
CERIAS Tech Report 2005-75

BEYOND SEPARATION OF DUTY: AN ALGEBRA FOR SPECIFYING HIGH-LEVEL SECURITY
POLICIES

by Ninghui Li, Qihua Wang, Mahesh Tripunitara

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Beyond Separation of Duty: An Algebra for Specifying High-level

Security Policies

Ninghui Li Qihua Wang Mahesh V. Tripunitara

Department of Computer Science and CERIAS

Purdue University

West Lafayette, IN, USA

{ninghui, wangq, mtripuni}@cs.purdue.edu

November 22, 2005

Abstract

A separation of duty policy requires a sensitive task to be performed by a team of at least k users.

It states a high-level requirement about the task without the need to refer to individual steps in the task.

While extremely important and widely used, separation of duty policies cannot capture qualification

requirements on users involved in the task. In this paper, we introduce a novel algebra that enables the

specification of high-level policies that combine user qualification requirements with separation of duty

considerations. A high-level policy associates a task with a term in the algebra and requires that all

sets of users that perform the task satisfy the term. Our algebra has four operators. We give the syntax

and semantics of the algebra and study algebraic properties of these operators. We also study several

computational problems related to the algebra. As our algebra is about the general concept of sets of

sets, we conjecture that it will prove to be useful in other contexts as well.

1 Introduction

Separation of Duty (SoD) is widely recognized as a fundamental principle in computer security [6, 18]. In

its simplest form, the principle states that a sensitive task should be performed by two different users acting

in cooperation. The concept of SoD has long existed before the information age; it has been widely used in,

for example, the banking industry and the military, sometimes under the name “the two-man rule”. More

generally, an SoD policy requires the cooperation of at least k different users to complete the task. SoD has

been identified as a high-level mechanism that is “at the heart of fraud and error control” [6]. An SoD policy

is a high-level policy in the sense that it does not restrict which users are allowed to carry out the individual

steps in a sensitive task, but rather states an overall requirement that must be satisfied by any set of users

that together complete a task. In many situations, it is not enough to require only that k different users be

involved in a sensitive task; there are also minimal qualification requirements for these users. For example,

one may want to require users that are involved to be physicians, certified nurses, certified accountants, or

directors of a company. Because a high-level SoD policy cannot express such requirements, existing work

addresses this by specifying such requirements at individual steps of a task. For example, if a policy requires

a manager and two clerks to be involved in a task, one may divide the task into three steps and require two

clerks to each perform step 1 and step 3, and a manager to perform step 2.

1

Specifying such requirements at the lower level of steps, however, results in the loss of the following

important advantages offered by a higher-level policy. First, as the specification abstracts away details of

how a task is implemented, a higher-level policy is likely to be closer to organizational policy guidelines. It

would thus be easier for administrators to specify and understand such policies. Second, a high-level policy

can be specified even before the actual steps involved in a task are designed. In fact, a formal specification

of task-level policies may help in the process of designing steps to implement the task. Third, a high-level

policy specification allows flexibility in the choice of the mechanism for enforcing the policy. For example,

one can use either static enforcement or dynamic enforcement. In static enforcement, one ensures that

any set of users that together have enough permissions to perform the task satisfy the high-level policy.

In dynamic enforcement, one records the history of who performs which steps in a task instance. Finally,

step-level policies can be more restrictive than necessary. For example, to enforce a high-level policy that

requires a manager and two clerks, a step-level policy may require a manager to execute a particular step,

which is too restrictive. When policies have to be associated with steps in a task, all the advantages discussed

above are lost.

In this paper we introduce a novel algebra to enable the specification of high-level policies that consider

user qualifications. A term in our algebra specifies a requirement on sets of users (we call these usersets). A

high level policy, rather than referring to the steps, simply associates a task with a term in the algebra. This

policy requires that all sets of users that complete an instance of the task satisfy the term. Our algebra has

four operators: t,u,¯,⊗. An SoD policy that requires 3 different users can be expressed using the term

(All ⊗ All ⊗ All), where All is a keyword that refers to the set of all users. A policy that requires either a

manager or two different clerks is expressed using the term (Manager t (Clerk⊗ Clerk)).

We define the syntax and semantics of terms in the algebra, and study the algebraic properties of the

operators. We show that all four operators are commutative and associative. We also show that u and t
distribute over each other and both ¯ and ⊗ distribute over t. The four operators result in 12 ordered pair

of operators. For the eight pairs other than the four mentioned above, distributivity does not hold. We also

study the following problems.

1. The Term Satisfiability problem: This asks whether a given term is satisfiable at all. We show that this

problem can be efficiently solved by calculating what we call the characteristic set of a term.

2. The Userset-Term Satisfaction (UTS) problem: This asks whether a userset satisfies a term. We show

that the UTS problem is NP-complete in general. To better understand the properties of the four

operators, we also study computational complexities for the UTS problem in all sub-algebras with

only a subset of the four operators. For example, we show that when only ⊗ is allowed, the UTS

problem can be reduced to the bipartite graph maximal matching problem, and is therefore efficiently

decidable. However, combining ⊗ with any of t,u,¯ makes UTS NP-complete.

We also identify syntactic restrictions so that even for terms with all four operators, as long as they

satisfy these restrictions, UTS can be solved efficiently.

3. The Static Safety Checking (SSC) problem: This problem results from the static enforcement of a

high-level policy specified using the algebra. It asks, given a term, a set of permissions that are

necessary and sufficient to perform a task, and an access control state, whether every set of users who

together have all permissions in the set satisfy the term. We show that the SSC problem is coNP-hard

in general, and is in coNP
NP, which is a complexity class in the polynomial hierarchy. We also give

the computational complexities of all subcases where only some subset of the operators are allowed.

2

The remainder of the paper is organized as follows. We introduce the syntax and semantics of the algebra

in Section 2. We study the three problems identified above in Sections 3, 4, and 5, respectively. We discuss

related work in Section 6 and conclude with Section 7. In Appendices A to E, we present additional details

about the algebra and proofs not included in the main body.

2 The Syntax and Semantics of the Algebra

In this section, we introduce the syntax and semantics for the algebra. In our definition of the algebra, we use

the notion of roles. We use a role to denote a set of users that have some common qualification or common

job responsibility. We emphasize, however, that the algebra is not restricted to Role-Based Access Control

(RBAC) [21]. In our algebra, a role is simply a set of users with a name. The notion of roles can be replaced

by groups or user attributes. We choose to call them roles to make the discussions more concrete.

Definition 1 (Terms in the Algebra) A term in the algebra is defined as follows:

• A role is a term, and the keyword All is a term. They are called atomic terms.

• Given two terms φ1 and φ2, the following are terms: (φ1 t φ2), (φ1 u φ2), (φ1 ⊗ φ2), and (φ1 ¯ φ2).

We now give several simple examples of terms in the algebra. These examples illustrate the intuition

behind the four operators.

• (Manager u Accountant)

This term requires a user that is both a Manager and an Accountant.

• (Physician t Nurse)

This term requires a user that is either a Physician or a Nurse.

• (Manager¯ Clerk)

This term requires a Manager and a Clerk; when a user is both a Manager and a Clerk, that user by

itself also satisfies the requirement.

• ((All⊗ All)⊗ All)

This term requires 3 different users. The keyword All allows us to refer to the set of all users.

To assign meanings to terms, we need to first assign meanings to the roles used in the term. Therefore,

we introduce the notion of configurations.

Definition 2 (Configurations) A configuration is given by a binary relation UR ⊆ U ×R, where U repre-

sents the set of all users, andR represents the set of all roles. When (u, r) ∈ UR, we say that u is a member

of the role r.

Note that the configuration UR should not be confused with the user-role assignment relation UA in

RBAC. When an RBAC system has both UA and a role hierarchy RH , the two relations UA and RH

together determine UR.

Below we first define the notion of strict satisfaction, which captures the situation that a userset satisfies

a term in a way that every user in the set is used to satisfy some component of the term. We then define the

notion of term satisfaction.

3

Definition 3 (Strict Satisfaction of a Term) We say that a set X of users strictly satisfies a term φ under a

configuration UR if one of the following holds:

• The term φ is the keyword All, and X is a singleton set.

• The term φ is a role r, and X is a singleton set {u} such that (u, r) ∈ UR.

• The term φ is of the form (φ1 t φ2), and either X strictly satisfies φ1 under UR or X strictly satisfies

φ2 under UR.

• The term φ is of the form (φ1 u φ2), and X strictly satisfies both φ1 and φ2 under UR.

• The term φ is of the form (φ1 ⊗ φ2), and there exist usersets X1 and X2 such that X1 ∪ X2 = X ,

X1 ∩X2 = ∅, X1 strictly satisfies φ1 under UR, and X2 strictly satisfies φ2 under UR.

• The term φ is of the form (φ1 ¯ φ2), and there exist usersets X1 and X2 such that X1 ∪X2 = X , X1

strictly satisfies φ1 under UR, and X2 strictly satisfies φ2 under UR. This differs from the definition

for ⊗ in that this does not require X1 ∩X2 = ∅.

Definition 4 (Satisfaction of a Term) We say that a userset X satisfies a term φ under a configuration

UR, if there exists X0 ⊆ X such that X0 strictly satisfies φ under UR. We often say X satisfies (or

strictly satisfies) φ (and omit “under UR”), when UR is obvious from the context or identifying UR is not

important.

It follows from the above definition that term satisfaction is monotonic in the sense that if X satisfies

φ under UR, so does any superset of X . We choose to define term satisfaction this way because our intent

is that a term in the algebra represents the minimum qualifications a set of users together must possess.

For example, if a policy requires 2 different users to together perform a task in order to prevent fraud, then

having 3 different users to perform the task certainly satisfies the policy.

Term satisfaction is monotonic in another sense as well: If X satisfies φ under UR1, then for any

configuration UR2 such that UR1 ⊆ UR2, X also satisfies φ under UR2. This results from the fact that we

do not have a negation operator in the algebra.

In Appendix A.1, we give an alternative definition of term satisfaction, which appears simpler and more

elegant than Definitions 3 and 4. There we also discuss the deficiencies of the alternative definition that lead

us to choose the current definition over it.

We now give several additional examples of terms, which help illustrate the expressive power of the

algebra.

