CERIAS Tech Report 2005-68
FASH: A FAST AND SECURE HASH
by William Speirs
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

FASH: A Fast And Secure Hash

William R. Speirs, wspeirs@cs.purdue.edu

Center for Education and Research in Information Assurance and Security (CERIAS)
Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907

Abstract. FASH is a cryptographic hash function that is more then 5 times faster
then SHA1 making it more suited for large amounts of data. However, this increase in
speed comes at the cost of security. Although all tests performed in this paper show
that FASH is as secure as SHA1, FASH has a higher rate of collision. FASH was created
as a replacement for SHA1 in applications where speed is much more important than
security.

1 Introduction

Representing variable length data with a fixed length hash is the foundation for almost all
cryptographic integrity checks. FASH (A Fast And Secure Hash) is designed as a cryp-
tographically secure hash function meaning that it provides three properties: pre-image
resistance, strong collision resistance, and weak collision resistance. While SHA1 has dis-
played these properties over time, its main drawback is speed. Whereas other hashes such as
MD4 and MD5 show evidence that the collision resistance property does not hold primarily
because of their smaller hash size. Drawing from this FASH creates a 160 bit hash to com-
pete with SHA1 while being more than 5 times faster. This allows FASH to be of great use
in applications where simply distinguishing one set of data from another quickly (files for
example) is far more important than protecting the data (passwords for example).

2 An Overview of FASH

FASH was designed to be a computationally secure cryptographic hashing algorithm that
is significantly faster then SHA1. FASH sacrifices some computational collision resistance
for speed; however, it is still believed to be computationally secure and exhibits results
comparable to SHA1 when tested for the avalanching effect, pseudorandom number genera-
tion, and uniformity in distribution. Since FASH’s compression ratio (5 to 1) is worse than
SHA1’s (3.2 to 1) there are obviously more opportunities for collisions. FASH’s digest size
was chosen to be 160 bits, the same size as SHA1, so that all tests done could be compared
to SHA1. FASH’s primary goal is to achieve computational collision resistance as quickly as
possible. While pre-image resistance was not a major factor in designing FASH, statistical
tests have given evidence that FASH has this property, making it a cryptographically secure
hash function.

3 Algorithm Specification

The main design goal of FASH was to avalanche data! as fast as possible. It is also designed to
be used on a 32-bit architecture (for example the 8086 Intel architecture) making it practical
and easy to implement on most personal computers. The algorithm achieves the avalanching
effect quickly by making every operation affect every bit of input. FASH uses two steps to
hash a block of data: input shuffling and compression. These steps are much like what is
found in SHA1 with the exception that FASH’s input shuffling step does not expand the
input data like SHA1’s expansion step. It is believed that FASH is computationally collision
resistant even without the input shuffling, although in practice input shuffling should be
used. It was found that using both steps improves the uniformity of the hash distribution.

3.1 Pseudocode of Algorithm

Described below is the FASH algorithm in pseudocode (see the appendix for a C implemen-
tation of the FASH algorithm). To differentiate between 8-bit and 32-bit quantities, BYTE
and DWORD will be used respectively. All addition is modulo the maximum size of the
variable. (Ex: 255 + 1 = 0 when using BYTEs.)

The algorithm below describes a single call to FASH (without padding) that processes
100 BYTEs of input data, here on referred to as the message (m). All messages are padded
to a multiple of 100 BYTEs by the following method. The last block is padded to 91 BYTEs.
If the last block of the message is already larger then 91 BYTESs, then it is padded to 100
BYTEs and a new block is then padded to 91 BYTEs. Then an 8 bit representation of
the padding size is concatenated to the end of the block. Finally, the message’s size as a
64 bit number is concatenated to the end of the block making this final block a multiple of
100 BYTEs. Padding is done by concatenating a bit of value 1 followed by as many bits as
required for the remaining padding with value(s) of 0. This padding is almost identical to
that of SHA1 except SHA1 does not include the padding length.[5]

