
CERIAS Tech Report 2005-73

A FRAMEWORK FOR MANAGEMENT OF SECURE AND ADAPTIVE WORKFLOWS

by Basit Shafiq, Arjmand Samuel, Elisa Bertino, and Arif Ghafoor

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

A Framework for Management of Secure and Adaptive Workflows

Basit Shafiq, Arjmand Samuel, Elisa Bertino, and Arif Ghafoor
Purdue University

{shafiq, amsamuel}@ purdue.edu

Abstract

In this paper, we propose a framework for secure
composition and management of time based work flows.
The proposed framework allows communication and
sharing of information among predefined or ad hoc team
of users collaborating with each other in the time critical
workflow applications. A key requirement for such
applications is to provide the right data to the right
person at the right time. In addition, the workflow needs
to be adapted if a subtask of a workflow cannot be
executed within the due time. The proposed framework
supports GTRBAC based workflow specification and
allows dynamic adaptation of workflow instances
depending on the execution status of workflow tasks and
environmental context. Adaptations in a workflow may
include rescheduling of component tasks, reassignment of
users to the scheduled tasks, or abortion of component
tasks that cannot be completed under the current system
state. We propose an integer programming based
approach for finding the best possible adaptation
according to the pre-defined optimality criterion.

1. Introduction

Distributed workflow based systems are widely used in
various application domains including e-commerce,
digital government, healthcare, power systems, air traffic
control, manufacturing and many others. Workflows in
these application domains are not restricted to the
administrative boundaries of a single organization and
may require inter-organization information and resource
sharing for the execution of the tasks comprising the
workflow [3, 9, 12]. The tasks in a workflow need to be
performed in a certain order and often times are subject to
temporal constraints and dependencies [8, 7, 5]. Temporal
constraints may be in the form of strict deadlines that must
be met for correct execution of the workflow application.
A key requirement for such time-based workflow
applications is to provide the right data to the right person
at the right time. This requirement motivates for dynamic
adaptations of workflows for dealing with changing

environmental conditions and exceptions. For example, in
a given workflow instance a pre-assigned user for a given
task may not be able to complete the task within due time
because of excessive load. Therefore, the task needs to be
assigned to a new user for timely completion of the
workflow instance.

For any workflow instance, it is essential that the
underlying workflow tasks are executed by authorized
users only. Therefore, appropriate access control
mechanisms need to be employed to meet this
requirement. Traditional access control models such as
Discretionary and Mandatory Access Control (DAC and
MAC) lack the capability to capture the time-based
dependencies of workflow applications. The recently
proposed Generalized Temporal Role-Based Access
Control (GTRBAC) [10] model provides a suitable
approach for specification of security and access control
requirements of time-based workflow applications. Role-
based authorization considerably reduces the management
overhead in terms of policy specification. The most
distinguishing feature of GTRBAC is the support for
temporal constraints which is essential for modeling the
real-time dependencies. Additionally, GTRBAC allows
specification of separation of duties (SoD), cardinality,
and event dependency constraints that are required in
many workflow based applications.

In [11], we presented a framework for dynamic
composition and management of time-based workflows.
The framework supports GTRBAC based workflow
specification and allows dynamic adaptation of active
workflows depending on the execution status of workflow
tasks and environmental context. There can be several
possibilities for workflow adaptation with different trade-
offs. In this paper, we extend the proposed framework to
incorporate a workflow management component that
performs workflow adaptation in an optimal manner under
the given security constraints and environmental context.
In particular, we propose a mixed integer programming
(MIP) based technique for finding the best possible
workflow adaptation according to the pre-defined
optimality criterion. The proposed technique is generic
and can be tuned to a variety of optimality measures
including minimization of task execution delays,

This work was supported in part by NSF award IIS 0209111 and by the
Center for Education and Research in Information Assurance and Security
at Purdue University

minimization of user-task reassignments, and
minimization of constraint relaxation.

The remainder of the paper is organized as follows. In
Section 2, we present an overview of the GTRBAC
model. In Section 3 we briefly discuss the software
architecture of the extended framework for composition
and management of adaptive workflows. The proposed
technique for optimal workflow adaptation is described in
Section 4. Section 5 provides an illustrative example
demonstrating the usability of the proposed technique.
Section 6 presents related work and Section 7 concludes
the paper.

2. Overview of GTRBAC Model

In this section, we briefly overview the GTRBAC
model used to specify the access control policies and work
flow semantics. GTRBAC is a temporal extension of the
role-based access control (RBAC) model proposed by
Sandhu et. al. in [15]. RBAC consists of the following
four basic components: a set of users Users, a set of roles
Roles, a set of permissions Permissions, and a set of
sessions Sessions. A user is a human being or a process
within a system. A role is a collection of permissions
associated with a certain job function within an
organization. A permission is an access mode that can be
exercised on a particular object or resource in the system.
A session relates a user to possibly many roles and allows
the user to access all permissions associated with such
roles.

One of the important aspects of access control is that
of time constrained accesses to limit resource use. Such
constraints are essential for controlling time sensitive
activities that may be present in various applications such
as workflow management systems (WFMSs) [10, 4] and
real-time active databases [16]. To address general time-
based access control needs, Joshi et. al. [10] have
proposed a Generalized Temporal RBAC (GTRBAC)
model. A key aspect of the GTRBAC model is the notion
of states of a role. In GTRBAC, a role can assume one of
the three states: disabled, enabled, and active. A role is
enabled if a user can acquire the permissions assigned to
it. An enabled role becomes active when a user acquires
the permissions assigned to the role in a session. By
contrast, a disabled role cannot be activated by any user.
Therefore, constraints on enabling of roles specify when
roles can actually be assumed by users. The GTRBAC
model provides a complete framework for specification of
temporal constraints on all events related to user-role and
role-permission assignment, role enabling/disabling, and
user-role activation.