• ((Manager¯ Accountant)⊗ Treasurer)

This term requires a Manager, an Accountant, and a Treasurer. A single user that is both a

Manager and an Accountant can satisfy (Manager ¯ Accountant); however, the user that sat-

isfies the subterm Treasurer must be different from the users (or user) that satisfy (Manager ¯
Accountant).

• ((Physician t Nurse)⊗ (Manager u Accountant))

This term requires two different users, one of which is either a Physician or a Nurse, and the other

is both a Manager and a Treasurer.

4

• (((Manager ⊗ Manager) t (Manager ⊗ Supervisor) t (Supervisor ⊗ Supervisor ⊗
Supervisor))¯ (Clerk⊗ Clerk))

This example is taken from [20]. For a check to be prepared and issued, two different clerks need

to be involved. In addition, a weight of 3 is required for approval, a Manager has weight 2, and

a Supervisor has weight 1. In [20], the users who are involved all need to be different, which

would require at least 4 different users to be involved. Here, we relax the policy to allow a user who

is involved in the approval to prepare and issue checks; this provides more flexibility. The policy

without relaxation can be expressed by replacing the ¯ operator in the term with ⊗.

Some properties about term satisfaction are given in the theorem below.

Theorem 1 The following properties about term satisfaction hold.

1. X satisfies (φ1 t φ2) if and only if either X satisfies φ1 or X satisfies φ2.

2. X satisfies (φ1 u φ2) implies that X satisfies both φ1 and φ2, but X satisfies both φ1 and φ2 does not

imply that X satisfies (φ1 u φ2).

3. X satisfies (φ1 ¯ φ2) if and only if X satisfies both φ1 and φ2.

4. X satisfies (φ1 ⊗ φ2) if and only if X can be partitioned into two disjoint subsets X1 and X2 such

that X1 satisfies φ1 and X2 satisfies φ2. This also implies that X satisfies both φ1 and φ2.

Proof. Proof of (1): If X satisfies (φ1 t φ2), then X has a subset X0 that strictly satisfies (φ1 t φ2). It

follows that X0 strictly satisfies either φ1 or φ2, implying that either X satisfies φ1 or X satisfies φ2. For the

other direction: without loss of generality, assume that X satisfies φ1, then X has a subset X0 that strictly

satisfies φ1; therefore, X0 strictly satisfies (φ1 t φ2) and thus X satisfies (φ1 t φ2).

Proof of (2): IfX satisfies (φ1uφ2), thenX has a subsetX0 that strictly satisfies (φ1uφ2), and thusX0

strictly satisfies both φ1 and φ2. It follows that X satisfies both φ1 and φ2. For the other direction, consider

the following example: u1 is a member of r1 but not r2, and u2 is a member of r2 but not r1, then {u1, u2}
satisfies both r1 and r2, but {u1, u2} does not satisfy (r1 u r2).

Proof of (3): If X satisfies (φ1¯φ2), then X has a subset X0, which in turn has two subsets X1 and X2

such that X1 strictly satisfies φ1 and X2 strictly satisfies φ2. It follows that X satisfies both φ1 and φ2. For

other direction: if X satisfies both φ1 and φ2, then X has subsets X1 and X2 such that X1 strictly satisfies

φ1 and X2 strictly satisfies φ2. Then the set X1 ∪X2 is a subset of X and strictly satisfies (φ1 ¯ φ2).

Proof of (4): Observe that X satisfies (φ1 ⊗ φ2) if and only if X can partitioned into three disjoint sets

X0 ∪ X1 ∪ X2 = X such that X1 strictly satisfies φ1 and X2 strictly satisfies φ1. The properties in (4)

follow directly.

Given a configuration UR, we use VUP (φ) to denote the set of all usersets that strictly satisfy φ under

UP , and SUP (φ) to denote the set of all usersets that satisfy φ under UP . We sometimes omit the subscript

UP when doing so does not cause confusion. From Definitions 3, 4 and Theorem 1. The following equations

hold for any given configuration UR.

V (φ1 t φ2) = V (φ1) ∪ V (φ2) V (φ1 u φ2) = V (φ1) ∩ V (φ2)
S(φ1 t φ2) = S(φ1) ∪ S(φ2) S(φ1 ¯ φ2) = S(φ1) ∩ S(φ2)
S(φ1 u φ2) ⊆ S(φ1) ∩ S(φ2) S(φ1 ⊗ φ2) ⊆ S(φ1) ∩ S(φ2)

We now introduce the notion equivalence among terms. This enables us to study the algebraic properties

of the operators in the algebra.

5

Definition 5 (Term Equivalence) We say that two terms φ1 and φ2 are equivalent (denoted by φ1 ≡ φ2)

when for every userset X and every configuration UR, X strictly satisfies φ1 under UR if and only if X

strictly satisfies φ2 under UR. That is, φ1 ≡ φ2 if and only if ∀UR [VUR(φ1) = VUR(φ2)].

The reason we choose to use strict satisfaction rather than satisfaction in the above definition is explained

in the next section. The following theorem states properties of term equivalence.

Theorem 2 If φ1 ≡ φ2, then the following hold:

1. For every userset X and every configuration UR, X satisfies φ1 under UR if and only if X satisfies

φ2 under UR.

2. For any term φ in which φ1 occurs, let φ′ be the term obtained by replacing in φ one or more occur-

rences of φ1 with φ2, we have φ ≡ φ′.

Property 1 follows directly from Definitions 4 and 5. Property 2 can be proved by a straightforward

induction on the structure φ.

Theorem 3 The operators have the following algebraic properties:

1. The operators t,u,¯,⊗ are commutative and associative. That is, for each op ∈ {t,u,¯,⊗}, and

any terms φ1, φ2, and φ3, we have (φ1opφ2) ≡ (φ2opφ1) and ((φ1opφ2)opφ3) ≡ (φ1op(φ2opφ3)).

2. The operators t and u distribute over each other. That is, (φ1 t (φ2 uφ3)) ≡ ((φ1 tφ2)u (φ1 tφ3))
and (φ1 u (φ2 t φ3)) ≡ ((φ1 u φ2) t (φ1 u φ3)).

3. The operator ¯ distributes over t. That is, (φ1 ¯ (φ2 t φ3)) ≡ ((φ1 ¯ φ2) t (φ1 ¯ φ3)).

4. The operator ⊗ distributes over t. That is, (φ1 ⊗ (φ2 t φ3)) ≡ ((φ1 ⊗ φ2) t (φ1 ⊗ φ3)).

5. No other ordered pair of operators have the distributive property.

The proof for the above theorem is in Appendix A.2. For each case that the distributive property does not

hold, we give a counter example.

Because of the associativity properties, in the rest of this paper we omit parentheses in a term when

doing so does not cause any confusion. Sometimes we also omit the outermost parentheses of a term.

3 The Term Satisfiability Problem

Given the definitions of terms and term satisfaction, a natural question that arises is whether every term in the

algebra is satisfiable. That is, whether for every term φ, there exists a set X of users and a configuration UR

such that X satisfies φ under UR. The answer is “no”; there exist terms that are not satisfiable. An example

of such a term is φ = (r1 u (r2 ⊗ r3)), where r1, r2 and r3 are roles. In the example, r1 is strictly satisfiable

only by a singleton userset, and (r2 ⊗ r3) is strictly satisfiable only by a userset of cardinality 2. Therefore,

there does not exist any userset that strictly satisfies φ, and therefore no userset satisfies φ. Consequently, in

this section we study the term satisfiability problem, which asks for a given term φ, whether there exists a

userset X and a configuration UR such that X satisfies φ under UR.

6

We now explain why we do not define two terms to be equivalent when they are satisfied by exactly the

same usersets under every configuration. Consider the two terms r1 and (r1¯r1). They are both satisfied by

any userset that contains at least one user who is a member r1; however, they differ when we consider strict

satisfaction. The term r1 can never be strictly satisfied by {u1, u2}. On the other hand, when both u1 and u2

are members of the role r1, the userset {u1, u2} strictly satisfies (r1¯ r1) because {u1, u2} = {u1}∪{u2},
{u1} strictly satisfies r1, and {u2} strictly satisfies r1. (In this case, the three usersets {u1}, {u2}, and

{u1, u2} all strictly satisfies (r1 ¯ r1).) This difference between r1 and (r1 ¯ r1) is clearly shown in the

following example. In the term φ = (r1 u (r2 ⊗ r3)), if we replace r1 with (r1 ¯ r1), the resulting term

φ′ = ((r1 ¯ r1) u (r2 ⊗ r3)) is quite different from φ. The term φ is not satisfiable, as we discuss in the

beginning of this section; yet the term φ′ is satisfiable.

With respect to the term satisfiability problem, we observe that, by definition, a term is satisfiable if and

only if it is strictly satisfiable. Furthermore, in order to strictly satisfy a term, a userset must be of certain

size. For example, (r1 ¯ (r2 ⊗ r3)) can be strictly satisfied by a set of 2 or 3 users, but not by a set of 1 or

4 users. This observation leads us to introduce the notion of characteristic numbers of a term. This notion

turns out to be useful in determining whether a term is satisfiable or not.

Definition 6 (Characteristic Numbers) Given a term φ and a positive integer k, we say that k is a char-

acteristic number of a term φ when there exists a userset of size k that strictly satisfies φ under some

configuration. A term φ may have more than one characteristic numbers. We use C(φ) to denote the set of

all characteristic numbers of φ and call it the characteristic set of φ.

We point out that for any term φ, it is satisfiable if and only if C(φ) 6= ∅.

Theorem 4 The characteristic set of a term can be computed as follows:

• C(All) = C(r) = {1}, where r is a role

• C(φ1 t φ2) = C(φ1) ∪ C(φ2)

• C(φ1 u φ2) = C(φ1) ∩ C(φ2)

• C(φ1¯φ2) = { k | max [min (C(φ1)) , min (C(φ2))] ≤ k ∧ k ≤ [max (C(φ1)) + max (C(φ2))] }

• C(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }

The proof for the theorem is in Appendix B. We now illustrate each case in the theorem using the

examples from Section 2.

• C(All⊗ All⊗ All) = {3}

• C(Manager u Accountant) = C(Physician t Nurse) = {1}

• C(Manager¯ Accountant) = {1, 2}

The term (Manager¯ Accountant) can be strictly satisfied by two users as well as by a single user

who is both a Manager and an Accountant.