Input Shuffling
m; < m; + Mag_; where m; is the i DWORD of the message and i = 1...25

Compression

1. w, = hl, Wy = hg, W3 = hg, Wy = h4, Wy = h5; where H = hl || hg || hg || h4 || h5
Initially h; = 0x67452301, hy = Oxefcdab89, hs = 0x98badcfe, hy = 0x10325476, hs
=0xc3d2e1{0

2.9 =558=783=135,=9 s5 =20
3. fori=1,6 11, .. , 26
4. wy — wy + (w2 @ miy3) + (ha © migr)

5. wy — wy + (w3 + Mita) © (hs + Miy2)

L“Whenever one input bit is changed, every output bit must change with probability 1/2”[4], pg 277

6. Ws <— W3 + (’LU4 D mz) + (hl D mi+3)
7. wy — wy + (w5 +mig1) ®© (ha + Mmjiya)

8. Wy <— Wy + (w1 D mi+2) + (hg D mz)
Where my, h,, and w, are of size DWORD.

9. w; «— wy <<< 85
10. wy «— wy <<< S9
11, w3 «+— w3 <<< 53
12, wy +— wy <<< 84
13. wy +— wy <<< 85
14. 51+ wy + wa + w3;
15. 89 «— wo 4+ w3 + wy;
16. s3 «— w3 + wy + ws;
17. 84 «— wyq + w5 + wy;

18. s5 «— w5 + wy + wo;

Where s, are of size DWORD.
19. end for

20. H — wy || wy || ws || wy || ws

3.2 Sample Hashes

Below are a few sample hash values computed with padding to check implementations for
correctness.

“ ¢863f36ed09d712f0473ee382138c8bc631dbbae
“a” 6aftb67568a4277aa936e89509b8fcdf66a3ac643
“ab” f4887b9edfe7567f1a4e824b56d7cdd0596e9d3e
“abcdefghijklmnopqrstuvwxyz” | 095ea06492d36188bb7ea83747d462ce6f017bba

4 Design Reasoning

FASH was designed with inspiration from SHA1, MD5, MD4 and from a recently published
encryption and authentication algorithm Helix[1]. SHAT was created from MD5 and MDA4.
The National Security Agency has given SHAT1 its blessing, National Institute of Standards
and Technology has adopted it as a standard[5], and more importantly it has stood the test
of time. Since the NSA worked on SHAT1 the reasons behind the design are not known to this
day. This makes it impossible to find answers to questions like, “Why were those particular
constant values used?” Whenever possible, ideas and values were borrowed from SHA1; the
initial values for wy, ws, w3, w4, ws, for example.?

The inspiration that Helix provided was that it used only addition, exclusive ORing, and
rotations to achieve its security. While Helix, created by a group of experienced cryptogra-
phers, has not yet stood the test of time it has passed the initial rounds of testing[1]. The
other piece of inspiration taken from Helix was that it seemed to “inject” a piece of data, or
a key, at different stages in the encryption. Taking these ideas, along with what was learned

from studying SHA1, MD5, and MD4, FASH was designed.

4.1 Shuffling Algorithm

The compression function in FASH is proceeded by a shuffling function. This shuffling
function is simple to keep the overall algorithm fast and yet it has a statistical effect on the
hash. The shuffling function works by taking the first block of the message, adding it to
the the last block of the message, and letting this be the new first block of the message.
This process continues through all of the blocks of the message. All of the additions are
automatically modulo the maximum value of the block by the hardware. Since the shuffling
works on the message, the size of a block is a DWORD. That way the length of the loop
used is kept small as to not dramatically impact the speed of the overall algorithm. This
method is shown algebraically below with the block size abstracted away:

INPUT: A B C D
ouTpPUT: A+D B+C C+B+C D+A+D

Since all of the addition is modulo the maximum value of the block the “double” additions
of blocks in the second half of the output, two C's for example, is not a weakness of this
shuffling function. For example you can never have D + D result in D when modulo the
maximum size of the block unless D = 0. In that case this “double” addition will prevent
an attack that simply switches the first and last blocks:

INPUT: A B C 0
ouTPUT: A B+C C+B+C A
INPUT: 0 B C A

OUTPUT: A B+C C+B+C A+ A

Unfortunately this shuffling function does not help to make the algorithm pre-image
resistant. It is just simple addition, and a system of equations can be constructed to solve
for each of the original variables.

