t

fly. [13, 14] Although government agencies promise that no discriminatory rules will

be used in the classification and that privacy of the data will be maintained, this

does not satisfy privacy advocates. [15] Many similar profiling examples exist: Money

laundering discovery from financial transaction records, smuggling in import ship-

ments, etc.

One solution is to have the government send the classification rules to the owners

of the data (e.g., credit reporting agencies). The data owners would then verify that

the rules are not discriminatory, and return the classification for each passenger. The

problem with this approach is that revealing the profiling rules gives an advantage

to terrorists. For example, knowing that there is a rule “A one-way ticket paid in

cash implies yellow risk”, no real terrorist will buy one way tickets with cash.

This appears to give three conflicting privacy/security requirements. The data

must not be revealed, the classifier must not be revealed, and the classifier must

be checked for validity. Although these seem contradictory, we show that if such a

system must exist, it can be done while achieving significant levels of privacy. We

prove that under reasonable assumptions (i.e., the existence of one way functions,

non-colluding parties) it is possible to do classification similar to the above example

that provably satisfies the following conditions:

• No one learns the classification result other than designated party.
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• No information other than the classification result will be revealed to desig-

nated party.

• Rules used for classification can be checked for the presence of certain condi-

tions without revealing the rules.

While such a system still raises privacy issues (particularly for anyone classified

as red), the privacy risks are significantly reduced relative to a “give all information

to the government” (or anyone else) model.

We formally define the problem in Chapter 8.2. Chapter 8.3 presents the solution

and a discussion of security. Chapter 8.4 shows how the parties can verify that no

forbidden clauses or combinations of attributes are being used for profiling. We

analyze the cost, in both order of magnitude and practical terms, in Chapter 8.5.

The result is a protocol that fulfills practical requirements for secure and private

profiling.

8.2 Private Controlled Classification

We first formally define the problem of classifying items using decision rules,

when no party is allowed to know both the rules and the data, and the rules must

be checked for “forbidden” tests. This problem could be solved using the generic

method described in Chapter 3.2. While we have a construction and proof of such a

circuit, the cost is prohibitive (this is discussed in Chapter 8.5). Instead, we present

a comparatively efficient approach based on the notion of an untrusted third party

that processes streams of encrypted data from the data and rule sources. Before

describing the problem statement, we will first give a description of the decision

trees and rules.
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Outlook

Sunny Overcast Rain

YesHumidity Wind

High Normal

No No

Strong

Yes Yes

Weak

Figure 8.1. An example of a decision tree created using ID3 classifier [63].

8.2.1 Decision Trees and Rules

Decision Tree Methods are one of the most popular machine learning classification

tools. The main advantage for this machine learning technique is that the model can

be easily represented as human understandable rules.

Decision Trees are composed of two kinds of nodes. Internal nodes represent a

particular attribute and leaf nodes have the class values. Each instance is classified

by following a path from the root node to a leaf node.

Figure 8.1 illustrates an example of a decision tree (from Quinlan [63]). The above

decision tree predicts whether the weather is suitable for playing tennis or not. Let

us assume that on a given day, the outlook is rainy and there is a weak wind, then

following the path from root node to a leaf node, we learn that the prediction is yes.

Also decision tree can be represented as a set of decision rules. Each path in the

decision tree corresponds to a rule. Set of the rules constructed from the paths can

represent a decision tree. For example we can convert one of the paths in the tree

to a rule as follows: (Outlook=Rain∧Wind=Weak)⇒ Yes.
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We believe that in profiling systems like CAPPS-II, government may be required

to explain the reasoning behind a prediction. (Private systems may as well: The

European Community privacy directive requires the logic behind automated deci-

sions to be available to those affected [30].) Therefore, the data mining models used

must be human understandable. Decision rules effectively capture a path through a

decision tree: the left hand side is a set of constraints on visible attributes; the right

hand side is the output class. Decision rules can also be helpful in incorporating the

domain knowledge. Rules learned through the data mining process can be combined

with the rules implied by the domain knowledge. As a result, we will focus on private

classification using decision rules.