Table 1: GTRBAC model specifications used in

this paper
Constraint
Categories

Expression Explanation

([tr
f, tr

s]
enable r)

Role r enabled from
tr

s to tr
f

Duration
Constraints

([tt

f, tt

s],
[dmin, dmax]
execute t)

Task t activation,
starting time tt

s and
finish time tt

f such
that max £ (tt

f-t
t

s) ³
min

Assignment
Constraint

assign
(ui,r) for
any user i

Assign user ui to role
r

Role Task
Assignment

assign (r,t
)

Role r is assigned to
task t

User task
activation

execute
(ui,t) for
any user i

User ui executes the
task t

Hierarchy ri ³ rj, ri, rj

Î Roles r
ri inherits the
permissions of rj

Role-specific
SoD

RSoD(r1,
r2)

No user can assume
role r1 and role r2 in
the same workflow
instance

Task-
specific SoD

TSoD(t1,
t2)

No user can execute
the tasks t1 and t2 in
the same workflow
instance

User-specific
SoD (role-
based)

USoD(u1,
u2, r)

User u1 and user u2
are conflicting for
role r

User-specific
SoD (task-
based)

USoD(u1,
u2, t)

User u1 and user u2
are conflicting for
task t

Tables 1 summarizes the type and formal expressions
of GTRBAC constraints considered in this paper.
Duration constraints are used to specify durations for
which role enabling or user-role activation event is valid.
The expression ([tr

f, tr
s] enable r) implies that role r is

enabled from time tr
s to tr

s. ([tt

f, t
t

s], [dmin, dmax] execute t
) implies that task t needs to be executed at time tt

s and
must finish by time tt

f. The minimum execution duration
for completion of task t is dmin and maximum duration is
dmax. Assignment constraints are used to specify the user-
role and task-role assignments. The assignment expression
assign (ui,r) assigns user ui to role r. Similarly, the role
task assignment (assign (r,t)) denotes the assignment of
task t to role r. The user-task activation expression
execute (ui,t) implies that the task t needs to be executed
by user ui. The role hierarchy constraint ri ³ rj, specifies

that role ri is senior to role rj. By virtue of this hierarchy
relationship, ri inherits all the permissions of role rj . The
role separation of duty constraint RSoD(r1, r2) implies that
no user can assume role r1 and role r2 concurrently.
Similarly, user separation of duty constraint USoD(u1, u2,
r) implies that user u1 and user u2 are conflicting for role
r. A detailed explanation of these constraints can be found
in [17].

3. Software Architecture

Figure 1 depicts the software architecture for dynamic
workflow composition and management. The architecture
consists of three key components, including, workflow
composition module, workflow management module, and
access control module.

3.1. Work Flow Composition Module

The workflow composition module (WCM) provides
an authoring tool for specification of workflow tasks and
the interdependencies between these tasks. In addition,
other dynamic constraints including separation of duties
and task execution cardinality constraints can be specified
for the underlying workflow tasks. GTRBAC formalism is
used to specify all the workflow constraints. The
consistency analyzer component in WCM is responsible
for checking the consistency and the correctness of the
composed workflow in terms of task dependencies,
deadlines, and constraint conflicts.

3.2. Access Control Module

The access control module (ACM) is responsible for
determining the authorization of users for execution of
workflow tasks. The authorizations of users are
determined based on their assigned roles. This assignment
may be pre-defined in the access control policy or may be
performed dynamically based on users’ credentials and the
context parameters. The credentials facilitate in
authentication process and are supplied by the user upon
the request of ACM. In addition, user credentials also help
in determining the qualification and skill level of the user.
The context parameters may be specific to the user, such
as user location, time of access, and the current resource
capacity. Additionally, environmental context such as
system load and execution status is also considered in
determining the user assignment. The user-specific
context is extracted from the information supplied by the
user at the time of access request and the environmental
context is provided by the state monitoring module. In a
distributed workflow environment, users executing
workflow tasks may belong to different organizations or

administrative domains. To enable collaboration in such
workflow environment, dynamic role mapping is needed
that defines the relationship between the roles assumed by
the users in their own organizations and the roles assigned
to users for workflow execution. The role
mapping/assignment component in ACM is also
responsible for creating such mapping.

User Credentials

Policy EvaluationPolicy Evaluation

GT RBAC
Policy Base

Role
Mapping

Context
Extractor

Credential
Evaluator

Role
Mapping

Context
Extractor

Credential
Evaluator

Environmental
Context

Information

Access Control Module

User
Request

Workflow Management Module

Configuration/
Adaptation

Configuration/
Adaptation

Status
Monitor
Status
Monitor

Event
Notification

Event
Notification

Work Flow
Initiator

Work Flow
Initiator

Work Flow Composition Module

Workflow
Authoring

Consistency
analyzer

Work Flow Composition Module

Workflow
Authoring
Workflow
Authoring

Consistency
analyzer

Consistency
analyzer

Context
Monitor

State
Monitor

State-Context monitor

Context
Monitor

State
Monitor

Context
Monitor

State
Monitor

State-Context monitor

A
ut

ho
riz

at
io

n
R

eq
ue

st

Figure 1. Software architecture for dynamic
workflow composition and management

3.3. Work Flow Management Module

The workflow management module (WMM) is the
most important component of the proposed architecture. It
consists of the following key sub-components: workflow
invocation component, execution status monitor, event
notification component, and workflow
reconfiguration/adaptation component. The workflow
invocation component in WMM is responsible for
instantiation of a workflow upon the request of an
authorized user. The authorization of workflow
instantiation request is determined by ACM. ACM also
performs user to role assignment for the different tasks of
the instantiated workflow. Upon receiving the
authorization approval the workflow invocation
component creates an instance of the workflow with the
user to role bindings for the associated workflow tasks.
After the instantiation of the workflow, the corresponding
users are notified for the execution of the tasks assigned to
them. The event notification component is responsible for
sending out such notification messages to the
corresponding users at the appropriate time.