2Some testing was done with other numbers and these seemed to work well.

4

4.2 Compression Algorithm

The compression algorithm has the property of being able to have any bit of input affect,
both directly and indirectly, any other bit of input causing a fast avalanche effect. Instead
of compressing a single DWORD of the message like SHA1, FASH compresses 5 DWORDs
of data per compression iteration. FASH is also more dynamic then SHA1 which, it should
be noted, can be extremely dangerous. Making any cryptographic algorithm dynamic, in
the sense that the input controls what happens in the algorithm, takes the control out of
the designer’s hands and puts it into the hands of an attacker. In almost all hashing or
encryption algorithms, the constants are defined and are not changed. For example, SHA1
does not dynamically change the amount of rotation based on input. DES and AES do not
change their respective S-boxes based on input. FASH does this to make the data avalanche
faster. The idea being that starting with “strong” constants and then letting these values
change as the algorithm moves forward will cause more complexity for someone trying to
create a collision than keeping them constant. However, it should be noted that this dynamic
property might be FASH’s fatal flaw.

Like SHA1, FASH takes advantage of both linear and non-linear functions. The main
difference, with respect to the compression function, is that SHA1 has four (three distinct)
non-linear functions that it uses in its compression algorithm. FASH does not create specific
non-linear functions but rather imposes non-linearity on the data by using regular addition
in conjunction with XORing values. This was done so that FASH could evenly distribute
non-linearity among all blocks in a round; whereas SHA1 only applies its non-linear functions
to one out of five blocks per round. This is what contributes to FASH’s ability to avalanche
data very quickly, everything is some what symmetric.

5 FASH Test Results

Statistical tests were run on FASH to help prove its computational collision resistance. If
a hash function has a truly unbiased or uniform output then hashing biased input should
result in what appears to be an unbiased pseudorandom string of bits. There are a number
of statistical tests that can be performed to check how much like a random string of bits
something produces. Three sets of tests were run against FASH and SHA1, using SHA1 as
a benchmark. It has also been shown that if a function can create a pseudorandom string
of bits then that function is a one-way function[2] or pre-image resistance, one of the three
criteria for a cryptographic hash function.

5.1 Collision & Avalanche Tests

To test for collisions and the avalanching effect of the algorithms five different sets of data
were run through both FASH and SHA1. The five sets of data represent what is believed
to be some of the most difficult sets of data for a hashing algorithm to pass. Each set of
data only has a single bit of change from input to input®, with the exception of “all_same”
and “alt_bytes”. The five sets are: “all_same”, where all of the bytes in the input are the

3Input sizes were adjusted so that FASH’s input was 800 bits and SHA1’s input was 512 bits.

same and from input to input the byte used is changed; “alt_bytes”, where bytes alternate
through all of the byte values (ex. 0x0001...to OxFFEE...); “55_base”, where all bytes
are 0x55 with a single bit flipped moving through the bits from least significant to most
significant; “AA _base”, same as “55_base” except using OxAA as a base instead of 0x55;
“all_bit_change”, where the base byte goes from 0x00 to OxFF and from input to input a
single bit is flipped moving through the bits from least to most significant.

Below are the results of comparing the hashed values of the five sets of data without
padding. The hashes were first checked for collisions, none were found for either algorithm.
Next the bits of the hash were compared from hash to hash, in position, checking to see how
many bits were the same. The total number of bits that were the same in all of the hashes,
and the max, min, and average bits from hash to hash that were the same are reported
below.