• C(Manager¯ Accountant)⊗ Treasurer) = {2, 3}

Either 1 or 2 users suffice for (Manager ¯ Accountant), and an additional user is needed to satisfy

Treasurer.

7

• C((Manager t Accountant)⊗ (Manager u Treasurer)) = {2}

Only one user is needed for both (Manager t Accountant) and (Manager u Treasurer), and the

⊗ mandates that these users must be different from one another.

• C(((Manager ⊗ Manager) t (Manager ⊗ Supervisor) t (Supervisor ⊗ Supervisor ⊗
Supervisor))¯ (Clerk⊗ Clerk)) = {2, 3, 4, 5}

Let φ1 denote the subterm before¯, then C(φ1) = {2, 3}. C(Clerk⊗Clerk) = {2}. Using the rule

in Theorem 4 to combine them, we get {2, 3, 4, 5}. This term can be strictly satisfied by 2 users that

are members of both the Manager role and the Clerk role. This term can also be strictly satisfied by

5 users that include 3 supervisors and 2 clerks.

For the term considered in the beginning of this section, namely r1 u (r2 ⊗ r3), we observe that C(r1 u
(r2 ⊗ r3)) = {1} ∩ {2} = ∅.

We point out that the characteristic set of a term can be used for another important purpose, that is, to

determine whether the term satisfies some minimal SoD requirements. If the smallest characteristic number

of a term is at least k, then we know that no k − 1 users can satisfy the term.

We now show that C(φ) can be computed in time quadratic in the size of φ.

Definition 7 We define the size of a term φ, denoted by |φ|, to be the number of atomic terms in φ. Using

induction on the structure of φ, it is easy to show that |φ| is equal to the number of operators in φ plus 1.

Lemma 5 Every characteristic number k of φ satisfies k ≤ |φ|.

The proof for the above lemma is straightforward by induction on the structure of terms. If follows

from Lemma 5 that the cardinality of C(φ) is no more than |φ|. A straightforward algorithm to compute

C(φ) is to follow Theorem 4. Given C(φ1) and C(φ2), calculating C(φ1 op φ2) takes time at most linear in

|C(φ1)|+ |C(φ2)|. Thus, for each operator in φ, the algorithm takes time O(|φ|); therefore, it takes time at

most quadratic in |φ| to calculate C(φ). Because φ is satisfiable if and only if C(φ) 6= ∅, it follows that one

can decide whether φ is satisfiable or not in time O(|φ|2).

4 The Userset-Term Satisfaction (UTS) Problem

In Section 3, we have shown that the problem of determining whether a term φ is satisfiable at all takes time

O(|φ|2). In this section, we consider the following problem.

Definition 8 (The Userset-Term Satisfaction (UTS) problem) Given a configuration UR, a user set X ,

and a term φ, the problem of determining whether X satisfies φ under UR is called the Userset-Term

Satisfaction (UTS) problem.

4.1 Computational Complexity of UTS

We show that UTS in the most general case (i.e., arbitrary terms in which all four operators are allowed) is

NP-complete. In order to understand how the operators affect the computational complexity, we consider

all sub-algebras in which only some subset of the four operators {u,t,¯,⊗} is allowed. For example,

UTS〈t,u,¯〉 denotes the sub-case of UTS where φ does not contain operator ⊗, while UTS〈⊗〉 denotes

the sub-case of UTS where ⊗ is the only kind of operator in φ. UTS〈t,u,¯,⊗〉 denotes the general case.

8

UTS〈t,u,¯,⊗〉

NP-complete

. .

UTS〈t,u,¯〉

NP-complete

. . .
. . .

. . .
. . .

.

UTS〈t,u,⊗〉

NP-complete

....
....

....
....

UTS〈t,¯,⊗〉

NP-complete

......................................

UTS〈u,¯,⊗〉

NP-complete

...
...

...
...

...

.
.

.
.

.
.

.

UTS〈t,u〉

in P

..
..

..
..

..
.

. .

UTS〈t,¯〉

in P

....
....

....
....

....
....

..

. .

UTS〈u,¯〉

NP-complete

....
....

....
....

....
..

..
..
..
..
..
.

UTS〈t,⊗〉

NP-complete

..
..

..
..

..
..

..

.......................................

UTS〈u,⊗〉

NP-complete

...............................

..
..

..
..

..
..

UTS〈¯,⊗〉

NP-complete

..
..

..
..

..
..

.

..
..

..
..

..
..

.

. .

UTS〈t〉

in P

.....
.....

.....
.....

.....
.....

...

..
..
..
..
..

. .

UTS〈u〉

in P

...

....
....

....
....

....
....

.

. .

UTS〈¯〉

in P

.....
.....

.....
.....

.....
....

..
..

..
..

..
..

.

..
..

..
..

..
..

.

UTS〈⊗〉

in P

Figure 1: Various sub-cases of the Userset Term Satisfaction (UTS) problem and the corresponding time-

complexity.

Theorem 6 The computational complexities for UTS and its subcases are given in Figure 1.

From Figure 1, we observe that when only the ⊗ operator is allowed, UTS can be efficiently solved;

however, when⊗ is combined with any of u, t, and¯, UTS becomes NP-complete. Also, the combination

〈u,¯〉 is NP-complete; whereas the combinations 〈t,u〉 and 〈t,¯〉 are efficiently decidable. Therefore,

one can order the difficulty of these operators as ⊗ > u,¯ > t. The most difficult operator, ⊗, when

combined with any other operator, results in intractable cases. The two operators in the middle, when

combined with t, result in a tractable case; however, their combination is intractable. We point out that

both u and ¯ have the flavor of set intersection. Recall that we have V (φ1 u φ2) = V (φ1) ∩ V (φ2) and

S(φ1¯φ2) = S(φ1)∩S(φ2), where V (φ) denotes the set of usersets that strictly satisfy φ and S(φ) denotes

the set of usersets that satisfy φ.

We now prove the NP-completeness results in Figure 1. It suffices to prove that the general case

UTS〈t,u,¯,⊗〉 is in NP and that the four cases UTS〈u,¯〉, UTS〈t,⊗〉, UTS〈u,⊗〉, and UTS〈¯,⊗〉 are

NP-hard. All NP-completeness results follow because of the obvious hardness relationships among these

cases. Below we state lemmas that establish these results. The proofs for these lemmas are in Appendix C.

For each NP-hardness result, we discuss the terms used in the reductions. These terms illustrate what the

hard cases are for the UTS problem. The observations we gain from these terms help us in Section 4.2,

where we identify a wide class of syntactically restricted terms for which the UTS problem is tractable.

Lemma 7 UTS 〈t,u,¯,⊗〉 is in NP.

The proof (in Appendix C) uses the observation that if one can guess which subset X0 of the given userset

X strictly satisfies the term and how X0 is divided to strictly satisfy each component of the term, then the

verification takes only polynomial time.

Lemma 8 UTS 〈u,¯〉 is NP-hard.

9

The proof (in Appendix C) uses a reduction from the NP-complete SET COVERING problem [8]. The terms

used in the reduction have the form ((
⊙

k All) u (
⊙n

i=1
ri)), where (

⊙

k φ) denotes k copies of φ connected

together by ¯ and (
⊙n

i=1
ri) denotes (r1 ¯ · · · ¯ rn). This illustrates that if we allow ¯ to appear within

the scope of u, then the UTS problem may be intractable.

Lemma 9 UTS 〈¯,⊗〉 is NP-hard.

The proof (in Appendix C) uses a reduction from the NP-complete DOMATIC NUMBER problem [8]. The

terms used in the reduction have the form (
⊗

k (
⊙n

i=1
ri)). This illustrates that if we allow ¯ to appear

within the scope of ⊗, then the UTS problem may be intractable.

Lemma 10 UTS 〈t,⊗〉 is NP-hard.

The proof (in Appendix C) uses a reduction from the NP-complete SET PACKING problem [8]. The terms

used in the reduction have the form (
⊗

k (
⊔m
i=1

(
⊗

Ri))), where Ri is a set of roles, and (
⊗

Ri) denotes

the roles inRi connected by the⊗ operator. This illustrates that if we allow⊗ to occur within the scope of t
and allow these occurrences of t to occur within the scope of ⊗, then the UTS problem may be intractable.

Lemma 11 UTS 〈u,⊗〉 is NP-hard.

The proof (in Appendix C) uses a reduction from the NP-complete SET COVERING problem [8]. The terms

used in the reduction have the formun
i=1

(

ri ⊗
(
⊗

k−1
All
))

. This illustrates that if we allow ⊗ to occur

within the scope of u, then the UTS problem may be intractable.

Three Tractable Cases To prove all the P results in Figure 1, it suffices to prove that the three cases

UTS〈u,t〉, UTS〈t,¯〉, and UTS〈⊗〉 are in P.

Lemma 12 UTS 〈t,u〉 can be solved in time O(|φ| · |X|).

Proof. A term φ using only t and u has 1 as its only characteristic number. Therefore, a userset X satisfies

φ if and only if there exists a user in X that strictly satisfies φ. A straightforward algorithm is for each user

u ∈ X , check whether {u} strictly satisfies φ. By definition, {u} strictly satisfies (φ1 t φ2) if and only if

either {u} strictly satisfies φ1 or {u} strictly satisfies φ2, and {u} strictly satisfies (φ1 u φ2) if and only if

{u} strictly satisfies both φ1 and φ2. Assuming that the configuration UR is stored in a data structure such

that checking whether (u, r) ∈ UR takes constant time, one can check whether {u} strictly satisfies φ in

time linear in |φ| by following the structure of φ.

Lemma 13 UTS 〈t,¯〉 can be solved in time O(|φ| · |X|).

Proof. By Theorem 1, a userset X satisfies (φ1 t φ2) if and only if either X satisfies φ1 or X satisfies φ2,

and a userset X satisfies (φ1 ¯ φ2) if and only if X satisfies both φ1 and φ2. Therefore, one can determine

whether X satisfies a term φ that uses only the operators t and ¯ by following the structure of the term. To

determine whether X satisfies a role r takes time linear in |X|, assuming that one can determine whether

(u, r) ∈ UR in constant time.