The execution of an instantiated workflow may not
proceed as planned in the invocation phase. Changes in
the environmental or user context or the occurrence of
certain unpredictable events may block the execution of
some tasks in the workflow. Consequently, the workflow
needs to be reconfigured for execution of blocked tasks.
The workflow adaptation/reconfiguration component is

responsible for such adaptations. Workflow adaptation is
triggered by the status monitor component which
continuously checks the execution status of all active and
pending tasks. Adaptations in a workflow may include
rescheduling of certain workflow tasks, relaxation of
policy constraints, reassignment of users to the scheduled
tasks based on their availability, authorization, and skill
level, or abortion of certain tasks that cannot be completed
under the current system state. Depending on the
execution status of workflow tasks and environmental
context, several adaptation possibilities may exist for an
active workflow. The adaptation/reconfiguration
component needs to find an adaptation that optimizes the
overall performance under the given constraints.

Table 2. MIP variables and their explanation
Variabl
e

Correspo
nding
Vector

Typ
e

Interpretation

ts
t ttttt R+ Start time of taskt

tf
t ttttt R+ Finish time of taskt

ts
r tr R+ Time at which role r enters into

enable state from disable state
tf

r tr R+ Time at which role r enters into
disable state from enable state

it Itttt Bina
ry

Variable indicating execution
feasibility of task t. it=1 if t can
be executed; otherwise, it=0

ui
t utttt Bina

ry
Variable indicating execution of
task t by user ui. ui

t=1, if ui
executes t ; otherwise, ui

t=0
ui

r ur Bina
ry

Variable indicating
activation/assumption of role r by
user ui. ui

r=1, if ui assumes r ;
otherwise, ui

r=0
ck c Bina

ry
Constraint variable. ck = 0 if
constraint ck is relaxed in the
workflow instance; otherwise ck =
1.

sr
t stttt Bina

ry
sr

t = 1 if ts
r
 £ ts

t, i.e., r is enabled
prior to the start time of t.

fr
t ftttt Bina

ry
fr

t = 1 if ts
r
 ³ ts

t, i.e., t finishes
before r gets disabled

dt d R+ Scheduling delay of a taskt with
respect to the original workflow
specification

ar
t aaaa Bina

ry
Variable indicating that the
execution interval of task t is
contained in the enabling interval
of role r. ar

t = sr
t fr

t

4. An Approach for Optimal Workflow
Adaptation

In this section, we describe the proposed mixed-integer
programming (MIP) based approach for workflow
adaptation. The proposed approach determines an optimal
adaptation for an active workflow instance based on a
predefined optimality criterion. Various optimality

measures, such as minimum task execution/scheduling
delays, minimum task to user reassignments and minimum
constraint relaxations, can be specified. Depending on the
application requirements a hybrid of these optimality
measures can also be employed.

4.1. MIP Formulation

The workflow adaptation problem can be formulated
as the following mixed integer program:

Maximize w1

Tutttt + w2
Tc – w3

Td
Subject to A(t)[utttt ur ttttt tr Itttt c aaaa d] £ b(t)
" ui

t Î utttt , ui
t = 0 or 1, " ui

r Î ur , ui
r = 0 or 1, " ck Î c,

ck = 0 or 1,
" it Î Itttt , it = 0 or 1, " ar

t Î aaaa , ar
t = 0 or 1,

" ts
t and tf

t
Î ttttt , ts

t ³ 0 and tf
t ³ 0, " ts

r and tf
r
Î tr , ts

r ³ 0
and tf

r ³ 0,
" dj Î d , dj ³ 0, "w Î [w1, w2, w3], w ³ 0

where, w = [w1 w2 w3] is a weight vector specifying the
optimality criteria in the objective function. utttt is a vector
capturing users authorization for task executing in the
given workflow instance. The binary variable ui

t
Î utttt

takes a value of one if user ui executes task t, otherwise
ui

t takes a value of zero. Similarly, the vector ur captures
users authorization for role activation. If a user ui is not
authorized to activate role r then ui

r is set to zero. ui
r takes

a value of one if user ui has activated role r. The elements
of the vectors ttttt specify the start and finish time of the
corresponding tasks. Similarly, the elements of vector tr

defines the enabling intervals of roles in the given
workflow instance. Ir is a vector of task indicator variables
specifying execution feasibility of corresponding tasks in
the workflow instance. A variable it

Î Ir is assigned a
value of one if the taskt can be executed in the given
workflow instance. c is a constraint vector whose elements
corresponds the workflow or policy constraints including
inter-task dependency and SoD constraints. The elements
of the vector aaaa specify the containment relation between
the enabling interval of the roles and the execution
duration of tasks as explained in Table 2. d is a delay
vector whose elements capture the scheduling delays of
task in the reconfigured or adapted workflow with respect
to the scheduled time of the respective tasks in the original
workflow specification. The elements of matrix A and
vector b correspond to the coefficients of terms used in
the equations/inequalities defining the MIP constraints.
The rules for generating MIP constraints from a given
workflow instance are presented in Section 4.2. Both A
and b are functions of time and the execution status of the
workflow instance, implying that the MIP constraints for
two workflow instances will be different if the adaptation
procedures are invoked at different times. The variables

used in the above MIP formulation are explained in Table
2.