FILE: all_same | FASH | SHA1 | Diff
Total Bits Same | 20370 | 20417 | N/A

Max Hash Bits Same 99 94 -5
Average Hash Bits Same | 79.570 | 79.754 | -0.184
Min Hash Bits Same 66 61 +5

FILE: alt bytes | FASH | SHA1 | Diff
Total Bits Same | 5240757 | 5243478 | N/A

Max Hash Bits Same 106 105 -1
Average Hash Bits Same | 79.968 | 80.009 | -0.023
Min Hash Bits Same 53 47 +6

FILE: 55_base | FASH | SHA1 | Diff
Total Bits Same | 64458 | 40710 | N/A

Max Hash Bits Same 100 100 0
Average Hash Bits Same | 80.573 | 79.512 | -0.085
Min Hash Bits Same 61 60 +1

FILE: AA base | FASH | SHA1 | Diff
Total Bits Same | 63400 | 41128 | N/A

Max Hash Bits Same 96 98 +2
Average Hash Bits Same | 79.250 | 80.328 | -0.422
Min Hash Bits Same 60 62 -2

FILE: all bit_ change | FASH SHA1 Diff
Total Bits Same | 16386170 | 10487977 | N/A

Max Hash Bits Same 107 112 +5
Average Hash Bits Same | 80.011 80.017 | +0.006
Min Hash Bits Same 52 53 -1

Looking at the results of the above tests one can conclude that FASH avalanches data
almost as completely as SHA1 in these five sets of data. In a perfect avalanche we would see

6

80 or half of the bits change from hash to hash. The numbers in the Diff column represent
how much better or worse FASH did against SHA1. A positive number means that FASH
was closer to the optimum of 80 then SHA1, and a negative number means that SHA1 was
closer to the optimum. In most of the sets of data FASH did worse then SHA1, but not
worse then -5 for maximum and minimum bits the same. The average hash bits that were
the same, or what is believed to be the most important data point, shows that FASH did
only slightly worse then SHA1 with the exception of “all_bit_change”. In all cases it was only
worse by 0.5 bits. Considering that mathematically FASH has more collisions, it appears
that FASH does a good job of avalanching the input.

5.2 Pseudorandom Number Generator Tests

The next set of tests were designed to determine if FASH show properties of a pseudorandom
number generator. To test for this property the five basic random number generator tests
in the Handbook of Applied Cryptography on page 181-182 were used [4]. These five tests;
frequency test (monobit test), serial test (two-bit test), poker test, runs test, and autocor-
relation test, all give a resulting x? value. Below are the results of these tests, in order, for
FASH and SHA1 when the same five data sets as above were used as input.

FILE: all same | FASH | SHA1 | Diff
TEST 1
Min Zeros 66 61 +5
Max Zeros 99 94 -5
Min Ones 61 66 -5
Max Ones 94 99 +5
Average x? | 0.957 1.112 | +0.155
TEST 2
Average x? | 1.948 2.115 | 40.167
TEST 3 m=2 & v=3
Average x? | 2926 | 3.271 [+0.345
m=3 & v=7
Average x* | 7.008 | 7.120 [+0.112
TEST 4 v=4
Average x* | 4.923 | 5.189 [+0.266
TEST 5 d = 1:80
Average x? | 1958.023 | 1946.349 | -11.674