8.2.2 Problem Statement

Given an instance x from site Data with v attributes, we want to classify x

according to a rule set R provided by site Government. Let us assume that each

attribute of x has n bits, and let xi denotes the ith attribute of x. We assume that

each given classification rule r ∈ R is of the form (L1 ∧ L2 ∧ · · · ∧ Lv) → C where

C is the predicted class if (L1 ∧ L2 ∧ · · · ∧ Lv) evaluates to true. Each Li is either

xi = a, xi 6= a or xi =? (a don’t care; always true). While the don’t care clauses

are redundant in the problem definition, they will need to be included explicitly

in the protocol to mask the number of clauses in each rule. By using don’t cares,

G can define rules with an arbitrary number of clauses; the other parties gain no

information about the number of “real” clauses in the rule.

We assume that for any given x only one rule will be satisfied. Given a set of

ordered rules, the use of negated clauses enables construction of an equivalent set of

unordered rules where each instance can satisfy at most one rule.

In addition, D has a set F of rules that are not allowed to be used in classification.

In other words, ∀f, r ∈ F,R, f 6⊆ r. The goal is to find the class value of x according

to R while satisfying the following conditions:
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• D will not be able to learn any rules in R,

• D will be convinced that no clauses in F are used, and

• G will only learn the class value of x and what is implied by that class value.

To achieve a solution that is both secure and efficient, we make use of an untrusted,

non-colluding site (Chapter 3.3). In our approach, the untrusted site learns only

upper bounds on the number of literals v, the number of rules |R|, and how many

literals of a given rule are not satisfied. It does not learn what those literals are,

what the class is, how they relate to literals satisfied by other rules or other data

items, or anything else except what is explicitly stated above.

8.3 Protocol for Private Controlled Classification

We now show how to solve the problem presented in Chapter 8.2.2 between sites

D, G, and an untrusted, non-colluding site C, where C learns only

1. an upper bound on the number of attributes v,

2. an upper bound on the number of rules |R|, and

3. the number (and type - positive or negative) of literals that fail to be satisfied

by each rule for a given instance x.

The first two items are innocuous. The only potential issue is with item 3. C knows

exactly one rule will be satisfied for each instance (from the problem definition).

However, the degree to which unsatisfied rules fail gives some information about each

instance: C could cluster instances, for example. In our envisioned scenario of high-

throughput profiling C does not know which instance or rule is which, or the content

of the rules. Even knowing that an instance comes close to satisfying several rules

does not provide damaging information; the “nearly satisfied” rules could as easily

be for a harmless (“green”) case rather than an indication of “near warning”. While
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not cryptographically secure, this does meet the standard of “protecting individually

identifiable information” required under most privacy regulations.

The basic idea behind the protocol is that sites D and G send synchronized

streams of encrypted data and rule clauses to site C. The order of attributes are

scrambled in a way known to D and G, but not C. Each attribute is given two

values, one corresponding to don’t care, the other to its true value. Each clause also

has two values for each attribute. One is simply an “invalid” value (masking the

real value). The other is the desired result, either the a (for a clause xj = a), or

the agreed upon “don’t care” value. C compares to see if either the first or second

values match, if so then either the attribute is a match or the clause is a don’t care.

When the literal has a negation, site C negates the comparison result. If there is a

match for every clause in a rule, then the rule is true.

To prevent revealing the number of negations, we add a “fake” literal correspond-

ing to each real attribute. For every positive clause, there is a corresponding fake

negative clause; and vice-versa. The fake literals are chosen jointly by D and G so

that they always match.

The key to hiding the values is that the don’t care, true, invalid, and fake values

are encrypted differently for each data/rule pair in the stream, in a way shared by

D and G but unknown to C. The order (is the first attribute the value, or the don’t

care value) also changes, again in a way known only to D and G. Since all values

are encrypted (again, with a key unknown to C), the non-colluding site C learns

nothing except which rule matches and the number of items that fail for rules that

don’t match. Since the rule identifier is also encrypted, this is useless to C.