Lemma 14 UTS 〈⊗〉 can be solved in time O((|φ|+ |X|) · |φ| · |X|).

10

Proof. Given a term φ that uses only the operator⊗, we show that determining whether a usersetX satisfies

φ under a configuration UR can be reduced to the maximum matching problem on bipartite graphs, which

can be solved in O(MN) time, where M is the number of edges and N is the number of nodes in G [16].

Let s = |φ| and t = |X|. Since⊗ is associative, φ can be equivalently expressed as (φ1⊗φ2⊗· · ·⊗φs),

where each φi is an atomic term. Let X = {u1, · · · , ut}. We construct a bipartite graph G(V1 ∪ V2, E),

where each node in V1 corresponds to an atomic term in φ and each node in V2 corresponds to a user in X .

More precisely, V1 = {a1, · · · , as}, V2 = {b1, · · · , bt}, and (ai, bj) ∈ E if and only if either φi = All or

(φi = rk)∧((uj , rk) ∈ UR). The resulting graphG has s+t nodes andO(st) edges, and can be constructed

in time linear in the size of G. Solving the maximal matching problem for G takes time O((s+ t)st).

We now show that X satisfies φ if and only if the maximal matching in the graph G has size s. If the

maximal matching has size s, then each node in V1 matches to a certain node in V2, which means that the

s atomic terms in φ are strictly satisfied by s distinct users in X; thus X satisfies φ. If X satisfies φ, by

definition,X contains s users such that each user strictly satisfies an atomic term in φ. From our construction

of G, a maximal matching of size s exists.

4.2 UTS is Tractable for Canonical Terms

From the computational complexity results in Figure 1, one can see that when only ⊗ is allowed, the UTS

problem can be solved in polynomial time. However, when ⊗ is combined with any of the three operators

t, u, and ¯, the UTS problem becomes NP-hard. We now show that if a term satisfies certain syntactic

restrictions, then even if all four operators appear in the term, one can still efficiently determine whether a

userset satisfies the term. To characterize the syntactic restrictions, we recall the observations about the hard

instances used in the NP-hardness proofs:

1. It ¯ appears within the scope of u, then UTS may be intractable.

2. If ¯ appears within the scope of ⊗, then UTS may be intractable.

3. If t appears in between the scopes of two ⊗, e.g., in terms such as (φ1 ⊗ (φ2(t(φ3 ⊗ φ4)))), then

UTS may be intractable.

4. If ⊗ appears within the scope of u, then the UTS problem may be intractable.

From (2) and (4), we observe that in order to avoid the intractable cases, ¯ should be used outside the

scope of ⊗, which in turn should be used outside the scope of u. In other words, the order from outmost

to innermost is ¯,⊗,u. This order also avoids intractable cases in (1). From (3), we observe that t should

not be arbitrarily mixed with ⊗. However, t can be mixed with ¯ and with u. These observations lead us

to the following definition.

Definition 9 (Canonical Forms for Terms) The canonical forms for terms are defined as follows:

• A term is in level-1 canonical form if it uses only operators from the set {t,u}. An atomic term is in

level-1 canonical form, because no operator is used.

• A term is in level-2 canonical form if it is of the form (φ1 ⊗ · · · ⊗ φn), where n ≥ 1 and for each i

such that 1 ≤ i ≤ n, the subterm φi is in level-1 canonical form.

11

• A term is in level-3 canonical form if it consists of subterms that are in level-2 canonical forms, and

these subterms are connected only by operators in the set {t,¯}.

We say that a term is in canonical form if it is in level-3 canonical form. Observe that any term that is

in level-1 canonical form is also in level-2 canonical form, and any term that is in level-2 canonical form is

also in level-3 canonical form.

We point out that a term in canonical form is always satisfiable. A term in level-1 canonical form has

characteristic set {1}. And a term in canonical form combines subterms in level-1 canonical form using the

three operators ⊗,¯,t. Because of the rules by which one calculates the characteristic sets of φ1 ⊗ φ2,

φ1 ¯ φ2, and φ1 t φ2 (See Theorem 4), one can never derive an empty characteristic set for a term in

canonical form. We believe that terms in the canonical forms are general enough to specify many high-level

security policies in practice. All except one example of terms in this paper are in canonical form.

While canonical forms are defined to avoid the intractable cases we have identified in the NP-hardness

proofs, the following theorem shows that UTS is tractable for all terms that are in canonical form. This

shows that the intractable cases that we have identified are exhaustive in a sense, and the canonical forms

capture the most general tractable cases.

Theorem 15 Given a term φ in canonical form, a set X of users, and a configuration UR, checking whether

X satisfies φ under UR can be done in cubic time.

Proof. The algorithm for deciding whether X satisfies a term φ in canonical form combines the ideas in the

algorithms for solving UTS〈t,u〉 (Lemma 12), UTS〈t,¯〉 (Lemma 13), and UTS〈⊗〉 (Lemma 14).

First observe that by Theorem 1, a userset X satisfies (φ1 t φ2) if and only if either X satisfies φ1 or X

satisfies φ2, and a userset X satisfies (φ1¯ φ2) if and only if X satisfies both φ1 and φ2. Therefore, as long

as one can decide whether X satisfies each subterm of φ in level-2 canonical form, one can easily combine

the results to determine whether X satisfies φ.

Second, observe that if a term is in the level-2 canonical form, it has the form (φ1⊗· · ·⊗φs), where each

φi uses only operators in {t,u}. Such a φi can be strictly satisfied only by a singleton userset. Furthermore,

it takes time linear in |φi| to determine whether any singleton userset {u} satisfies φi or not. Therefore, to

determine whether X satisfies (φ1⊗· · ·⊗φs), one can first determine whether each user in X satisfies each

φi for 1 ≤ i ≤ s, and then use the maximal matching problem for bipartite graphs to determine whether X

satisfies (φ1 ⊗ · · · ⊗ φs) or not, using the same idea as in the proof of Lemma 14.

This can be performed in time cubic in the size of the instance.

5 The Static Safety Checking (SSC) Problem

A high-level policy associates a task with a term φ and requires that every set of users who complete an

instance of the task satisfy a term φ. For example, one may associate a task of buying and paying for goods

with the term (Employee⊗ Supervisor)¯ (Accountant⊗ Accountant). Such a policy can be enforced

either statically or dynamically. In this paper, we look at static enforcement. Dynamic enforcement is

interesting future work and is beyond the scope of this paper.

In static enforcement, one first identifies all permissions that are needed to perform the task. As-

sume that the following four permissions are involved in the task of buying and paying for goods: porder ,

papprove , pgoods , and ppayment . One then specifies a static safety policy that requires that every set of users

12

who together have all four permissions satisfy the term (Employee ⊗ Supervisor) ¯ (Accountant ⊗
Accountant). In this section we look at the problem of determining whether a configuration satisfies such

a static safety policy.

We first extend a configuration from UR to 〈UR,UP〉, where UR ⊆ U ×R and UP ⊆ U × P , where

U is the set of all users, R is the set of all roles, and P is the set of all permissions. If (u, p) ∈ UP , then

we say that the user u has the permission p. Note that by assuming that a configuration contains the binary

relation UP ⊆ U × P , we are not assuming permissions are directly assigned to users; rather, we assume

only that one can calculate the relation UP from the access control state. Static safety policies are formally

defined below.

Definition 10 (Static Safety Policy) A static safety policy is specified as

sp〈P, φ〉

where P = {p1, · · · , pn} is a set of permissions and φ is a term in the Algebra.

A configuration 〈UR,UP〉 is safe with respect to a safety policy sp〈P, φ〉 if any set of users who together

possess all permissions in P satisfies φ.

The permissions in a safety policy are the permissions needed to carry out a sensitive task, and the policy

guarantees that a set of users can successfully execute the task only if these users together meet a certain

safety requirement. The following problem naturally arises.

Definition 11 (The Static Safety Checking (SSC) problem) Determining whether a configuration

〈UR,UP〉 is safe with respect to a static safety policy sp〈P, φ〉 is called the Static Safety Checking (SSC)

problem.

Given a policy sp〈P, φ〉 and a configuration 〈UR,UP〉, there may be multiple sets of users who together

have all permissions in P . For each such set, we need to check whether the set satisfies φ under UR. There-

fore, the SSC problem is at least as hard as the UTS problem. We now give the computational complexities

of SSC in the general case as well as SSC in sub-algebras where only a subset of the operators is allowed.

Theorem 16 The computational complexities of SSC and its subcases are given in Figure 2.

Comparing the complexities of SSC in Figure 2 with the complexities of UTS in Figure 1, we observe

that all cases that are NP-complete in Figure 1 become coNP-hard in Figure 2. We also observe that the

two cases (〈t,¯〉 and 〈⊗〉) that are in P in Figure 1 become coNP-complete in Figure 2. However, the

other four cases (〈t,u〉, 〈t〉, 〈u〉, and 〈¯〉) that are in P in Figure 1 remain in P in Figure 2.

Lemma 17 SSC〈t,u,¯,⊗〉 is in coNP
NP.

Proof. SSC〈t,u,¯,⊗〉 is in coNP
NP means that the complement of SSC 〈t,u,¯,⊗〉 can be solved by

a nondeterministic Oracle Turing Machine that has oracle access to a machine that can answer any NP

queries. (See Appendix D for a brief overview of Oracle Turing Machines.) If a configuration 〈UR,UP〉
does not satisfy a static safety policy sp〈P, φ〉, then there exists an evidence which is a set X of users such

that the users in X together have all the permissions in P and X does not satisfy φ. Verifying that X does

not satisfy φ can be performed by an oracle query.

13

SSC〈t,u,¯,⊗〉

coNP-hard, in coNP
NP

. .

SSC〈t,u,¯〉

coNP-hard

. . .
. . .

. . .
. . .

.

SSC〈t,u,⊗〉

coNP-hard

....
....

....
....

SSC〈t,¯,⊗〉

coNP-hard

......................................

SSC〈u,¯,⊗〉

coNP-hard

...
...

...
...

...

.
.

.
.

.
.

.

SSC〈t,u〉

in P

..
..

..
..

..
.

. .

SSC〈t,¯〉

coNP-complete

....
....

....
....

....
....

..

. .

SSC〈u,¯〉

coNP-hard

....
....

....
....

....
..

..
..
..
..
..
.