FILE: alt_bytes | FASH | SHA1 | Diff
TEST 1
Min Zeros 53 47 +6
Max Zeros 106 105 -1
Min Ones 54 55 -1
Max Ones 107 113 +6
Average x? | 0.994 1.003 | 40.009
TEST 2
Average x? | 1.991 2.007 | +0.016
TEST 3 m=2 & v=3
Average x? | 2.977 [3.007 [+0.030
m=3 & v="7
Average x* | 7.017 | 7.003 | -0.014
TEST 4 v=4
Average x? | 4.957 ‘ 4.946 | -0.011
TEST 5 d = 1:80
Average x* | 1948.504 | 1947.093 | -1.411
FILE: 55 base | FASH | SHA1 Diff
TEST 1
Min Zeros 61 60 +1
Max Zeros 100 100 0
Min Ones 60 66 -6
Max Ones 99 100 +1
Average x? | 0.997 1.137 +0.140
TEST 2
Average x? 1.883 2.088 +0.205
TEST 3 m=2 & v=3
Average x* | 2916 | 3.180 | +0.264
m=3 & v="7
Average x? | 7.011 | 7.251 | +0.240
TEST 4 v=4
Average x* | 4917 | 5.016 [+0.099
TEST 5 d =1:80
Average x? | 1933.160 | 1953.430 | +20.270

FILE: AA _base | FASH SHA1 Diff
TEST 1
Min Zeros 60 62 -2
Max Zeros 96 98 +2
Min Ones 64 62 +2
Max Ones 100 98 -2
Average x? | 0.913 0.979 | +0.066
TEST 2
Average x? | 1.892 1.903 | 40.011
TEST 3 m=2 & v=3
Average x* | 2946 | 2.840 | -0.106
m=3 & v=T7
Average x? | 6.954 ‘ 7.173 ‘ +0.219
TEST 4 v=4
Average x* | 4.887 | 4.796 | -0.091
TEST 5 d = 1:80
Average x* | 1936.344 | 1943.670 | +7.326
FILE: all_bit_change | FASH SHA1 Diff
TEST 1
Min Zeros 52 53 -1
Max Zeros 107 112 +5
Min Ones 53 48 +5
Max Ones 108 107 -1
Average x? 1.000 1.000 0
TEST 2
Average y? | 2.008 1.997 | -0.011
TEST 3 m=2 & v=3
Average x> | 2.998 [3.005 [+0.007
m=3 & v=7
Average x2 | 7.004 7.012 | +0.008
TEST 4 v=4
Average x* | 4.956 | 4.954 | -0.002
TEST 5 d = 1:80
Average x? | 1948.215 | 1947.910 | -0.305

It is clear from the tables above that FASH performed about the same as SHA1 on
almost all of the data sets, and tests. From these results one can conclude that FASH
shows pseudorandom-number-generator properties and is therefore a one-way or pre-image
resistant function. Obviously more testing is needed on more data sets. It should be noted
that most of the statistical tests used normally require a minimum number of bits far greater
then 160 so the accuracy of the results might be skewed. This is why FASH’s results were
compared to SHA1’s results instead of simply comparing against known x? values for each

9

test.

5.3 Uniform Distribution Tests

This test was used to test the distribution of hashes into the possible hash values from
biased message sets. Three sets of messages were used for these tests: the first, middle,
and last 220 possible input values for each algorithm. These ranges are: 0x0000...0000 to
0x0000. .. 000FFFFF, 0x7FFF. .. FFF80000 to 0x8000. .. 0007FFFF, and OxFFFF. .. FEFF00000
to OxFFFF... FFFFFFFF?. If the algorithms have perfect uniform distribution into the hash
space then the average value of the the hashes will be the average value of the overall hash
space. Below are the results for the above data sets.

FILE: first FASH SHA1 Diff
Max Hash Value | 0x649Ee36 | 0xE504e36 -0x8066e36
Min Hash Value | 0x25E8e27 | 0xE504e31 | +0xE503e31
Difference | 0x649Ee36 | 0xE504e36 -0x8066e36
Average | 0x7FFCe36 | 0xE504e36 N/A
Diff From Optimal | -0x3726e33 | 0x6504e36 | +0x6500e36
FILE: middle FASH SHA1 Diff
Max Hash Value | 0xEADBe36 | 0xC8C2e36 | +0x2219e36
Min Hash Value | 0xCFA3e26 | 0xC8C2e31 | +0xC8Cle3l
Difference | OxEADBe36 | 0xC8C2e36 | +0x2219e36
Average | 0x7TFECe36 | 0xC8C2e36 N/A
Diff From Optimal | -0x1315e34 | 0x48C2e36 | +0x48AEe36
FILE: last FASH SHA1 Diff
Max Hash Value | 0xBF7Ae36 | 0xD739e36 | -Ox17BFe36
Min Hash Value | 0x4070e26 0x1EF8e31 | +0x1EFT7e31
Difference | 0xBF7Ae36 | 0xD739e36 | -0x17BFe36
Average | 0x7TFE9e36 | 0x7B19e36 N/A
Diff From Optimal | -0x163Ce34 | -0x4E6Ee35 | +0x4D0Ae35