The protocol operates in two phases: encryption and prediction. There is a third

verification phase that can be run optionally to check for forbidden rules (described

in Chapter 8.4.) Two methods are used for encryption, a one-time pad based on a

pseudo-random number generator shared by D and G, and a standard deterministic

encryption method E. To aid in understanding the discussion, a summary of the

functions / symbols used is given in Table 8.1.
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Table 8.1

Symbol Description

EK Encryption with key K

Rg Common pseudo-random genera-

tor shared by site D,G

e Data item to be evaluated, a vec-

tor of attributes

x Data item to be evaluated with

fake attributes added

A Rules × attributes matrix of en-

crypted instances created by site

D

R[i] Rule i, consisting of clauses corre-

sponding to attributes of x

F [i] Forbidden Rule i

B Rules × attributes matrix of en-

crypted rules created by site G

nj . . . nj+t Values outside the domain of jth

attribute

i Index for rules

j Index for attributes

σ Index for “match” and “invalid”

pairs
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Protocol 8.1 Private classification: encryption phase for D

Require: D and G share a pseudo-random generator Rg, Rg(k) represents the kth number
generated by the pseudo-random generators. e is the vector of attributes for the entity
to be tested. nj+t are values outside the domain of ej .
cnt← 0 {Initialize on first call to protocol.}
Kr ← Rg(cnt + +)
for i← 1, . . . , |R| do

x[1..|e|]← e; xf [1..|e|]← 0; xf [|e|+ 1..2|e|] ← 1
randomly permute x and xf with π(cnt + +)
for all xj ∈ x do

σ ← (Rg(cnt + +) mod 2)
if xf[j]=0 then

A[i][j][σ] ← EKr(xj ⊕Rg(cnt + +)) {Real value}
else

A[i][j][σ] ← EKr(nj+1 ⊕Rg(cnt + +)) {Fake value}
end if

A[i][j][(1 − σ) mod 2]← EKr(nj ⊕Rg(cnt + +)) {Don’t care value}
end for

end for

send A to site C
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Protocol 8.2 Private classification: encryption phase for G
Require: D and G share a pseudo-random generator Rg, G has a private generator Rpg.

Rg(k) (Rpg(k)) represents the kth number generated by the pseudo-random generators.
|e| is the number of literals. nj+t are values outside the domain of ej .
cnt← cntp← 0 {Initialize on first call to protocol.}
randomly permute rules in R
Kr ← Rg(cnt + +)
{R[i][j] is the ith rule’s jth literal, R[i].result is the predicted class for the ith rule}
for i← 1, . . . , |R| do

x← R[i]; xf [1..|e|]← 0; xf [|e|+ 1..2|e|]← 1
randomly permute x and xf with π(cnt + +)
vi ← a binary vector of length |e| with |e| − ngi random 1’s {ngi is the number of
literals with negation}
cntn← 1
for j ← 1, . . . , |x| do

σ ← (Rg(cnt + +) mod 2)
if xf [j] = 0 {Real value} then

if R[i][j] is of the form Xj = aj or ¬(Xj = aj) then

B[i][j][σ]← EKr(aj ⊕Rg(cnt + +))
B[i][j][(1 − σ) mod 2]← EKr((nj+1)⊕Rg(cnt + +))
if R[i][j] is of the form Xj = aj then

B[i][j][2] ← 0
else

B[i][j][2] ← 1 {Negated value}
end if

else

B[i][j][σ]← EKr((nj+1)⊕Rg(cnt + +))
B[i][j][(1 − σ) mod 2]← EKr(nj ⊕Rg(cnt + +))
B[i][j][2]← 0 {Don’t Care - always positive}

end if

else

if vi[cntn + +] = 1 {Fake negation} then

B[i][j][σ]← EKr((nj+2)⊕Rg(cnt + +))
B[i][j][(1 − σ) mod 2]← EKr(nj+1 ⊕Rg(cnt + +))
B[i][j][2]← 1 {Fake negative}

else

B[i][j][σ]← EKr((nj+2)⊕Rg(cnt + +))
B[i][j][(1 − σ) mod 2]← EKr(nj ⊕Rg(cnt + +))
B[i][j][2]← 0 {Fake positive}

end if

end if

end for

rc ← Rpg(cntp + +), B̄[i]← (rc, Ekr(rc)⊕R[i].result)
end for

send B, B̄ to site C
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In the encryption phase, site D first checks whether xj is valid or a fake at-

tribute. If it is a fake attribute it encrypts two values nj , nj+1, otherwise it creates

an encrypted version of the original item and nj . An additional attribute is added

corresponding to the don’t care condition using the “illegal” value nj not in the

domain of xj . Every item is xored with a random pad before encryption.