SSC〈t,⊗〉

coNP-hard

..
..

..
..

..
..

..

.......................................

SSC〈u,⊗〉

coNP-hard

...............................

..
..

..
..

..
..

SSC〈¯,⊗〉

coNP-hard

..
..

..
..

..
..

.

..
..

..
..

..
..

.

. .

SSC〈t〉

in P

.....
.....

.....
.....

.....
.....

...

..
..
..
..
..

. .

SSC〈u〉

in P

...

....
....

....
....

....
....

.

. .

SSC〈¯〉

in P

.....
.....

.....
.....

.....
....

..
..

..
..

..
..

.

..
..

..
..

..
..

.

SSC〈⊗〉

coNP-complete

Figure 2: Various sub-cases of the SSC problem and the corresponding time-complexity. As the most general

case of the problem, SSC〈t,u,¯,⊗〉, is in coNP
NP, all subcases are also in coNP

NP.

We have shown that SSC〈t,u,¯,⊗〉 and a number of its subcases are coNP-hard and are in coNP
NP.

It remains open whether these problems are coNP
NP-complete or not. Readers who are familiar with

computational complexity theory will recognize that coNP
NP is a complexity class in the Polynomial

Hierarchy. (See Appendix D for a brief introduction to the Polynomial Hierarchy.)

Lemma 18 If UTS in a sub-algebra is in P, then SSC in the same sub-algebra is in coNP.

Proof. A configuration is not safe with respect to a policy sp〈P, φ〉 if and only if there exists a counter

evidence userset X such that X covers all permissions in P and X does not satisfy φ. Given that UTS is

in P, verifying whether X is a counter evidence of safety can be done in polynomial time. Therefore, the

complement of SSC is in NP.

Lemma 19 SSC〈⊗〉 is coNP-complete.

The fact that the problem is in coNP follows from Lemma 18. The proof (in Appendix E) that this is

coNP-hard is by a reduction from the SET COVERING problem to the complement of SSC 〈⊗〉.

Lemma 20 SSC〈t,¯〉 is coNP-complete.

The fact that this is in coNP follows from Lemma 18. The proof (in Appendix E) that this is coNP-hard

is by a reduction from the PROPOSITIONAL VALIDITY problem [8].

Lemma 21 SSC〈¯〉 is in P.

An algorithm is given in the proof (in Appendix E). It takes time at most cubic in the size of the instance.

Lemma 22 SSC〈u,t〉 is in P.

An algorithm is given in the proof (in Appendix E). It takes time at most cubic in the size of the instance.

14

6 Related Work

The concept of SoD has long existed in the physical world, sometimes under the name “the two-man rule”,

for example, in the banking industry and the military. To our knowledge, in the information security litera-

ture the notion of SoD first appeared in Saltzer and Schroeder [18] under the name “separation of privilege.”

Clark and Wilson’s commercial security policy for integrity [6] identified SoD along with well-formed trans-

actions as two major mechanisms of fraud and error control. Nash and Poland [15] explained the difference

between dynamic and static enforcement of SoD policies. In the former, a user may perform any step in a

sensitive task provided that the user does not also perform another step on that data item. In the latter, users

are constrained a-priori from performing certain steps.

Sandhu [19, 20] presented Transaction Control Expressions, a history-based mechanism for dynamically

enforcing SoD policies. A transaction control expression associates each step in the transaction with a role.

By default, the requirement is such that each step must be performed by a different user. One can also specify

that two steps must be performed by the same user. In Transaction Control Expressions, user qualification

requirements are associated with individual steps in a transaction, rather than a transaction as a whole.

There exists a wealth of literature [1, 2, 7, 9, 10, 11, 22, 23] on constraints in the context of RBAC. They

either proposed and classified new kinds of constraints [9, 22] or proposed new languages for specifying

sophisticated constraints [1, 2, 7, 11, 23]. Most of these constraints are motivated by SoD and are variants

of role mutual exclusion constraints, which may declare two roles to be mutually exclusive so that no user

can be a member of both roles.

There has also been recent interest in static and dynamic constraints to enforce separation of duty in

workflow systems. Atluri and Huang [3] proposed an access control model for workflow environments,

which supports temporal constraints. Bertino et al. [4] proposed a language for specifying static and dynamic

constraints for separation of duty in role-based workflow systems. In these works, security requirements are

associated with individual steps in the workflows.

Li et al. [12] studied the problem of using static mutually exclusive role (SMER) constraints to enforce

Static Separation of Duty (SSoD) policies, which require at least k different users to possess all permissions

in a given set. The SSoD policies are special cases of the static safety policies in this paper. In these policies,

the terms have the form All ⊗ · · · ⊗ All. Li et al. [12] did not consider high-level policies other than SSoD

policies.

McLean [14] introduced a framework that includes various mandatory access control models. These

models differ in which users are allowed to change the security levels. They form a boolean algebra. McLean

also looked at the issue of N -person policies, where a policy may allow multiple subjects acting together to

perform some action. McLean observed the monotonicity requirement in such N -person policies.

Several algebras have been proposed for combining security policies. These include the work by Bonatti

et al. [5], Wijesekera and Jajodia [24], Pincus and Wing [17]. These algebras are quite different from ours,

as each element in their algebra is a policy, which specifies what subjects are allowed to access which

resources.

The two operators¯ and⊗ in our algebra are taken from the RT family of role-based trust-management

languages designed by Li et al. [13]. In [13], the notion of manifold roles was introduced, which are roles

that have usersets, rather than individual users, as their members. The two operators ⊗ and ¯ are used to

define manifold roles. One can write A.R←− B1.R1 ⊗ · · · ⊗Bk.Rk, which means that

members(A.R) ⊇ { s1 ∪ · · · ∪ sk | si ∈ members(Bi.Ri) ∧ si ∩ sj = ∅ for 1 ≤ i 6= j ≤ k }.

15

One can also write A.R←− B1.R1 ¯ · · · ¯Bk.Rk, which means that

members(A.R) ⊇ { s1 ∪ · · · ∪ sk | si ∈ members(Bi.Ri) for 1 ≤ i ≤ k }.

This corresponds exactly to our notion of strict satisfaction for the two operators. The focus on [13] is

on introducing the RT family of trust-management languages. Li et al. [13] did not propose to use these

operators to specify high-level security policies, or to study the interactions of these two operators with t
and u. They also did not study the algebraic properties of these operators, the term satisfiability problem,

the UTS problem, or the SSC problem.

7 Summary

While separation of duty policies are extremely important and widely used, they cannot capture qualifica-

tion requirements. We have introduced a novel algebra that enables the specification of high-level policies

that combine user qualification requirements with separation of duty considerations. A high-level policy

associates a task with a term in the algebra and requires that all sets of users that perform the task satisfy

the term. Specifying security policies at the task level has a number of advantages over the current approach

of specifying such policies at the individual step level. Our algebra has four operators, and is expressive

enough to specify many diverse policies. We have also studied several computational problems related to

the algebra, including determining whether a term is satisfiable at all, determining whether a userset satisfies

a term (UTS), and determining whether a configuration is safe with respect to a static safety policy (SSC).

As our algebra is about the general concept of sets of sets, we conjecture that it will prove to be useful in

other contexts as well.

References

[1] G.-J. Ahn and R. S. Sandhu. The RSL99 language for role-based separation of duty constraints. In

Proceedings of the 4th Workshop on Role-Based Access Control, pages 43–54, 1999.

[2] G.-J. Ahn and R. S. Sandhu. Role-based authorization constraints specification. ACM Transactions on

Information and System Security, 3(4):207–226, Nov. 2000.

[3] V. Atluri and W. Huang. An authorization model for workflows. In Proceedings of the 4th European

Symposium on Research in Computer Security (ESORICS), pages 44–64, 1996.

[4] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization constraints in

workflow management systems. ACM Transactions on Information and System Security, 2(1):65–104,

Feb. 1999.

[5] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. A modular approach to composing access con-

trol policies. In Proceedings of the 7th ACM conference on Computer and Communications Security

(CCS), pages 164–173, Nov. 2000.

[6] D. D. Clark and D. R. Wilson. A comparision of commercial and military computer security policies.

In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE Computer

Society Press, May 1987.

16

[7] J. Crampton. Specifying and enforcing constraints in role-based access control. In Proceedings of the

Eighth ACM Symposium on Access Control Models and Technologies (SACMAT 2003), pages 43–50,

Como, Italy, June 2003.

[8] M. R. Garey and D. J. Johnson. Computers And Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, 1979.

[9] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo. On the formal definition of separation-of-duty policies

and their composition. In Proceedings of IEEE Symposium on Research in Security and Privacy, pages

172–183, May 1998.

[10] T. Jaeger. On the increasing importance of constraints. In Proceedings of ACM Workshop on Role-

Based Access Control, pages 33–42, 1999.

[11] T. Jaeger and J. E. Tidswell. Practical safety in flexible access control models. ACM Transactions on

Information and System Security, 4(2):158–190, May 2001.

[12] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive roles and separation of duty. In Proceed-

ings of the 11th ACM Conference on Computer and Communications Security (CCS-11), pages 42–51.

ACM Press, Oct. 2004.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust management framework. In

Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 114–130. IEEE Computer

Society Press, May 2002.

[14] J. McLean. The algebra of security. In Proceedings of IEEE Symposium on Security and Privacy,

pages 2–7, Apr. 1988.

[15] M. J. Nash and K. R. Poland. Some conundrums concerning separation of duty. In Proceedings of

IEEE Symposium on Research in Security and Privacy, pages 201–209, May 1990.

[16] C. H. Papadimitrou and K. Steiglitz. Combinatorial Optimization. Prentice Hall, 1982.

[17] J. Pincus and J. M. Wing. Towards an algebra for security policies (extended abstract). In Proceedings

of ICATPN 2005, number 3536 in LNCS, pages 17–25. Springer, 2005.

[18] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of

the IEEE, 63(9):1278–1308, September 1975.

[19] R. Sandhu. Separation of duties in computerized information systems. In Proceedings of the IFIP

WG11.3 Workshop on Database Security, Sept. 1990.

[20] R. S. Sandhu. Transaction control expressions for separation of duties. In Proceedings of the Fourth

Annual Computer Security Applications Conference (ACSAC’88), Dec. 1988.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.