From the results above FASH does better then SHA1 for all three sets of data. The most
important data point being the difference between the optimal and the average hash value.
FASH’s difference is two hex digits smaller then SHA1 in two of the three data sets. It is
interesting that SHA1 has the same four most significant hex digits for the first and middle
sets of data.

5.4 Test Conclusions

Although the tests performed against FASH were limited both in the number of different
tests and the data sets run for each test, it appears that FASH’s avalanching effect, pseudo-
random properties, and uniformity in distribution are as strong if not stronger then SHA1.
These tests are a very good indication that FASH is computationally collision resistant and

4The number of bits for each range was adjusted for the proper input size of each algorithm.

10

cryptographically secure. Further cryptanalysis is obviously needed on FASH. All comments
on the merit of the tests performed, and on the general security of FASH are welcomed. The
discovery of collisions using FASH are especially welcome.

6 Algorithm Time Complexity Analysis

Since the main goal of FASH is to be faster then SHA1 a complexity analysis was done on the
operations used in FASH verses those used in SHA1. To aid in removing hardware dependent
details certain assumptions were made. First, it was assumed that memory access for both
BYTEs and DWORDs are instantaneous. Second, it was assumed that assignments, addi-
tions, XORing, ANDing, ORing, NOT, etc., all take a single clock cycle. The time required
for loop index calculations was also not considered because those calculations are not the
dominating factor of either algorithm.

SHA1
Event | Cycles | Number | Total
Expansion Part 1 1 16 16
Expansion Part 2 7 64 448
Round 1 20 20 400
Round 2 18 20 360
Round 3 21 20 420
Round 4 18 20 360
Additions 2 5 10
Total | 2,014
FASH
Event | Cycles | Number | Total
Input Shuffling 4 25 100
Constant Assignment 1 5 5
Round 1 35 5t 175
Round 2 30 5 150
Shift Calculation 15 5 75
Assignment 1 5 5
Total 510

Comparing the number of pseudoclock cycles FASH requires 3.95 times less pseudoclock
cycles then SHA1. It is important to remember that a single call of FASH processes 100
BYTEs of message whereas SHA1 only processes 64 BY TEs. Taking this into consideration
SHAT1 requires 3.93 pseudoclock cycles to hash a single bit of message whereas FASH can
hash that same bit in just 0.74 pseudoclock cycles making FASH actually 5.31 times faster
then SHA1. Some of this performance might be degraded because of assumptions mentioned
above like longer memory accesses on BYTEs then DWORDs, etc. To check the speed of
FASH against SHA1 in the real world 6.4 MB, 64 MB, and 640 MB of data was hashed
without padding on a 1.33GHz machine.

11

Data Size | FASH SHA1 x Faster
6.4 MB | real 0.03 | real 0.36 12.00
user 0.03 | user 0.34 11.33
64 MB | real 0.32 | real 3.71 11.59
user 0.31 | user 3.50 11.29
640 MB | real 3.23 | real 36.67 11.35
user 3.02 | user 34.96 11.58

The results from the real world comparison show just how much faster FASH is than
SHA1. The large difference in times between the real world comparison and the time com-
plexity analysis are due to having to make more calls to the SHA1 function then the FASH
function. However, these real world numbers should not be discredited because in any real
application one would need this increased number of calls as well.