Site G not only needs to hide the data values, it also needs to hide the number

of literals with negations. For a rule Ri with ngi literals, it must add |e| − ngi

fake negations from the |e| fake attributes. If the attribute is not fake, it creates

two encrypted values based on the actual literal. B[i][j][2] is set to 1 if the literal

is a negation. G applies a different cryptographic scheme for class values (again

padding with a newly generated random each time), ensuring C doesn’t see that

different rules may have the same class value. This ensures that C doesn’t learn the

class distribution of different instances over multiple runs of the protocol. This is

repeated for every rule (giving multiple encryptions of the same x, but with different

encryption each time.) The encryption phase is described in detail in Protocols 8.1

and 8.2.

Protocol 8.3 Private classification: prediction phase

Require: A,B, B̄ be generated and sent to site C.
At site C:
for i← 1, . . . , |R| do

if ∀j, 1 ≤ j ≤ |A[i]|, ((A[i][j][0] = B[i][j][0] ∨A[i][j][1] = B[i][j][1]) ⊕B[i][j][2]) then

(rc, ce)← B̄[i];
break;

end if

end for

randomly generate r
send (rc, ce ⊕ r) to D and send r to G;

At site D:
receive (rc, ce) from site C;
send ce ⊕ Ekr(rc) to site G

At site G:
receive r from site C and c from site D
output c⊕ r as the classification result
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Site C compares the vectors to find which rule is satisfied in its entirety. Note

that if the literal is negation then xoring with B[i][j][2] effectively negates the literal.

C does not send the prediction result to site G as this would reveal which rule is

satisfied, since this is the encrypted (and distinct for each rule) value rather than

the actual class. C instead sends the result xored with a random number to site D.

D decrypts this to get the class, but the true class value is masked by the random

generated by C. Finally G can combine the information it gets from site C and site

D to learn the classification. This process is fully described in Protocol 8.3.

8.3.1 Security of the Protocol

To prove that this protocol reveals nothing but the number of positive and neg-

ative literals that fail to match, and upper bounds on the total number of literals

and rules, we use the secure multi-party computation paradigm of Chapter 3.2. This

reduces to showing that the received messages can be simulated; the algorithm itself

generates the rest of the view. During the encryption phase, D and G receive no

messages.

Site C sees the matrixes A, B, and B̄. The size of each is known. Assuming

encryption is secure, output of the encryption is computationally indistinguishable

from a randomly chosen string over the domain of the encryption output.

The simulator randomly generates values from the range of the encryption func-

tion and assigns them to As. The location of negations is simulated by randomly

populating Bs[i][j][2] with 1/2 0’s and 1/2 1’s. Please note that the original location

of the negations were chosen randomly by site G. For the rest of Bs, first a number

of locations corresponding to the number of non-matching positive/negative literals

are chosen at random from values with the appropriate negation flag in Bs[i][j][2].

For these locations, a random value is used for Bs[i][j][0]. For the remaining loca-

tions, one of Bs[i][j][0] or Bs[i][j][0] is chosen to receive a random value, the other

receives As[i][j]. Due to the random padding and pseudo-random functions, the
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relative true/don’t care mapping of B[i][j][0] and B[i][j][1] will be independent of

B[i][j][2].

Are As and Bs computationally indistinguishable from A and B? Assume that

the output of the simulator’s As, Bs is not computationally indistinguishable from

the A,B seen during the protocol. Let M be the distinguisher. Then M must be able

to distinguish between some A[i][j][σ] and As[i][j][σ]. This means M can distinguish

between a random number and EKr(X ⊕ R), contradicting our secure encryption

assumption. For B̄ a similar argument applies.

For the classification phase site D only sees r, d. Since both of them are random

numbers, a simple random number generator can be used for the simulator. The

message G receives can be simulated using a random number generator (simulating

the message from C) and the actual result (result⊕ r).

8.4 Checking for Forbidden Rules

Protocols 8.1, 8.2, and 8.3 generate the correct classification without revealing

rules or data. Protocol 8.4 shows how C and D can test if ∀f ∈ Ff 6⊂ r (possibly

before D returns the masked result to G in Protocol 8.3.) The basic idea is that

D generates a set of “forbidden rules” in the same manner as by G in Protocol 8.2.