IEEE Computer, 29(2):38–47, February 1996.

[22] T. T. Simon and M. E. Zurko. Separation of duty in role-based environments. In Proceedings of The

10th Computer Security Foundations Workshop, pages 183–194. IEEE Computer Society Press, June

1997.

17

[23] J. Tidswell and T. Jaeger. An access control model for simplifying constraint expression. In Proceed-

ings of ACM Conference on Computer and Communications Security, pages 154–163, 2000.

[24] D. Wijesekera and S. Jajodia. A propositional policy algebra for access control. ACM Transactions on

Information and Systems Security (TISSEC), 6(2):286–325, May 2003.

A More Details on the algebra

A.1 An Alternative Definition of Term Satisfaction

We now discuss an alternative definition for term satisfaction in the algebra. This is the first definition we

came up with. While this definition appears simpler and more elegant than Definitions 3 and 4, it turns out

to have some undesirable properties.

Definition 12 (Alternative Definition of Term Satisfaction) We say that a set X of users satisfy a term φ

if one of the following holds:

• The term φ is the keyword All, and X is nonempty.

• The term φ is a role r, and there exists a user u ∈ X such that u is a member of the role r.

• The term φ is of the form (φ1 t φ2), and either X satisfies φ1 or X satisfies φ2.

• The term φ is of the form (φ1 u φ2), and X satisfies φ1 as well as φ2.

• The term φ is of the form (φ1⊗φ2), and there existX1 andX2 such thatX1∪X2 = X , X1∩X2 = ∅,
X1 satisfies φ1 and X2 satisfies φ2.

• The term φ is of the form (φ1 ¯ φ2), and there exist X1 and X2 such that X1 ∪X2 = X , X1 satisfies

φ1 and X2 satisfies φ2.

Using this definition, one can show that the operator u is equivalent to the operator ¯ in the sense that

for any X , φ1 and φ2, X satisfies (φ1 u φ2) if and only if X satisfies (φ1 ¯ φ2). Thus one of the operators

is redundant. More importantly, under this definition {u1, u2} can satisfy (r1 u r2) when neither u1 nor u2

is a member of both r1 and r2. This would happen when u1 is a member of r1 and u2 is a member of r2.

Therefore, using this definition, one cannot express a policy that requires a user that is a member of both r1

and r2.

A.2 Proof for Theorem 3 on Algebraic Properties

1. The operators t,u,⊗,¯ are commutative and associative.

This is straightforward from Definition 4 and Theorem 1.

2. The operators t is distributive over u.

If a userset X strictly satisfies (φ1t (φ2uφ3)), then either X strictly satisfies φ1, or X strictly satisfy

both φ2 and φ3. It follows that X strictly satisfies ((φ1 t φ2) u (φ1 t φ3)).

18

If X strictly satisfies ((φ1 tφ2)u (φ1 tφ3)), then X strictly satisfies (φ1 tφ2) and (φ1 tφ3). There

are only two cases: (1) X strictly satisfies φ1; and (2) X strictly satisfies both φ2 and φ3. In either

case, X strictly satisfies (φ1 t (φ2 u φ3)).

The operators u is distributive over t.

If X strictly satisfies (φ1u (φ2tφ3)), then X strictly satisfies both φ1 and (φ2tφ3). Then X strictly

satisfies either φ2 or φ3. It follows that X strictly satisfies ((φ1 u φ2) t (φ1 u φ3)).

If X strictly satisfies ((φ1 u φ2) t (φ1 u φ3)), then either (1) X strictly satisfies (φ1 u φ2) or (2) X

strictly satisfies (φ1 uφ3). Therefore X strictly satisfies φ1; furthermore, X strictly satisfies either φ2

or φ3. It follows that X strictly satisfies (φ1 u (φ2 t φ3)).

3. The operator ¯ is distributed over t.

If X strictly satisfies (φ1 ¯ (φ2 t φ3)), then there exists X1, X2 such that X1 ∪X2 = X , X1 strictly

satisfies φ1, and X2 strictly satisfies (φ2 t φ3). By Definition 3, X2 strictly satisfies φ2 or strictly

satisfies φ3. In the former case, X strictly satisfies (φ1 ¯ φ2), which implies that X strictly satisfies

((φ1 ¯ φ2) t (φ1 ¯ φ3)), as desired. The argument is analogous if X2 strictly satisfies φ3 but not φ2.

If X strictly satisfies ((φ1 ¯ φ2) t (φ1 ¯ φ3)), then either X strictly satisfies (φ1 ¯ φ2) or X strictly

satisfies (φ1 ¯ φ3). In the former case, by Definition 3, there exist X1, X2 such that X1 ∪X2 = X ,

X strictly satisfies φ1 and X2 strictly satisfies φ2. Therefore, X2 strictly satisfies (φ2 t φ3), and

consequently, X strictly satisfies (φ1 ¯ (φ2 t φ3)) as desired. The argument is analogous when X

strictly satisfies (φ1 ¯ φ3).

4. The operator ⊗ is distributive over t.

If X strictly satisfies (φ1 ⊗ (φ2 t φ3)), X can be partitioned into two disjoint sets X1 and X2 such

that X1 strictly satisfies φ1 and X2 strictly satisfies φ2 or φ3. In this case, by definition, X strictly

satisfies (φ1 ⊗ φ2) or (φ1 ⊗ φ3), which means X strictly satisfies ((φ1 ⊗ φ2) t (φ1 ⊗ φ3)).

For the other direction, ifX strictly satisfies ((φ1⊗φ2)t(φ1⊗φ3)), it strictly satisfies either (φ1⊗φ2)
or (φ1 ⊗ φ3). Without loss of generality, assume that X strictly satisfies (φ1 ⊗ φ2). Then, X can be

partitioned into two disjoint sets X1 and X2 such that X1 strictly satisfies φ1 and X2 strictly satisfies

φ2. By definition, X2 strictly satisfies (φ2 t φ3). Therefore, X strictly satisfies (φ1 ⊗ (φ2 t φ3)).

5. No other ordered pair of operators have the distributive property.

We show a counter example for each case. In the following, Ur = {u|(u, r) ∈ UR}.

(a) The operator ¯ is not distributive over u.

If X strictly satisfies (φ1 ¯ (φ2 u φ3)), then X also strictly satisfies ((φ1 ¯ φ2) u (φ1 ¯ φ3)).

However, the other direction of implication does not hold. Counter example: Let Ur1 =
{u1, u2}, Ur2 = {u1}, and Ur3 = {u2}, then {u1, u2} strictly satisfies ((r1 ¯ r2) u (r1 ¯ r3)),

but does not satisfy (r1 ¯ (r2 u r3)).

(b) The operator u is not distributive over ¯.

Neither direction holds.

Counter example: Let Ur1 = Ur3 = {u1} and Ur2 = Ur4 = {u2}, let φ1 = (r1 ¯ r2), then

{u1, u2} strictly satisfies (φ1 u (r3 ¯ r4)), but does not satisfy ((φ1 u r3)¯ (φ1 u r4)).

Counter example: Let Ur1 = {u1, u2}, Ur2 = {u1}, and Ur3 = {u2}, then {u1, u2} strictly

satisfies ((r1 u r2)¯ (r1 u r3)), but does not satisfy (r1 u (r2 ¯ r3)).

19

(c) The operator t is not distributive over ¯.

If X strictly satisfies (φ1 t (φ2 ¯ φ3)), then X strictly satisfies ((φ1 t φ2)¯ (φ1 t φ3)).

However, the other direction of implication does not hold. Counter example: Let Ur1 =
{u1, u2}, Ur2 = ∅ and Ur3 = ∅, then {u1, u2} strictly satisfies ((r1 t r2) ¯ (r1 t r3)), but

does not strictly satisfy (r1 t (r2 ¯ r3)).

(d) The operator t is not distributive over ⊗.

Neither direction holds.

Counter example: Let Ur1 = {u1, u2}, Ur2 = ∅ and Ur3 = ∅, then {u1, u2} strictly satisfies

((r1 t r2)⊗ (r1 t r3)) , but does not strictly satisfy (r1 t (r2 ⊗ r3)).

Counter example: Let Ur1 = {u1}, Ur2 = ∅ and Ur3 = ∅, then {u1} strictly satisfies (r1t (r2⊗
r3)), but does not satisfy ((r1 t r2)⊗ (r1 t r3)).

(e) The operator ⊗ is not distributive over u.

If X strictly satisfies (φ1 ⊗ (φ2 u φ3)), then X strictly satisfies ((φ1 ⊗ φ2) u (φ1 ⊗ φ3)).

However, the other direction of implication does not hold. Counter example: Let Ur1 =
{u1, u2}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2} strictly satisfies ((r1 ⊗ r2) u (r1 ⊗ r3)),

but does not satisfy (r1 ⊗ (r2 u r3)).

(f) The operator u is not distributive over ⊗.

Neither direction holds.

Counter example: Let Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2} strictly

satisfies ((r1 u r2)⊗ (r1 u r3)), but does not satisfy (r1 ⊗ (r2 u r3)).

Counter example: Let Ur1 = Ur3 = {u1} and Ur2 = Ur4 = {u2}, and let φ1 = (r1 ¯ r2), then

{u1, u2} strictly satisfies (φ1 u (r3 ⊗ r4)), but does not satisfy ((φ1 u r3)⊗ (φ1 u r4)).

(g) The operator ¯ is not distributive over ⊗.

Neither direction holds.

Counter example: Let Ur1 = {u1, u4}, Ur2 = {u2} and Ur3 = {u3}, then {u1, u2, u3, u4}
strictly satisfies ((r1 ¯ r2)⊗ (r1 ¯ r3)), but does not strictly satisfies (r1 ¯ (r2 ⊗ r3)).

Counter example: Let Ur1 = {u1}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2} strictly satisfies

(r1 ¯ (r2 ⊗ r3)), but does not satisfy ((r1 ¯ r2)⊗ (r1 ¯ r3)).

(h) The operator ⊗ is not distributive over ¯.

If X strictly satisfies (φ1 ⊗ (φ2 ¯ φ3)), then X strictly satisfies ((φ1 ⊗ φ2)¯ (φ1 ⊗ φ3)).