7 Conclusion

The goal of this algorithm was to design a cryptographically secure hashing algorithm that
was faster then SHA1, while showing statistical results that suggest it is as secure as SHA1.
It is important to remember that mathematically FASH has a higher collision ratio then
SHA1, simply because FASH maps more then 1.5 times the amount of data as SHA1 into
the same space. However, from the tests conducted it seems as though FASH is as secure as
SHA1, and more then 5 times faster. Like all aspects of cryptography only time will prove
FASH’s worth. Even if collisions can be forced using FASH, the dominance in speed will
still make it useful in applications where distinguishing one very large file from another is
needed and an adversary would not try to force such a collision.

FASH was not designed to completely replace SHA1 but rather to provide a faster al-
ternative in applications where speed is much more important then security. All comments
and questions about this algorithm are greatly appreciated. Please feel free to contact me
via e-mail at wspeirs@cs.purdue.edu.

12

Appendix A: C Implementation of FASH Without Padding

#define rol(x,n) (((x) << () | ((x) > (32-(n))))
#define mod32(n) (n & 31)

int fash_init(DWORD *hash)

{
hash[0] = 0x67452301;
hash[1] = Oxefcdab89;
hash[2] = 0x98badcfe;
hash[3] = 0x10325476;
hash[4] = 0xc3d2elf0;
}

int fash(DWORD *input, DWORD *hash)
{
BYTE *inputBytes = (BYTE*)input;
BYTE xhashBytes = (BYTE*)hash;
DWORD shiftl1=5, shift2=7, shift3=13, shift4=9, shiftb=20;
DWORD wl, w2, w3, w4, wb;
DWORD i;

// input shuffling
for(i=0; i < 25; i++) input[i] += input[25 - (i+1)];

// set to last round’s values
wl = hash[0]; w2 = hash[1]; w3 = hash[2]; w4 = hash[3]; wb = hash[4];

for(i=0; i < 25; i+=5)
{
// round 1
wl += (w2 ~ input[i+3])

+

(hash[3] ~ input[i+1]);

w2 += (w3 + input[i+4]) ~ (hash[4] + input[i+2]);
w3 += (w4 ~ input[i]) + (hash[0] ~ input[i+3]);
w4 += (w5 + input[i+1]) = (hash[1] + input[i+4]);
wbs += (wl ~ input[i+2]) + (hash[2] ~ input[il);
// round 2

wl = rol(wl, mod32(shift1));
w2 = rol(w2, mod32(shift2));
w3 = rol(w3, mod32(shift3));
w4 = rol(w4, mod32(shiftd));
wh = rol(wb, mod32(shifth));

13

// shift calculations
shift2 = w1l + w2 + w3;

shift3 = w2 + w3 + w4;
shift4d = w3 + w4 + wh;
shiftb = w4 + wb + wi;
shiftl = wb + wl + w2;

// final assignment
hash[0] = wl; hash[1] = w2; hash[2] = w3; hash[3] = w4; hash[4] = w5;

return(0) ;

14

References

1]

N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno, “Helix: Fast
Encryption and Authentication in a Single Cryptographic Primitive,” Available from
http://www.macfergus.com/helix/, 2003.

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby, “A pseudorandom Generator from
any One-way Function,” SIAM J. Comput. Vol 28 Num 4, 1999, pp. 1364-1396

Tony Hansen and Garrett Wollman, RFC 317/ - US Secure Hash Algorithm 1 (SHAT),
Available from http://www.fags.org/rfcs/rfc3174.html, Internet RFC/STD/FYI/BCP
Archives, 2001.

A.J. Menezes, P.C. Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography,
Boca Raton, Florida: CRC Press LLC 1997.

National Institute of Standards and Technology, NIST FIPS PUB 180-1, “Secure Hash-
ing Standard,” U.S. Department of Commerce, April 1995.

Bruce Schneier, Applied cryptography Second Edition: protocols, algorithms, and source
code in C, John Wiley & Sons, Inc., 1996.

15