4.2. MIP Constraint transformation rules

In the following, we provide rules for generating MIP
constraints from a given workflow specification and
access control policy.

1. Temporal constraint on role enabling: The role
enabling constraint ([t1, t2] enable r) can be captured in the
IP problem as: ts

r = t1 and tf
r = t2.

2. Task Duration constraint: The task duration
constraint (t1, [dmin, dmax], enable t) can be captured in the
IP problem as: ts

t = t1, tf
t - ts

t ³ dmin i
t, and tf

t - ts
t £ dmax i

t.

3. Temporal constraint between role enabling and task
execution: Let a taskt be assigned to role r or to a role
junior to r in the role hierarchy. The task t can be
executed by assuming role r if the execution duration of t
is contained within the enabling interval of role r, i.e., ar

t

= 1. The following inequalities specify this containment
constraint

a. ts
r- ts

t
£ (1 - sr

t)M
b. ts

t- ts
r
£ sr

tM
c. tf

t- tf
r
£ (1-fr

t)M
d. tf

r- tf
t
£ fr

tM
e. ar

t = sr
t fr

t
where, M is a very large number (M>>1). For ar

t

 =1,
role r need to be enabled prior to the start time of t
(constraints a and b) and r cannot get disabled before t
finishes (constraints c and d).

4. User-task Authorization constraint: A task can only
be executed by authorized users. A user u assigned to role
r can execute a task t assigned to role r’ if r = r’ or r ³ r’.
Let Ut be the set of all users authorized to execute task t
and the variable it

 be an indicator variable for execution
of taskt. The following inequalities relate the user-task
execution variables to the indicator variable it

 , implying
that only authorized users can execute the taskt.

a.
Uj

j
u

u
t

t

Î

� - it

 ³ 0

b. uj Î Ut, uj
t - it

 £ 0

5. User-role assumption/activation constraint for task

execution: Consider a task t assigned to role r’. Let R be
a set of roles containing the role r’ and its senior roles.
i.e., R = {r| (r = r’) Ú (r ³ r’)}. An authorized user ui can
execute task t if ui assumes any role r Î R and r remains
in enable state for the entire execution duration oft..
Formally:

R

0r
r i i

r

u ut t
a

Î

- ³� .

Table 3. MIP formulation of constraints
Temporal Dependency
constraint ‘ci’ between t1
and t2

IP Constraints

equal(t1, t2)

t1t1

t2t2
ci(ts

t1 - ts
t2) =0 and

ci(tf
t1 – tf

t2) =0

before(t1, t2, d)
t1 t2

³ d

t1t1 t2t2

³ d

ci(ts
t2 - tf

t1 - d) ³ 0

meets(t1,, t2)

t1t1

t2t2

ci(ts
t2 - tf

t1) = 0

starts(t1,, t2, d)

t1

t2

³ d

t1t1

t2t2

³ d

ci(ts
t2 - ts

t1 - d) ³ 0

finishes(t1,, t2, d)

t 1
t 2

³ d

t 1 t 1
t 2 t 2

³ d

ci(tf
t2 - tf

t1 -d) ³ 0

during(t1,, t2, d)

t1t1

t2t2

³ d

ci(ts
t1 - ts

t2 - d) ³ 0 and
ci(tf

t1 - tf
t2)£ 0

overlap(t1, t2, d)

t1

t2

³ d

t1t1

t2t2

³ d

ci(ts
t2 - ts

t1 - d)³ 0 and
ci(ts

t2- tf
t1)£ 0

Table 4. Translation of SoD constraints to the
corresponding MIP constraints

SoD
Constraint
‘ci’

Explanation MIP Constraint

Role-specific Two conflicting roles r1
and r2 cannot be
activated by same user
in the same workflow
instance.

"ui Î USERS, ci(ui
r1

+ ui
r2-1) £ 0

Task-specific Two conflicting tasks
 t1 and t2 cannot be
executed by same user
in the same workflow
instance.

"ui Î USERS,
ci(ui

t1 + ui
t2-1) £ 0

User-specific
role-based

Let Ur be the set of
users conflicting for role
r. At most one user from
the conflicting user set
Ur can activate role r in
any given workflow
instance.

1 0
j r

r
i j

u U

c u
Î

- £�

User-specific
task-based

Let Ut be the set of
users conflicting for
taskt. At most one user
from the conflicting user
set Ur can execute the
task t in any given
workflow instance.

1 0
j

i j
u U

c u
t

t

Î

- £�

6. Inter-task temporal dependencies: The temporal
dependency constraints between two tasks t1 and t2 can be
specified using Allen’s temporal relation [18]. These
temporal relations and the corresponding MIP constraints
are shown in Table 3. In the MIP constraints of Table 3,
the binary variable ci denotes the corresponding
dependency constraint. ci =1 implies that the dependency
constraint is corresponding to ci is preserved in the
adapted workflow instance. If the dependency constraint
cannot be satisfied then ci = 0.

7. Separation of duty (SoD) constraints: There are four
types of SoD constraints, namely: role-specific SoD, task-
specific SoD, user-specific role-based SoD, and user-
specific task-based SoD. These SoD constraints and the
corresponding MIP constraints are shown in Table 4. In
the MIP constraints of Table 3, the binary variable ci
denotes the corresponding SoD constraint. ci =1 implies
that the respective SoD constraint is preserved in the
adapted workflow instance. If the SoD constraint cannot
be satisfied then ci = 0.