However, the other direction of implication does not hold. Counter example: Let Ur1 =
{u1, u2}, Ur2 = {u2} and Ur3 = {u1}, then {u1, u2} strictly satisfies ((r1 ⊗ r2) ¯ (r1 ⊗ r3)),

but does not satisfy (r1 ⊗ (r2 ¯ r3)).

B Proof for Theorem 4

Proof.

• C(All) = C(r) = {1} is straightforward.

• That C(φ1 t φ2) = C(φ1) ∪ C(φ2) follows from the definition of strict satisfaction (Definition 3),

which implies that V (φ1 t φ2) = V (φ1) ∪ V (φ2), where V (φ) denotes the set of all usersets that

strictly satisfy φ.

20

• That C(φ1 u φ2) = C(φ1) ∩ C(φ2) follows from the definition of strict satisfaction (Definition 3),

which implies that V (φ1 u φ2) = V (φ1) ∩ V (φ2).

• As to C(φ1 ¯ φ2), let X be a userset that strictly satisfies (φ1 ¯ φ2). There exist X1, X2 such

that X1 strictly satisfies φ1, X2 strictly satisfies φ2, and X1 ∪ X2 = X . By definition of char-

acteristic set, |X1| ∈ [min(C(φ1)),max(C(φ1))] and |X2| ∈ [min(C(φ2)),max(C(φ2))]. Hence,

|X| ∈ [max (min(C(φ1)),min(C(φ2))) ,max(C(φ1))+max(C(φ2))]. It follows thatC(φ1¯φ2) ⊆
[max(min(C(φ1)),min(C(φ2))),max(C(φ1)) + max(C(φ2))].

On the other hand, given an integer k ∈ [max(min(C(φ1)),min(C(φ2))),max(C(φ1)) +
max(C(φ2))], we can construct a set X of k users and a configuration UR such that X strictly

satisfies (φ1 ¯ φ2) under UR. By the range of k, there exit c1 ∈ C(φ1) and c2 ∈ C(φ2) such that

c1 ≤ k, c2 ≤ k and k ≤ c1 + c2. By definition of characteristic set, there exist X1 and X2 strictly

satisfying φ1, φ2 under UR1,UR2 respectively, such that |X1| = c1 and |X2| = c2. Name the users

in such a way that |X1 ∩ X2| = c1 + c2 − k. Let UR = UR1 ∪ UR2. By monotonicity of term

satisfaction, X1, X2 strictly satisfy φ1, φ2 respectively under UR. Therefore, X = X1 ∪X2 strictly

satisfies (φ1 ¯ φ2) under UR, where |X| = |X1|+ |X2| − |X1 ∩X2| = k.

• As to C(φ1⊗φ2), on the one hand, a setX of users strictly satisfies (φ1⊗φ2) if and only if there exist

X1 and X2 such that X1 ∪X2 = X , X1 ∩X2 = ∅ and X1, X2 strictly satisfy φ1, φ2 respectively. By

definition of characteristic set, |X1| ∈ C(φ1) and |X2| ∈ C(φ2). Therefore, |X| = (|X1| + |X2|) ∈
{ c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }.

On the other hand, given any c1 ∈ C(φ1) and c2 ∈ C(φ2), by definition of characteristic number,

there exist X1, X2 strictly satisfying φ1, φ2 under UR1,UR2 respectively, such that |X1| = c1 and

|X2| = c2. Name the users in such a way thatX1∩X2 = ∅. Let UR = UR1∪UR2. By monotonicity

of term satisfaction, X1, X2 strictly satisfy φ1, φ2 respectively under UR. Therefore, X = X1 ∪X2

strictly satisfies (φ1 ⊗ φ2) under UR, where |X| = |X1|+ |X2| = c1 + c2.

C Proofs for Lemmas in Section 4.1

In the following proofs, (opkφ) denotes k copies of φ connected together by operator op and (opni=1ri)
denotes (r1 op · · · op rn). Given R = {r1, · · · , rm}, (opR) denotes (r1 op · · · op rm).

Proof of Lemma 7: UTS 〈t,u,¯,⊗〉 is in NP

Given a set X of users, a term φ and a configuration UR, we want to check whether X satisfies φ under

UR. We design a nondeterministic Turing machine that decides the problem in polynomial time.

First, the Turing machine computes the syntax tree T of φ, where the n leaves in T correspond to the n

atomic terms in φ and the n − 1 inner nodes corresponds to the n − 1 operators in φ. Let t1, · · · , t2n−1 be

the sequence of nodes visited by post-order traversal on T . We say that a set of users strictly satisfies ti if

it strictly satisfies the term corresponding to the subtree rooted at ti. Let L(t) and R(t) denote the left child

and the right child of inner node t respectively.

Next, the Turing machine nondeterministically generates a sequence of X’s subsets X1, · · ·X2n−1 and

does the following to check whether Xi strictly satisfies ti. Note that Xi ∪∞ =∞.

21

For i = 1 To 2n− 1 Do

Switch ti Of

Case All: If |Xi| 6= 1 Then Xi ←∞;

Case r: If |Xi| 6= {u} such that (u, r) ∈ UR Then Xi ←∞;

Case t: If Xi 6= XL(ti) and Xi 6= XR(ti) Then Xi ←∞;

Case u: If Xi 6= XL(ti) or Xi 6= XR(ti) Then Xi ←∞;

Case ¯: If XL(ti) ∪XR(ti) 6= Xi Then Xi ←∞;

Case ⊗: If XL(ti) ∪XR(ti) 6= Xi or XL(ti) ∩XR(ti) 6= ∅ Then Xi ←∞;

EndSwitch

EndFor

If X2n−1 =∞ Then return false Else return true

In the above algorithm, Xi is changed to ∞ if it does not strictly satisfy the term corresponding to

the subtree rooted at ti. The correctness of the algorithm follows immediately from the definition 3. As a

nondeterministic Turing runs the algorithm in Polynomial time, UTS 〈t,u,¯,⊗〉 is in NP.

Proof of Lemma 8: UTS 〈u,¯〉 is NP-hard.

We use a reduction from the NP-complete SET COVERING problem [8]. In the set covering problem, we

are given a family F = {S1, · · · , Sm} of subsets of a finite set S and an integer k no larger than m, and we

ask whether there are k sets in family F whose union is S.

Given S = {e1, · · · , en} and a family of S’s subsets F = {S1, · · · , Sm}, we construct a configuration

UR such that (ui, rj) ∈ UR if and only if ej ∈ Si. LetU = {u1, · · · , um} and φ = ((
⊙

k All)u(
⊙n

i=1
ri)).

We now demonstrate that U satisfies φ under UR if and only if there are no more than k sets in family

F whose union is S.

If U satisfies φ, by definition, a subset U ′ of U strictly satisfies (
⊙

k All) and (
⊙n

i=1
ri). U ′ strictly

satisfying (
⊙

k All) indicates that |U ′| ≤ k, while U ′ strictly satisfying (
⊙n

i=1
ri) indicates that users in

U ′ together have membership of ri for every i from 1 to n. Without loss of generality, suppose U ′ =
{u1, · · · , ut}, where t ≤ k. As (ui, rj) ∈ UR if and only if ej ∈ Si, the union of {S1, · · · , St} is S. The

answer to the set covering problem is “yes”.

On the other hand, without loss of generality, assume that
⋃k
i=1

Si = S. From the construction of UR,

users u1, · · · , uk together have membership of ri for every i. In this case, {u1, · · · , uk} satisfies (
⊙n

i=1
ri).

Also, {u1, · · · , uk} strictly satisfies (
⊙

k All). Hence, U satisfies φ.

Proof of Lemma 9: UTS 〈¯,⊗〉 is NP-hard.

We use a reduction form the NP-complete DOMATIC NUMBER problem [8]. Given a graph G(V,E),

the Domatic Number problem asks whether V can be partitioned into k disjoint sets V1, V2, · · · , Vk, such

that each Vi is a dominating set for G. V ′ is a dominating set for G = (V,E) if for every node u in V − V ′,
there is a node v in V ′ such that (u, v) ∈ E.

Given a graph G = (V,E) and a threshold k, let U = {u1, u2, · · · , un} and R = {r1, r2, · · · , rn},
where n is the number of nodes in V . Each user in U corresponds to a node in G, and v(ui) denotes the

node corresponding to user ui. UR = {(ui, rj) | i = j or (v(ui), v(uj)) ∈ E}. Let φ = (
⊗

k(
⊙n

i=1
ri)).

A dominating set in G corresponds to a set of users that together have membership of all the n roles. U

satisfies φ if and only if U has a subset U ′ that can be divided into k pairwise disjoint sets, each of which

have role membership of r1, r2, · · · , rn. Therefore, the answer to the Domatic Number problem is “yes” if

and only if U satisfies φ.

22

Proof of Lemma 10: UTS 〈⊗,t〉 is NP-hard.

We use a reduction from the NP-complete SET PACKING problem [8], which asks, given a family F =
{S1, · · · , Sm} of subsets of a finite set S and an integer k, whether there are k pairwise disjoint sets in

family F . Without loss of generality, we assume that Si 6⊆ Sj if i 6= j.

Given S = {e1, · · · , en} and a family of S’s subsets F = {S1, · · · , Sm}, let U = {u1, · · · , un},
R = {r1, · · · , rn} and UR = {(ui, ri) | 1 ≤ i ≤ n}. We then construct a term φ = (

⊗

k (
⊔m
i=1

(
⊗

Rj))),

where Rj = {ri | ei ∈ Sj}. We show that U satisfies φ under UR if and only if there are k pairwise disjoint

sets in family F .

As the only member of ri is ui, the only userset that strictly satisfies φi = (
⊗

Rj) is Uj = {ui | ei ∈
Sj}. A userset X strictly satisfies φ′ = (

⊔m
i=1

φi) if and only if X equals to some Uj .

Without loss of generality, assume that S1, · · · , Sk are k pairwise disjoint sets. Then, U1, · · · , Uk are k

pairwise disjoint sets of users. U1 strictly satisfies φ1, and thus strictly satisfies φ′. Similarly, we have Ui
strictly satisfies φ′ for every i from 1 to k. Since Ui ⊆ U , U satisfies φ.