D and C perform a secure set intersection to see if all of the clauses in a forbidden

rule are used, if so the rule is deemed invalid.

To improve the efficiency of verification we only check that the rule used for

classification is not violating privacy (i.e., it is not part of the forbidden rule set F ).

The index of the matching rule is given to D to seed the random number generation,

but since the rules are randomly ordered this conveys no information to D. The

verification phase also needs to keep C and D in the dark on the contents of rules

(unless they are in violation of the forbidden rule set.) For example, we do not want

to reveal the exact location of the literals with negations, also we do not want D

to learn the number of matches with forbidden rule set. This is satisfied by using a
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Protocol 8.4 Private classification: verification phase
Require: Let B be the rule set received from G in Protocol 8.2.

At site C:
let rf be the rule that matched.
Send the index of rf to D.
for j = 1; j ≤ v; j + + do

TC = TC ∪ {H(j||B[rf ][j][0]||B[rf ][j][2])} ∪ {H(j||B[rf ][j][1]||B[rf ][j][2])}
{|| is string concatenation.}

end for

At site D:
Receive rf and use it to appropriately seed the random number generator.
Generate Fe, the matrix of encrypted forbidden rules, from F using the method used by
G to generate B from R in Protocol 8.2, except that it uses nj+2 instead of nj+1 for the
“filler” in a true forbidden rule (to ensure that it doesn’t match).
for i = 1; i ≤ |F |; i++ do

for j = 1; j ≤ v; j + + do

if jth attribute is not “fake” or not “do not care” then

TF [i] = TF [i] ∪ {H(j||Fe[i][j][σ]||Fe [i][j][2])} {Note that Fe[i][j][σ] is the en-
crypted form of the actual literal}

end if

end for

end for

{Cooperatively between C and D:}
{let li be the number of actual literals in Fi. Using a secure set intersection size threshold
protocol, Site D (or site C, or both) learns if | TC ∩ TF [i] |= li.}
if ∀i, | TC[i] ∩ TF [i] |< li then

no forbidden clauses are used.
end if
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secure set intersection size protocol that only reveals if the intersection size is above

a threshold; specifically the number of literals in the forbidden rule.

Notice that if two rules are the same, then the literals for the true attributes must

be the same. By calculating the hash value of the form H(j||B[i][j][σ]||B[i][j][2]),

only the same literals for the same attributes will match. Since D knows all the

random numbers, it can encrypt the forbidden rules in correct form. Assume that a

forbidden rule Fi has li literals then |TC∩TF [i]|must be li if Fi and the rule used for

classification are the same. Since D only calculates the H(j||Fe[i][j][σ]||Fe[i][j][2])

for the genuine attributes and correct literal, the intersection size can be at most li.

Using the secure intersection protocol (Secure set intersection is described in Chapter

3.5.5) this can be easily checked. Each secure intersection protocol execution will

only reveal whether the rule used for classification and the forbidden rule is the same

or not. Since the only data exchange is done during set intersection protocol, if the

protocol used is secure then the check protocol will be secure.

8.4.1 Security of Verification

Each party constructs its own sets; the only information exchanged is the index

of the rule to be checked. This is governed by a random permutation unknown to

D (from the beginning of Protocol 8.2), so it can be simulated by choosing from a

uniform distribution on 1, . . . , |R|. The only other communication is part of the set

intersection, for which the only result is if the intersection size equals the threshold.

Any protocol that can check if the size of the intersection is bigger than some thresh-

old can be used for our purposes (Chapter 3.5.5). The final result, if this number

of clauses equals the total in the forbidden rule, is a secure comparison and reveals

only the result – easily simulated knowing the result.

In practice the site C would operate in a streaming mode, with D sending each

new instance x and G re-encrypting the rules R. To C these would appear to be

continuous streams – the repetition in R is masked by the random pad. This avoids
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C learning anything based on results over multiple instances (e.g., giving C a single

encrypted rule set for all instances would enable C to learn what rule was most

common, even if it didn’t know what that rule was.)