4.3. Optimality Criteria and Weight Assignment

The rules described in the above section are used to

transform a workflow instance and policy specification
into MIP constraints. Once all the MIP constraints for a
given workflow instance are defined, an optimal
adaptation/reconfiguration of the workflow instance can
be achieved by solving the resulting optimization
problem. The optimality measure is embedded in the
objective function of the corresponding MIP problem. In
the above MIP formulation, different optimality measures
can be defined for workflow adaptation. These optimality
measures include minimizing overall task scheduling
delays if certain tasks need to be rescheduled for
workflow progress, minimizing reassignment of users to
the scheduled tasks if the workflow instance cannot
proceed to completion with the original user-task
assignment, and minimizing relaxation of workflow or
policy constraints if such constraints cause a deadlock in
the workflow execution.

The elements of the vector d in the objective function,
captures the task scheduling delays of the adapted
workflow with respect to the task scheduling times of the
original workflow instance. In case the adaptation
requirement is to complete the blocked workflow with
minimum overall delay without any constraint relaxation,
then the objective function only comprises of delay
variables. In this case all the task indicator variables and
constraint variables are set to one in order to capture the
task completion and constraint satisfaction requirements.
Note that the optimality measure in this case does not
consider keeping the same user-task assignment specified
in the original workflow. Reassigning workflow tasks to

new users may not be desirable if such reassignment
increases workflow execution cost. In order to minimize
such cost, the preferred user-task assignment needs to be
specified in the objective function. The decision variable
ui

t in the objective function specifies that user ui
t is the

preferred user for execution of task t. All the user-task
variables in the vector utttt with non-zero weight
coefficients in the objective function represent the
preferred users for the respective tasks, and the IP solution
that maximizes such objective function minimizes user-
task reassignment.

In some cases, certain workflow and policy constraints
may cause a deadlock in workflow execution. To resolve
such deadlock, either the entire workflow is aborted or
some of the conflicting constraints are relaxed for
workflow completion. The choice for such deadlock
resolution due to conflicting constraints is application
dependent. In case the application allows relaxation of
some workflow and policy constraints, then the workflow
instance need to be adapted with minimum constraint
relaxation. In this case, only the constraints variables that
can be relaxed are listed in the objective function with
non-zero weight. Maximizing the value of such objective
function that comprises only constraint variables, amounts
to retaining the maximum number of constraints in the
reconfigured workflow.

The optimality measure may also be a hybrid of the
three objectives discussed above. However, minimizing
task-scheduling delays, user-task reassignment, and
constraint relaxation may be conflicting goals. In this
case, the optimality of the solution is determined based on
the priorities of individual decision variables. The weight
vector in the objective function specifies such priorities.
Depending on the application requirements, the relative
priorities among conflicting parameters in the objective
function can be determined. For instance, a given
workflow application may prefer retaining the original
user assignment for a task t1 if the scheduling delay for t1
in the adapted workflow is less than ten time units.
Suppose user ui was originally assigned to perform task t1.
In the objective function, let the variable d1 denote the
scheduling delay for task t1 and ui

t1 represent ui’s
assignment for execution of task t1. In this case, the
weight assigned to the delay variable d1 is one-tenth of the
weight of the decision variable ui

t1
.

5. Illustrative Example

In this section, we illustrate the proposed workflow
adaptation technique using an example of purchase order
processing workflow as shown in Figure 2. The workflow
starts with the task of preparing product requirements
(PR). These requirements specify the quantity, size,

quality, and other features of the raw materials and
component parts, and are prepared by the personnel of
Engineering Department. The next task is the finance
approval (FA) for requesting quotations from different
vendors. The request for quotation (RFQ) is prepared by
an employee of the Purchase department. The RFQ
document is made available to the various vendors so that
they can quote their prices. In Figure 2, the task of
receiving vendor quotations from ith vendor is represented
as VQi. After receiving quotations from all vendors, the
quotations are consolidated (CQ) for reviewing. The
review of consolidated quotes is performed separately by
authorized employees of Engineering Department (RWE),
Finance Department (RFA), and by a management
executive (RWM). After these reviews, one of the quotes
is selected (SQ) for purchasing. In a workflow process,
some of the tasks conflict with each other and need to be
executed by different users. This constraint is imposed by
defining separation of duty constraints between the
conflicting tasks. In the workflow process of Figure 2, the
following pairs of tasks are conflicting and have a SoD
constraint between them: PR-FA, FA-RFQ, RFQ-CQ, and
CQ-SQ. The temporal ordering of the tasks and inter-task
dependency constraints of the purchase order workflow is
shown in Figure 3(a).

The authorizations for executing different tasks of the
purchase order workflow are specified in the access
control policy of the organization. This access control
policy is defined using GTRBAC model with following
roles: General Manager Engineering (GME), General
Manager Purchase (GMP), Manager Purchase History
(MPH), Manager Engineering Quality (MEQ), Audit
Clerk (AC), Vendor (V), Purchase Clerk (PC), Manager
Finance (MF) and Manager Engineering Development
(MED). The role hierarchy, user-role assignment, and
role-permission assignment specified in the access control
policy of the organization is shown in Figure 3(c). In this
figure, the gray boxes represent the roles and the white
boxes represent the tasks. The users assigned to a role are
shown next to the role. For instance, users u5, u6, and u7
are assigned to the role GMP which is senior to the roles
PC and AC. Task SQ is assigned to the role GMP, RFQ is
assigned to the role PC, and CQ is assigned to the role
AC. Since users u5, u6, and u7 are assigned to the senior
role GMP, they can assume all three roles GMP, PC and
AC and can execute all workflow tasks assigned to these
three roles. The enabling intervals of all the roles involved
in the purchase order workflow process are shown in
Figure 3(b).