On the other hand, suppose U satisfies φ. Then, U has a subset U ′ that can be divided into k pairwise

disjoint sets Û1, · · · , Ûk, such that Ûi strictly satisfies φi. In order to strictly satisfy φ′, Ûi must strictly

satisfy a certain φai and hence be equivalent to Uai . The assumption that Û1, · · · , Ûk are pairwise disjoint

indicates that Ua1
, · · · , Uak are also pairwise disjoint. Therefore, their corresponding sets Sa1

, · · · , Sak are

pairwise disjoint. The answer to the Set Packing problem is “yes”.

Proof of Lemma 11: UTS 〈u,⊗〉 is NP-hard.

We use a reduction from the NP-complete Set Covering problem, which asks, given a family F =
{S1, · · · , Sm} of subsets of a finite set S and an integer k no larger than m, whether there are k sets in

family F whose union is S.

Given S = {e1, · · · , en} and a family of S’s subsets F = {S1, · · · , Sm}, let U = {u1, u2, · · · , um},
R = {r1, r2, · · · , rn} and UR = {(ui, rj) | ej ∈ Si}. Let φ = (un

i=1

(

ri ⊗
(
⊗

k−1
All
))

). We now

demonstrate that U satisfies φ under UR if and only if there are k sets in family F whose union is S.

If U satisfies φ, by definition, a subset U ′ of U strictly satisfies
(

ri ⊗
(
⊗

k−1
All
))

for every i, which

means users in U ′ together have membership of ri for every i. As C(ri ⊗ (
⊗

k−1
All)) = {k}, |U ′| = k.

Suppose U ′ = {ua1
, · · · , uak}. As (ui, rj) ∈ UR if and only if ej ∈ Si, the union of {Sa1

, · · · , Sak} is S.

The answer to the Set Covering problem is “yes”.

On the other hand, without loss of generality, assume that
⋃k
i=1

Si = S. From the construction of UR,

users u1, · · · , uk together have membership of ri for every i from 1 to n. In this case, as at least k users

are required to satisfy φi, {u1, · · · , uk} strictly satisfies φi for every i from 1 to n, which indicates that it

strictly satisfies φ.

D Background on the Polynomial Hierarchy

Oracle Turing Machine An oracle Turing machine, with oracle L, is denoted as ML. L is a language.

ML can use the oracle to determine whether a string is in L or not in one step. More precisely, ML is a

two-tape deterministic Turing machine. The extra tape is called the oracle tape. ML has three additional

states: q? (the query state), and qyes and qno (the answer states). The computation of ML proceeds like in

any ordinary Turing machine, except for transitions from q?. When ML enters q?, it checks whether the

contents of the oracle tape are in L. If so, ML moves to qyes . Otherwise, ML moves to qno . In other words,

ML is given the ability to “instantaneously” determine whether a particular string is in L or not.

23

Polynomial Hierarchy The polynomial hierarchy provides a more detailed way of classifying NP-hard

decision problems. The complexity classes in this hierarchy are denoted by ΣkP,ΠkP,∆kP, where k is a

nonnegative integer. They are defined as follows:

Σ0P = Π0P = ∆0P = P,

and for all k ≥ 0,

∆k+1P = P
ΣkP,

Σk+1P = NP
ΣkP,

Πk+1P = co-Σk+1P = coNP
ΣkP.

Some classes in the hierarchy are

∆1P = P , Σ1P = NP , Π1P = coNP,

∆2P = P
NP, Σ2P = NP

NP, Π2P = coNP
NP.

E Proofs of Lemmas in Section 5

Proof of Lemma 19: SSC〈⊗〉 is coNP-complete.

We can reduce the Set Covering problem to the complement of SSC〈⊗〉. In Set Covering problem, we are

given a family F = {S1, · · · , Sm} of subsets of a finite set S = {e1, · · · , en} and a goal K. We are asking

for a set of K sets in F whose union is S.

Given an instance of the Set Covering problem, construct a configuration 〈UR,UP〉 such that (ui, ri) ∈
UR and (ui, pj) ∈ UP if and only if ej ∈ Si. Construct a safety policy E = sp〈P, φ〉, where P =
〈p1, · · · , pn〉 and φ = (

⊗

K+1
All). φ is satisfied by any set of no less than K + 1 users.

On the one hand, if 〈UR,UP〉 is safe, no K users together have all permissions in P . In this case, since

ui corresponds to Si, there does not exist K sets in F whose union is S. The answer to the Set Covering

problem is “no”.

On the other hand, if 〈UR,UP〉 is not safe, there exist a set of no more than K users together have all

permissions in P . Accordingly, the answer to the Set Covering problem is “yes”.

Since the Set Covering problem is NP-complete, we conclude that the complement of SSC〈⊗〉 is NP-

hard. Hence, SSC〈⊗〉 is coNP-hard.

Proof of Lemma 20: SSC〈t,¯〉 is coNP-complete. We reduce the coNP-complete validity problems

for propositional logic to SSC〈t,¯〉. Given a propositional logic formulaϕ using∧, ∨, and¬, let v1, · · · , vn
be the propositional variables in ϕ.

We create a configuration 〈UR,UP〉 with n permissions p1, p2, · · · , pn, 2n users u1, u
′

1, u2, u
′

2, · · · ,
un, u

′

n, and 2n roles r1, r
′

1, r2, r
′

2, · · · , rn, r
′

n. We have UP = {(pi, ui), (pi, u
′

i) | 1 ≤ i ≤ n} and UR =
{(ui, ri), (u

′

i, r
′

i) | 1 ≤ i ≤ n}. We also construct a term φ from the formula ϕ by replacing each literal vi
with ri, each literal ¬vi with r′i, each occurrence of ∧ with t and each occurrence of ∨ with ¯.

We now show that the formula ϕ is valid if and only if 〈UR,UP〉 is safe with respect to the policy

sp〈{p1, p2, · · · , pn}, φ〉. If the formula ϕ is not valid, then there is an assignment I that makes it false.

Using the assignment, we construct a userset X = {ui | I(vi) = 1} ∪ {u′i | I(vi) = 0}. X covers all

permissions in P , and X does not satisfy φ. If 〈UR,UP〉 is not safe with respect to sp〈{p1, p2, · · · , pn}, φ〉,
then there exists a set X of users that together have all permissions in P and does not satisfy φ. In order to

cover all permissions in P , for each i at least one of ui, u
′

i is in X . Without loss of generality, assume that

for each i, exactly one of ui, u
′

i is in X . If both ui, u
′

i are in X , we can remove either one, the resulting set

24

still has all permissions in P but clearly does not satisfy φ because of the monotonicity property. Then we

can derive an truth assignment from X so that the formula ϕ evaluates to false.

Proof of Lemma 21: SSC〈¯〉 is in P.

Given a static safety policy sp〈P, φ〉 where φ uses only the operator ¯, and a configuration 〈UR,UP〉.
We need to determines whether 〈UR,UP〉 is safe with respect to sp〈P, φ〉.

We observe that, as ¯ is associative, φ can be equivalently written asφ1 ¯ φ2 · · · ¯ φn, where each φi is

an atomic term, and φ is satisfied by a nonempty userset X if and only if for each role in φ, there exists a

user u in X such that u is a member of the role. Based on this observation, we have the following algorithm.

isSafe(P, φ, UR , UP)

begin

Rφ = all roles that appear in φ

R = Rφ
For each p in P do

Rp = ∅
For each u such that (u, p) ∈ UP do

Rp = Rp ∪ ({ r ∈ Rφ | (u, r) 6∈ UR })
EndFor;

R = R ∩ Rp
EndFor;

if (R == ∅) return true

else return false

end

If the algorithm returns false, it means that there is a role r ∈ Rφ such that r ∈ Rp for each p ∈ P . That

r ∈ Rp means that there exists a user u such that (u, p) ∈ UP and r ∈ { r ∈ Rφ|(u, r) 6∈ UR }. In other

words, there exists a user u such that u has permission p but is not a member of r. By choosing one such

user for each p, we have a userset that covers all permissions, but does not satisfy φ.

If the algorithm returns true, it means that for every role in Rφ, there exists a permission p such that

r 6∈ Rp, which means that (u, r) ∈ UR for each u such that u has the permission p. In order to have the

permission p, one thus have to pick a user that satisfies r. As every role in Rφ can be satisfied by any userset

that together have all permissions in P , φ is also satisfied by any such userset. The configuration is safe.

We assume that whether (u, r) ∈ UR and (u, p) ∈ UP can be determined in constant time. Let |U | be

the set of users appear in UR and Rφ be the set of roles appear in φ. Note that |Rφ| ≤ |φ|. The running time

of the first two steps of the algorithm is O(|φ|). The outer loop runs |P | times and the inner loop runs |U |
times. Computing the set union within the inner loop takes time O(|R|+ |P |). In general, the running time

of the above algorithm is O(|φ|+ |P | · |U | · (|R|+ |P |)).

Lemma 23 SSC〈t,u〉 is in P.

Proof. Given a static safety policy sp〈P, φ〉 where φ uses only operators in {t,u}, and a configuration

〈UR,UP〉. As C(φ) = {1}, φ is strictly satisfied only by singleton userset. The following algorithm

determines whether 〈UR,UP〉 is safety with respect to sp〈P, φ〉.

isSafe(P, φ, UR , UP)

begin

For each p in P do

25

res = true;

For each u such that (u, p) ∈ UP do

If ({u} does not strictly satisfies φ under UR) then res = false;

EndFor;

if (res==true) return true

EndFor;

return false;

end

Determining whether a singleton userset strictly satisfies a term or not can be done in term linear in the

size of the term. Therefore, the above algorithm is clearly polynomial in the size of the instance.

The algorithm returns true when there exists one permission in P such that all users who have the

permission satisfy the term φ. As any userset that covers all permissions in P must include a user among

these, all such usersets satisfy φ, the answer true is thus correct. The algorithm returns false, when for every

permission in P , there exists a user that has the permission yet does not satisfy φ. The userset that consists

of all these users has all permissions in P , yet does not satisfy φ.

We assume that whether (u, r) ∈ UR and (u, p) ∈ UP can be determined in constant time. Let |U | be

the set of users appear in UR. The outer loop of the algorithm runs |P | times and the inner loop runs |U |
times. Checking whether a user strictly satisfies a term can be done in time O(|φ|). In general, the running

time of the above algorithm is O(|P | · |U | · |φ|).

26