One interesting advantage to this method over the generic method is that by

colluding (e.g., under a court order), any two sites could reveal what the third site

has. For example if G does use a forbidden rule, C and D can collaborate to expose

what that rule is. This is not directly possible with generic circuit evaluation, since

a malfeasant G could delete the keys used in the protocol to permanently hide the

forbidden rule.

8.5 Cost Analysis

Privacy is not free. Keeping the necessary information private requires many

encryptions for each classification. Given v literals in each rule both sites G and

D perform O(|R| · v) encryptions in the encryption phase. The prediction phase

requires a single encryption.

In a real life execution, we need to be able to process and classify each instance

very quickly. To measure the time needed for encrypting the rules and data, we

implemented the encryption phase (Protocols 8.1 and 8.2) using the Java crypto

library cryptix. We used AES with 128 blocks and a 128 bit key. Our experiments

on a Sun Blade 1000 shows that an instance with 25 attributes can be classified using

500 rules in an average of 275 milliseconds (excluding the network transfer time). A

system which uses only 100 rules with 15 attributes could classify an instance in 34

milliseconds. Hardware-accelerated cryptography would be much faster; our initial

implementation suggests that using off-the-shelf hardware our secure classification

throughput could easily support real life requirements.

Verification is more expensive. We need to run F set intersection protocols.

Each execution of the set intersection protocol requires O(v ln ln v) homomorphic

encryptions. Therefore total computation cost will be O(F · v ln ln v) homomorphic
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encryptions. Each homomorphic encryption is considerably more expensive than

standard private key encryptions. Although the execution of the verification pro-

tocol will be slower in practice, it will be used rarely: simply the credible threat of

verification is sufficient to prevent use of forbidden rules.

The communication cost of the protocol is similar. Assume the size of each

encrypted value is t bits. The encryption phase sends O(|R| · v · t) bits, and the

prediction phase sends 3t bits. In the verification phase the set F is transmitted in

encrypted form, O(|F | ·v ·t) bits. The total communication cost is O((|R|+ |F |) ·v ·t)

bits.

Assume that we have 500 rules and 25 literals, using AES with 128 bit key and

128 bit block size. We need to transfer close to 5Mb per classification. With current

network speeds, this is relatively small compared to the encryption cost, particularly

since it can operate in a streaming mode. While the communication cost may seem

high, particularly since this is the cost per instance to be evaluated, it is likely to

work well in practice. Bandwidth is growing rapidly, it is generally latency that

limits performance. This protocol adapts well to streaming - the small number of

messages, and the fact that each site sends only one per phase, means a continuous

stream of instances could be fed through the system. The throughput of the system

could approach the bandwidth of the communication network.

Note that the generic circuit evaluation is likely to be significantly more expensive.

We have a circuit construction that solves the problem with O((|R| + |F |) · v · n))

encryptions where n is the number of bits to represent a literal. The circuit size is

O(|R| · |F | · v ·n) gates, giving a bit transmission cost of O(|R| · |F | · v ·n · t). Due to

the necessity of representing all possible input in the construction of the circuit, a

significantly more efficient approach based on generic circuit evaluation is unlikely.
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8.6 Conclusions

As the usage of information technology for homeland security and other poten-

tially intrusive purposes increases, privately using this information will become more

important. We have shown that it is possible to ensure privacy while profiling with-

out compromising the ultimate goal of achieving security.
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9 SUMMARY

This thesis presents efficient solutions for many privacy preserving data mining tasks

on horizontally partitioned data. Another result of this thesis is that many privacy

preserving distributed data mining protocols on horizontally partitioned data can

be efficiently implemented by securely reducing them to few basic secure building

blocks. Also this thesis suggests some initial solutions on how to use the data mining

results without violating privacy.

We believe the need for mining of data where access is restricted by privacy

concerns will increase. Examples include knowledge discovery among intelligence

services of different countries and collaboration among corporations without reveal-

ing trade secrets. Even within a single multi-national company, privacy laws in

different jurisdictions may prevent sharing individual data. Many more examples

can be imagined. Even more, new technologies such as a RFID tags, biometrics and

DNA sequencing will enable us to collect more data that is potentially useful at the

same highly privacy sensitive. We are hoping that some of the work presented in

this thesis will be helpful in exploiting those useful technologies without sacrificing

our privacy.
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