Request for quotation (RFQ)

Product Requirement (PR)

Finance Approval (FA)

Quotes posted vendor 1 (VQ1) Quotes by vendor 2 (VQ2) Quotes by vendor n

Consolidate received quotes (CQ)

Review by Engineering (RWE) Review by Management (RWM) Review by Finance (RWF)

Select approved quote (SQ)

SOD

SOD

SOD

SOD

Figure 2. Purchase order processing work flow

PR

FA

RFQ

VQn

CQ

RWE

RWM

RWF

SQ

88 1616 2424 3232 4040 4848 5656 6464 7272 8080 8888 9696 104104 Time112112

MED

MF

PC

V

AC

MEQ

MPH

GMP

GME GMP

PC AC SQ

RFQ CQ

GME

MED MEQ

PR RWE

MF

FA RWF

MPH

RWM

V

VQn

U1

U3

U5

V

U2

U4

U6

(a)

(b)

(c)

GMP U7

GM

GM

CQ

U6

Figure 3 (a). Task duration and inter-task
dependency constraints of the purchase order
workflow of figure 2. (b) Role enabling intervals
(c) Role hierarchy, user-role and task-role
assignments specified in the organization’s
access control policy

Suppose in the workflow instance of Figure 2, users u5,
u6 and u7 are scheduled to perform tasks RFQ, CQ, and
SQ respectively. After execution of the task RFQ by user
u5, assume that u6 is unable to activate the role GMP and
its junior roles. However, u6 can activate the role GM
during its enabling interval. The role GM is not enabled
during the scheduled execution time of the task CQ.
Therefore, user u6 cannot perform task CQ at its
scheduled time. In this case, either the task CQ needs to
be delayed until the role GM gets enabled, or CQ needs to
be reassigned to another user. Note that because of the
SoD constraint between tasks CQ and RFQ, u5 who has
executed task RFQ, cannot be assigned to task CQ.
Similarly, user u7 scheduled for task SQ cannot execute
task CQ because of the SoD constraint between CQ and
SQ. Another option for adaptation is to relax one of the
SoD constraints. In order to find the best solution, all
these options need to be evaluated based on the desired
optimality criterion.

Figure 4. MIP translation of the purchase order

processing work flow
The MIP based technique discussed in Section 4 can

be used for determining optimal adaptation of the above
workflow instance. The MIP constraints for this workflow
instance are shown in Figure 4. In this figure, equations 1-
21 specify the enabling time of different roles involved in
the workflow process. The inequalities 22-30 define the
task duration requirements for the workflow process. The
temporal constraints between enabling of the role MED
and the task PR is represented using inequalities 31-35.
These inequalities specify that the enabling interval of role
MED contains the execution interval of task PR
(aMED

PR=1) if the following two conditions hold: i) MED
is enabled prior to the execution of PR (sMED

PR=1), and ii)
MED remains enabled until PR finishes (fMED

PR=1). The

inequalities 36-40, derived from Rules 4 and 5, specify
that only u1 and u2 are authorized for task PR and these
users can execute this task by assuming the role GME or
the role MED. The temporal dependency constraints
between the tasks PR and FA are captured by the
inequalities 39 and 40, which specify that task PR
precedes task FA, and FA must execute within five time
units after completion of the task PR. The MIP constraint
for task specific SoD between SQ and CQ is implied by
the inequalities 41-43. Finally the status of the workflow
till the execution of task RFQ by user u5 is given by the
equations 44-46.

Depending on the application requirements for
adaptation, the MIP problem of Figure 4 can be solved
with appropriate objective function. Table 5 shows the
objective function and the resulting values of the MIP
problem of Figure 4 with three different optimality
measures. The first formulation in Table 5 considers
minimization of the overall task execution delay without
relaxing any workflow or policy constraints. With this
optimality criterion, tasks CQ, RWF, RWM, RWE, and
SQ need to be delayed by five time units from their
scheduled times in the original workflow specification. In
the second formulation, shown in Table 5, the optimality
criterion is to minimize user-task reassignment with zero
task scheduling delay and without relaxing any workflow
and policy constraints. In this case, the tasks CQ and SQ
cannot be executed by the assigned users u6 and u7
respectively. For successful completion of the workflow,
task SQ is assigned to user u5 and CQ is assigned to user
u7 in the reconfigured workflow instance. The third
formulation considers minimization of both user-task
assignment and overall task scheduling delay. In this case,
the original user-task assignment is retained in the
reconfigured workflow provided the overall scheduling
delay is less than ten time units. This is reflected in the
objective function by the weights assigned to the user-task
and delay variables. The weight assigned to each delay
variable is one-tenth of the weight assigned to the user-
task variable, as shown in Table 5. The solution in this
case is the same as found in the second formulation
discussed above. However, allowing larger delays may
change the user assignment. For instance, allowing an
aggregate delay of thirty time units retains the original
user-task assignment with an overall delay of 25 time
units.

Temporal constraints for role enabling derived from Rule 1.
1: ts

MED=0; 2: tf
MED=16; 3: ts

MF=8; 4: tf
MF=130; 5: ts

PC=32; 6:
tf

PC=56; 7: ts
V=34; 8: tf

V=64; 9: ts
AC=60;

10: tf
AC=90; 12: ts

MEQ=50; 13: tf
MEQ=100; 14: ts

MPH=50; 15:
tf

MPH=150; 16: ts
GMP=0; 17: tf

GMP=200; 18: ts
GM=63; 19:

tf
GM=130; 20: ts

GME =0; 21:tf
GME=112;

Task duration constraints derived from Rule 2.
22: tf

PR- ts
PR £ 10iPR; 23: tf

PR- ts
PR ³ 8iPR; 24: tf

FA- ts
FA £

12iFA; 25: tf
FA- ts

FA ³ 4iPR; 26: tf
CQ- ts

CQ £ 14iCQ; 27: tf
CQ- ts

CQ
³ 8iCQ; 27: tf

RFQ- ts
RFQ £ 8iRFQ; 28: tf

RFQ- ts
RFQ ³ 4iRFQ; 29:

tf
VQN- ts

VQN £ 32iVQN; 30: tf
VQN- ts

VQN ³ 24iVQN;
Temporal constraints between role enabling and task
execution for role MED and task PR derived from Rule 3.
31: ts

MED- ts
PR

£ 100000(1- sMED
PR); 32: ts

PR- ts
MED

£
100000sMED

PR; 33: tf
PR- tf

MED
£ 100000(1-fMED

PR);
34: tf

MED- tf
PR

£ 100000fMED
PR; 35: aMED

PR= sMED
PR fMED

PR
User-task authorization constraints for task PR derived from
Rule 4.
36: u1

PR + u2
PR - iPR ³ 0; 37: u1

PR - iPR £ 0; 38: u2
PR - iPR £ 0;

User-role activation constraint for execution of task PR
derived from Rule 5.
37: aGME

PR u1
GME + aMED

PR u1
MED - u1

PR
³ 0; 38: aGME

PR
u2

GME + aMED
PR u2

MED – u2
PR

³ 0;
Temporal dependency constraint c1 between tasks RQE and
FA derived from Rule 6”
39: c1(ts

FA – tf
PR – 5) £ 0; 40: c1(ts

FA – tf
PR)³ 0;

Task-specific SoD c2 between tasks SQ and CQ derived from
Rule 7.
41: c2(u5

SQ + u5
CQ -1) £ 0; 42: c2(u6

SQ + u6
CQ -1) £ 0; 43:

c2(u7
SQ + u7

CQ -1) £ 0;
44: u1

PR=1; 45: u3
FA=1 ; 46: u5

RFQ=1

Table 5. Objective functions of purchase order processing workflow with different optimality criteria
Optimality Criterion Minimize overall task execution delay without relaxing any workflow or policy

constraints.

Objective Function Maximize –dPR –dFA –dRFQ–dVQN –dCQ –dRWF –dRWM –dRWE–dSQ
Additional Constraints

dPR = ts
PR; dFA = ts

FA-18; dRFQ = ts
RFQ-32; dVQN = ts

VQN-40; dCQ = ts
CQ-68; dRWF =

ts
RWF-88; dRWM = ts

RWM-88; dRWE = ts
RWE-88; dSQ = ts

SQ-104;
All elements of the constraint vector c and task execution indicator variables are set
to one.

1

Objective Function
Values

dPR =0; dFA =0; dRFQ =0; dVQN =0; dCQ = 5; dRWF =5; dRWM =5; dRWE=5; dSQ =5;
Aggregate delay = 25

Optimality Criterion Minimize user to task reassignment with zero task scheduling delay and without
relaxing any workflow and policy constraints.

Objective Function Maximize u1
PR + u3

FA + u5
RFQ + uv

VQN + u6
CQ + u3

RWF + u4
RWM + u2

RWE + u7
SQ

Additional Constraints All delay variables are set to Zero
All elements of the constraint vector c and task execution indicator variables are set
to one.

2

Objective Function
Values

u1
PR =1; u3

FA =1; u5
RFQ = 1; uv

VQN = 1; u6
CQ = 0; u3

RWF =1; u4
RWM =1; u2

RWE
=1; u7

SQ = 0; Tasks CQ and SQ not executed by the users assigned in the
original specification.

Optimality Criterion Minimize user to task reassignment with minimum delay and keeping the overall
task scheduling delay within 10 time units and without relaxing any workflow and
policy constraints.

Objective Function Maximize u1
PR + u3

FA + u5
RFQ + uv

VQN + u6
CQ + u3

RWF + u4
RWM + u2

RWE + u7
SQ –

0.1dPR –0.1dFA –0.1dRFQ–0.1dVQN –0.1dCQ –0.1dRWF –0.1dRWM –0.1dRWE–0.1dSQ
Additional Constraints

dPR = ts
PR; dFA = ts

FA-18; dRFQ = ts
RFQ-32; dVQN = ts

VQN-40; dCQ = ts
CQ-68; dRWF =

ts
RWF-88; dRWM = ts

RWM-88; dRWE = ts
RWE-88; dSQ = ts

SQ-104;
All elements of the constraint vector c and task execution indicator variables are set
to one.

3

Objective Function
Values

u1
PR =1; u3

FA =1; u5
RFQ = 1; uv

VQN = 1; u6
CQ = 0; u3

RWF =1; u4
RWM =1; u2

RWE
=1; u7

SQ = 0; Tasks CQ and SQ not executed by the users assigned in the
original specification.
All delay variables are ZERO

6. Related Work

Several research proposals have been made for
secure workflow composition and management [4], [6],
[14], [1], [2], [13]. A major focus of these research
efforts is either on generating languages and formalism
for incorporating security and authorization constraints
in workflow applications or on verifying the consistency
and safety of workflow specifications. The problem of
managing context dependent and adaptive workflows
has not been adequately addressed in literature. Bertino
et. al. [4] have proposed a framework for specification
and enforcement of authorization constraints in
workflow management systems. The workflow
authorization constraints in this framework are specified
using temporal role-based access control (TRBAC)
model. An important component of this framework is the
workflow planner that assigns users to various tasks. The
planner is invoked before the workflow execution begins
to generate the initial assignment for workflow

execution. However, the initial plan can be changed
during runtime to account for exceptions. In this case the
planner is re-invoked to select a new plan from a
feasible set of alternate plans. While selecting an
alternate plan, the plan which assigns blocked tasks to
users assuming junior roles is given priority over those
plans that assign the blocked tasks to users assuming
senior roles. No other optimality measures such as
minimizing scheduling delays or constraint relaxation is
considered in [4]. Crampton [6] has proposed a
reference monitor system for management of constrained
workflows. The reference monitor is used to verify the
constraint satisfiability and completion requirement of a
workflow instance with the given set of authorized users.
Accordingly, various user-task assignments satisfying
the given workflow authorization constraints can be
determined. However, the system does not consider any
criterion for assigning tasks to users when multiple
assignments are possible.

7. Conclusion

In this paper we proposed a framework for dynamic
adaptation of time-dependent workflows based on the
authorization and security constraints, execution status,
and environmental context. The proposed framework
uses a mixed integer programming (MIP) based
technique for finding the best possible workflow
adaptation according to the pre-defined optimality
criterion. The proposed technique is generic and can be
tuned to a variety of optimality measures including
minimization of task execution delays, minimization of
user-task reassignment, and minimization of constraint
relaxation.

The high computational overhead of the MIP
approach for optimal solution is a major concern in
workflow applications that have real-time scheduling
constraints. Various approximation algorithms such as
Lagrangian relaxation, tabu search, and simulated
annealing can be used to solve the underlying MIP
problem for near optimal solution in polynomial time.
Studying the performance trade-off between these
heuristics is an interesting problem that needs further
research considerations.

8. References

[1] W-K. Huang and V. Atluri, “SecureFlow: A Secure Web-
enabled Workflow Management System,” 4th ACM Workshop
on Role-based Access Control, October, 1999.

[2] V. Atluri and W-K. Huang, “A Petri Net Based Safety
Analysis of Workflow Authorization Models,” Journal of
Computer Security, Volume 8, Issue 2/3, 2000.

[3] R. D. Holowczak, S. A. Chun, F. J. Artigas, V. Atluri,
“Applications: Customized Geospatial Workflows for E-
Government Service,” in Proc. Of 9th ACM International
Symposium on Advances in Geographic Information Systems,
2001.

[4] E. Bertino, E. Ferrari, and V. Atluri, “The Specification
and Enforcement of Authorization Constraints in Workflow
Management Systems,” ACM Transactions on Information
and System Security, Vol. 2, No. 1,65-104, 1999.

[5] E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A
Temporal Role-based Access Control Model,” ACM
Transactions on Information and System Security, 4(3):191-
233, August 2001.

[6] J. Crampton, “A Reference Monitor for Workflow Systems
with Constrained Task Execution”, in 10th ACM Symposium
on Access Control Models and Technologies SACMAT 2005.

[7] E. Chang, E. Guatama, and T.S. Dillon, “Extended
Activity Diagrams for Adaptive Workflow Modelling,” in
Proc. ISORC, 2001.

[8] K. A. Delic. L. Douillet, and U. Dayal, “Towards an
Architecture for Real-Time Decision Support Systems:
Challenges and Solutions,” in Proc. International Symposium
on Database Engineering and Applications, 2001.

[9] H. A. James, K. A. Hawick, and P. D. Coddington, “An
Environment for Workflow Applications on Wide-Area
Distributed Systems,” in Proc. International Conference on
System Sciences, 2001.

[10] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor,
"Generalized Temporal Role Based Access Control Model,"
IEEE Transaction on Knowledge and Data Engineering, Vol.
17, No. 1, January 2005, pages. 4-23.

[11] B.Shafiq, A. Samuel, H. Ghafoor, “A GTRBAC Based
System for Dynamic Workflow Composition and
Management”, in proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2005).

[12] S. K. Shrivastava, S. M. Wheater, “A Transactional
Workflow based Distributed Application Composition and
execution Environment,” in Proc. Eighth ACM SIGOPS
European Workshop on Support for Composing Distributed
Applications, 1998.

[13] T. Ahmed and A. R. Tripathi, “Static Verification of
Security Requirements in Role Based CSCW Systems,” 8th
ACM Symposium on Access Control Models and Technologies
(SACMAT 2003), 196--203, June, 2003.

[14] S. S. Yau, H. Davulcu, S. Mukhopadhyay, D. Huang and
Y. Yao, “Adaptable Situation-Aware Secure Service-Based
(AS3) Systems” in proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2005).

[15] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman,
“Role Based Access Control Models”, IEEE Computer, Vol.
29, No 2, February 1996.

[16] R. M. Sivasankaran, J. A. Stankovic, D. Towsley, B.
Purimetla and K. Ramamritham. Priority Assignment in Real-
time Active Databases. The VLDB Journa/, 5, pp. 19-34,
1996.

[17] J. Joshi. A Generalized Temporal Role Based Access
Model For Developing Secure Systems. PhD Thesis. Purdue
University, West Lafayette, IN. 2003.

[18] J. F. Allen. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM, 26(11), pp.832-843,
1983.

